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Abstract

We investigate the cosmology of the minimal model of neutral naturalness, the mirror Twin Higgs.

The softly-broken mirror symmetry relating the Standard Model to its twin counterpart leads to

significant dark radiation in tension with BBN and CMB observations. We quantify this tension

and illustrate how it can be mitigated in several simple scenarios that alter the relative energy

densities of the two sectors while respecting the softly-broken mirror symmetry. In particular,

we consider both the out-of-equilibrium decay of a new scalar as well as reheating in a toy model

of twinned inflation, Twinflation. In both cases the dilution of energy density in the twin sector

does not merely reconcile the existence of a mirror Twin Higgs with cosmological constraints,

but predicts contributions to cosmological observables that may be probed in current and future

CMB experiments. This raises the prospect of discovering evidence of neutral naturalness through

cosmology rather than colliders.
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1 Introduction

The electroweak hierarchy problem is one of the primary motivators for accessible physics beyond

the Standard Model and has led to an expansive set of searches at the LHC and beyond. Recent

null results in searches for conventional approaches to the hierarchy problem motivate the explo-

ration of alternative solutions. “Neutral naturalness” provides one such promising alternative,

in which the lightest states responsible for protecting the weak scale are partly or wholly neu-

tral under the Standard Model (SM). In these theories, discrete symmetries enforce cancellations

between finite threshold corrections to the Higgs mass. The discrete symmetries may be approx-

imate or exact, although solutions with approximate symmetries typically require a plethora of

new particles near the TeV scale.

Perhaps the simplest avatar of neutral naturalness is the “mirror” Twin Higgs [1], in which

the new physics near the weak scale consists of an identical copy of the Standard Model related

by an exact Z2 exchange symmetry. Higgs portal-type couplings between the Higgs doublets

of the Standard Model and the twin sector lead to accidental global symmetries that protect

the Higgs mass. The lightest partner particles are entirely neutral under the Standard Model,

subject only to indirect bounds from precision Higgs coupling measurements. In conjunction with

supersymmetry or compositeness at 5-10 TeV, this provides a complete solution to the “little”

and “big” hierarchy problems consistent with current LHC limits. In this respect, the Twin Higgs

naturally reconciles the observation of a light Higgs with the absence of evidence for new physics

thus far at the LHC.

The primary challenge to the mirror Twin Higgs comes not from LHC data, but from cos-

mology. An exact Z2 exchange symmetry predicts mirror copies of light Standard Model states,

which contribute to the energy density of the early universe. In particular, twin neutrinos and

a twin photon provide a new source of dark radiation that is strongly constrained by CMB and

BBN measurements [2, 3]. While these constraints could be avoided if the two sectors were at

radically different temperatures, the Higgs portal couplings required by naturalness keep the two

sectors in thermal equilibrium down to relatively low temperatures. Constraints on dark radiation

in the mirror Twin Higgs have motivated models in which the Z2 symmetry is approximate (such

as the orbifold [4, 5], holographic [6, 7, 8], fraternal [9], and vector-like [10] Twin Higgs), in which

case the dark radiation component can be made naturally small. This problem was examined

recently in [11], where the Z2 symmetry in the fermion Yukawa couplings was broken in order

to find an arrangement that would reduce the residual dark radiation from the twin particles.1

However, such cosmological fixes come at the cost of minimality, as models with approximate Z2

symmetries require a considerable amount of additional structure near the TeV scale.

In this work we take an alternative approach and investigate ways in which early universe

cosmology can reconcile the mirror Twin Higgs with current CMB and BBN observations. In

doing so, we find compelling scenarios that transfer the signatures of electroweak naturalness

from high-energy colliders to cosmology. We consider several possibilities in which the energy

density of the light particles in the twin sector is diluted by the out-of-equilibrium decay of a new

particle after the two sectors have thermally decoupled. Crucially, the new physics in the early

1For recent related work on the cosmology and cosmological signatures of non-minimal Twin Higgs scenarios,

see e.g. [12, 13, 14, 15, 16, 17, 18].
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universe respects the exact (albeit spontaneously broken) Z2 exchange symmetry of the mirror

Twin Higgs. This symmetry may be used to classify representations of the particle responsible

for this dilution. We concentrate on two minimal cases: In the first, the long-lived particle is

Z2-even and the asymmetry is naturally induced by kinematics. In the second, there is a pair of

particles which are exchanged by the Z2 symmetry and which may be responsible for inflation.2

Moreover, in these cases the new physics does not merely reconcile the existence of a mirror twin

sector with cosmological constraints, but predicts contributions to cosmological observables that

may be probed in current and future CMB experiments. This raises the prospect of discovering

evidence of electroweak naturalness first through cosmology, rather than colliders, and provides

natural targets for future cosmological constraints on minimal realizations of neutral naturalness.

This paper is organized as follows: We begin in Section 2 by reviewing the salient features of

the mirror Twin Higgs. In Section 3 we discuss the thermal history of the mirror Twin Higgs,

with a particular attention to the interactions keeping the Standard Model and twin sector in

thermal equilibrium and the cosmological constraints on light degrees of freedom. In Section 4 we

present a simple model where the out-of-equilibrium decay of a particle with symmetric couplings

to the Standard Model and twin sector leads to a temperature difference between the two sectors

after they decouple. We turn to inflation in Section 5, constructing a model of “twinflation” in

which the softly broken Z2-symmetry extends to the inflationary sector and leads to two periods

of inflation. The first primarily reheats the twin sector, while the second primarily reheats the

Standard Model sector. We conclude in Section 6.

2 The Mirror Twin Higgs

We begin by briefly reviewing the salient details of the mirror Twin Higgs. The reader is referred

to any of the references listed in the previous section for further details. The theory consists

of the Standard Model and an identical copy, related by a Z2 exchange symmetry at a scale

Λ � v. The two sectors are connected only by Higgs portal-type interactions between the two

SU(2) doublet scalars.3 Subject to conditions on the quartic coupling, the Higgs sector enjoys

an approximate SU(4) global symmetry.4

The Higgs potential is best organized in terms of the accidental SU(4) symmetry involving

the SU(2) Higgs doublets of the SM and twin sectors, HA and HB. The general tree-level Twin

Higgs potential is given by (see e.g. [9])

V (HA, HB) = λ(|HA|2 + |HB|2 − f2/2)2 + κ(|HA|4 + |HB|4) + σf2|HA|2 (2.1)

The first term respects the accidental SU(4) global symmetry, the second breaks SU(4) but

2A third case exists, in which the particle is Z2-odd. This may additionally be related to the spontaneous

Z2-breaking in the Higgs potential, although we find that a realisation of such a scenario is dependent upon the

UV completion of the model.
3Here and in what follows we neglect possible kinetic mixing between the two U(1)Y gauge bosons; such mixing

is not generated in the low-energy theory at three loops [1], and may be forbidden in UV completions where the

mirror symmetry relates sectors with unified gauge groups.
4Properly speaking, the model must contain an SO(8) global symmetry in order to enjoy a residual custodial

symmetry [7, 8], but in linear realizations the SU(4) is sufficient provided that higher-dimensional operators

violating the custodial symmetry are adequately suppressed.
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preserves the Z2 and the final term softly breaks the Z2. Clearly, κ, σ � λ are required for the

SU(4) to be a good symmetry of the potential. The coupling κ should naturally be of order the

expected SU(4)-breaking radiative corrections to the potential induced by Yukawa interactions

with the top/twin top, κ ∼ 3y4
t /(8π

2) log(Λ/mt) ∼ 0.1 for a cut-off Λ ∼ 10 TeV (yt being the

top quark Yukawa coupling and mt its mass). Requiring λ � κ therefore implies λ & 1. As the

SM and twin isospin gauge groups are disjoint subgroups of the SU(4), the spontaneous breaking

of the SU(4) coincides with the SM and twin electroweak symmetry breaking. Three Goldstone

bosons are eaten by the broken gauge bosons in each sector, leaving one Goldstone remaining.

This will acquire mass through the breaking of the SU(4) that is naturally smaller than the twin

scale f . For future reference, it is convenient to define the real scalar degrees of freedom in the

gauge basis as hA = 1√
2
<(H0

A)− vA and hB = 1√
2
<(H0

B)− vB, where 〈H0
A〉 = vA and 〈H0

B〉 = vB.

To make the surviving Goldstone boson SM-like, it should be dominantly composed of the

hA gauge eigenstate. The soft Z2-breaking coupling σ is required to tune the potential so that

the vacuum expectation values (vevs) are asymmetric and that the Goldstone is mostly aligned

with the hA field direction. The consequences of this are that vA ≈ v/
√

2 and vB ≈ f/
√

2 � v

(where v is the vev of the SM Higgs, although vA ≈ 174 GeV is the vev that determines the SM

particle masses and electroweak properties), so that the SM-like Higgs h is identified with the

Goldstone mode and is naturally lighter than the other remaining real scalar, a radial mode H

whose mass is set by the scale f . The component of h in the hB gauge eigenstate is δhB ≈ v/f

(to lowest order in v/f). Measurements of the Higgs couplings restrict f & 3v [9], and the naive

tuning of the weak scale associated with this inequality is of order f2/2v2.

The spectrum of states in the broken phase consists of a SM-like pseudo-Goldstone Higgs h

of mass m2
h ∼ 8κv2, a radial twin Higgs mode H of mass m2

H ∼ 2λf2, a conventional Standard

Model sector of gauge bosons and fermions and a corresponding mirror sector. The current masses

of quarks, gauge bosons, and charged leptons in the twin sector are larger than their Standard

Model counterparts by ∼ f/v, while the twin QCD scale is larger by a factor ∼ (1 + log(f/v)) due

to the impact of the higher mass scale of heavy twin quarks on the renormalisation group (RG)

evolution of the twin strong coupling. The relative mass of twin neutrinos depends on the origin

of neutrino masses, some possibilities being ∼ f/v for Dirac masses and ∼ f2/v2 for Majorana

masses from the Weinberg operator. Mixing in the scalar sector implies that the SM-like Higgs

couples to twin sector matter with an O(v/f) mixing angle, as does the radial twin Higgs mode

to Standard Model matter. These mixings provide the primary portal between the Standard

Model and twin sectors.

The Goldstone Higgs is protected from radiative corrections from Z2-symmetric physics above

the scale f . While the mirror Twin Higgs addresses the little hierarchy problem, it does not

address the big hierarchy problem, as nothing stabilizes the scale f against radiative corrections.

However, the scale f can be stabilized by supersymmetry, compositeness, or perhaps additional

copies of the twin mechanism without requiring new states beneath the TeV scale. Minimal

supersymmetric UV completions can furthermore remain perturbative up to the GUT scale [19],

[20].

3



3 Thermal History of the Mirror Twin

The primary challenge to the mirror Twin Higgs comes from cosmology, rather than collider

physics. The mirror Twin contains not only states responsible for protecting the Higgs against

radiative corrections (such as the twin top), but also a plethora of extra states due to the Z2

symmetry that are irrelevant to naturalness. The lightest of these, namely the twin photon and

twin neutrinos, contribute significantly to the energy density of the early universe around the era

of matter-radiation equality, since they have a temperature comparable to that of the Standard

Model plasma at all times. This is because the same Higgs portal coupling that makes the

Higgs natural also keeps the two sectors in thermal equilibrium down to O(GeV) temperatures.

Then the identical particle content in the twin and Standard Model sectors guarantees that they

remain at comparable temperatures even after they decouple - for every massive Standard Model

species that becomes non-relativistic and transfers its entropy to the rest of the plasma, its twin

counterpart does the same within a factor of f/v in temperature.

In this section we undertake a detailed study of the decoupling between the Standard Model

and twin sectors as well as the constraints from precision cosmology.

3.1 Twin Degrees of Freedom

In thermal equilibrium, each relativistic degree of freedom has roughly the same energy density.

In general, we express the energy density of the universe ρ as ρ ≡ g?
π2

30T
4, where we define

g? through this relation as the effective number of relativistic degrees of freedom and T the

temperature of the SM photons. This then determines the evolution of the scale factor through

the first Friedmann equation

H =
1

Mpl

[
π2

90
g?T

4

]1/2

(3.1)

(assuming spatial flatness), where Mpl is the reduced Planck mass. In general, the energy density

of a particular species i may be computed from ρi = gi
∫ d3p

(2π)3 fi(p, Ti)E(p), where gi are the

number of internal degrees of freedom, E(p) is the energy as a function of momentum p, while

fi(p, Ti) is the phase-space number density and is a Bose-Einstein or Fermi-Dirac distribution if

the species is in equilibrium at temperature Ti. The number of effective relativistic degrees of

freedom may then be defined for each sector separately as gSM
? (T ) and gt

?(T ) satisfying ρSM(T ) =
π2

30 g
SM
? (T )T 4 and ρt(T ) = π2

30 g
t
?(T )T 4, respectively, where ρSM(T ) and ρt(T ) are the total energy

densities of SM and twin particles. The values of g?(T ) for the SM and twin sectors are shown in

Figure 1, where all species within each sector are in thermal equilibrium. These can then be used

to calculate the total number g? as a function of temperature, by weighting twin sector energy

density by its temperature: g?(T ) = gSM
? (T ) + gt

?(T̂ )(T̂ /T )4, where T̂ is the twin sector photon

temperature when the SM photon temperature is T .

Likewise, entropy densities for each sector i are defined as si(T ) = 2π2

45 g
i
?(T )T 3. We neglect

the small differences between the number of relativistic degrees of freedom defined from energy

and entropy densities, which are not significant over the range of temperatures of interest here.
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Figure 1: The effective number of relativistic degrees of freedom for mirror Twin Higgs models for different

values of f/v. The dash-dotted line is the for the Standard Model gSM
? (T ) and the dashed lines are the

twin sector degrees of freedom gt
?(T ). The evolution of g? during the QCD phase transition (QCDPT) is

not well-understood, so we assign the SM QCDPT a central value of 175 MeV and a width of 50 MeV

and interpolate linearly between the values of g? at 225 MeV for free partons and at 125 MeV for pions.

Further discussion may be found in [21]. For the twin sector we use a central value and width which

are (1 + log( fv )) times larger than the SM values. Note that new mass thresholds, expected to appear at

energies ∼ 10 TeV in UV completions of the twin Higgs, have not been included.

3.2 Decoupling

In the early universe, the two sectors are thermally linked by interactions mediated by the Higgs,

which, through mixing with both hA and hB components, allows for SM fermions and weak

bosons to scatter off or annihilate into their twin counterparts. However, once the temperature

drops sufficiently for this Higgs-mediated interaction to become rare on the expansion time-scale,

the sectors decouple and thereafter thermally evolve independently. More precisely, thermal

decoupling will occur once the rate at which energy can be exchanged between SM and twin

particles (through the Higgs) falls below the Hubble rate.

Thermal decoupling is traditionally formulated from the Boltzmann equations describing the

evolution of single-particle phase space number densities, wherein collisions induce instantaneous
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changes to the shape of these distributions. When the collisions occur faster than the expansion

rate, the phase space probability density functions of the interacting species are expected to relax

to an equilibrium distribution (Boltzmann, neglecting quantum statistics, will be applicable to

our case). However, once the rate of collisions falls below the expansion rate, collisions become

rare on cosmological time scales and the phase space distributions depart from equilibrium. The

decoupling temperature is determined as that at which the scattering rate of a participating

particle, Γ, drops below the Hubble rate, assuming that this occurs instantaneously across the

entire phase space where the number density is significant. This formulation can be used to

determine the time at which a particular species of particle will cease to scatter off twin particles

on cosmological time scales.

In the case of interest here, however, both sectors of particles remain thermalised within

themselves while the interactions between sectors freeze-out. This implies that the phase space

number densities are still Boltzmann distributions throughout decoupling, with a different tem-

perature for each sector. As it is the twin sector temperature that ultimately determines the

impact of the light twin degrees of freedom on the cosmological observables (discussed below in

Section 3.3), we wish to describe the thermal evolution of the two sectors by that of their entire

energy or entropy content and the bulk heat flows between them. They may then be identified as

thermally decoupled once the rate at which they exchange energy falls below the expansion rate.

If the SM and twin sector plasmas have temperatures T and T̂ respectively, then calling q

the net heat flow density from the SM to the twin sector, the rate at which the twin entropy

densities st and sSM evolve is determined by

dst

dt
+ 3Hst =

1

T̂

dq

dt
=

1

T̂

(dqin

dt
− dqout

dt

)
(3.2)

dsSM

dt
+ 3HsSM =

−1

T

dq

dt
= − 1

T

(dqin

dt
− dqout

dt

)
. (3.3)

Here, H is the Hubble rate. The heat flow rate has been decomposed into the sum of the energy

transferred into and out of the twin sector by collisions in the second equality in each line, where
dqin
dt and dqout

dt are both positive.

The rate of heat flow q may be calculated by performing a phase space average of the rate

that energy is transferred from the SM to the twin sector through particle interactions. Since

the decay rates of top quarks or weak bosons are fast compared to their scattering rate and

the Hubble rate, energy transferred to them is instantaneously transferred to the rest of the

plasma. Similarly, the scattering rate of lighter fermions off other particles of the same sector

(such as photons or gluons) is much faster than their interaction rate with twin fermions. Energy

transferred to the lighter fermions therefore quickly diffuses throughout their respective plasmas.

The rate of heat flow between sectors may therefore be well approximated by the rate at which

energy is transferred to from SM particles to twin particles in Higgs mediated interactions. This

may occur through elastic scattering of SM particles off twin particles or annihilations of SM

particle/antiparticle pairs into twin particles (or the reverse). The energy density transferred to

twin particle i from SM particle j in scattering is given by

dqij→ij
dt

=
gigj

(2π)6

∫ ∫
d3k

2Ei(k)

d3h

2Ej(h)
fi(k, T̂ )fj(h, T )

(
4Ei(k)Ej(h)

∫
vrel(Ei(p)− Ei(k))

dσij→ij
dΩ

dΩ
)
, (3.4)

6



where p is the outgoing 4-momentum of particle i. In the cosmic comoving frame, the phase

space number densities fi and fj are just Boltzmann factors, although evaluated at the different

temperatures of each sector. The factor gi is the number of internal degrees of freedom of particle

i, which here includes colour (the cross section should not be colour averaged, as each colour of

quark is present in the plasma in equal abundances and each mediates the exchange of energy,

so have their contributions summed). Finally, Ei(k) is the on-shell energy of particle i with

momentum k, while
dσij→ij

dΩ is the differential scattering cross section for species i scattering off

j per solid angle Ω and vrel is the usual relative speed of the incoming particles. As described in

[22], the factor in the integrand giving the energy transferred per reaction is simply a component

of a 4-vector,

X = 4Ei(k)Ej(h)

∫
(p− k)vrel

dσij→ij
dΩ

dΩ. (3.5)

This may be calculated in the centre-of-mass frame and then boosted back into the cosmic

comoving frame where the integrals in (3.4) can be evaluated, similarly to the thermal averaging

procedure described in [23].

The integral (3.4) may be decomposed into two terms giving the positive and negative energy

changes of the twin particle, which respectively contribute to dqin
dt and dqout

dt . When evaluated in

the centre-of-mass frame, these terms correspond to the cases where the scattering angle of the

twin particle is respectively less than and greater than the angle between its initial momentum

and the total momentum of the system. However, when T 6= T̂ , we find the integrals involved in

this decomposition substantially more arduous than when they are evaluated together.

Energy transferred through annihilations may be similarly calculated as

dqjj̄→īi
dt

=
g2
j

(2π)6

∫ ∫
d3k

2Ej(k)

d3h

2Ej(h)
fj(k)fj(h)

(
4Ej(k)Ej(h)

∫
vrel(Ej(h) + Ej(k))

dσjj̄→īi
dΩ

dΩ
)

− g2
i

(2π)6

∫ ∫
d3k

2Ei(k)

d3h

2Ei(h)
fi(k)fi(h)

(
4Ei(k)Ei(h)

∫
vrel(Ei(h) + Ei(k))

dσīi→jj̄
dΩ

dΩ
)
, (3.6)

where
dσjj̄→īi

dΩ is now the differential annihilation cross section. This rate may be evaluated as

described above and is more directly amenable to the factorisation of the integrals observed in

[23]. See also [24] for further details of similar calculations. The first term of (3.6) is the energy

transferred from the SM to the twin sector and contributes to dqin
dt in (3.2), while the second term

is the energy transferred from the twin sector to the SM and contributes to dqout

dt .

In thermal equilibrium, the rate of energy transferred through collisions into one sector will

be balanced by that of energy transferred out of it so that there is negligible net heat flow.

This state will be rapidly attained (compared to the age of the universe) if
dqin,out

dt � 3HT̂st.

However, as the universe expands and the plasma cools, the energy transfer rates fall faster than

the Hubble rate. This is demonstrated in the Figure 2 below. Once they drop below the Hubble

rate, energy exchange ceases on cosmological time scales and the sectors thermally decouple,

thereafter thermodynamically evolving independently.

To determine the decoupling temperature of the sectors, we calculate the rates of positive

energy exchange for the twin particles interacting with the SM particles. The cross sections are

calculated using a tree-level effective fermion-twin fermion contact interaction that, in the full
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twin Higgs model, would be UV completed by a SM Higgs exchange (the heavier mass of the

radial mode would make its exchange subdominant). The interaction strength is determined by

the masses of the fermions through their Yukawa couplings, as well as the mixing angle of the

SM-like mass state h with the gauge eigenstate hB, giving a 4-fermion coupling of strength
mfmf̂
m2
hf

2

(here mf and mf̂ are the masses of fermions f and f̂). See [19], [11] for a more detailed discussion

of the cross sections. This effective interaction is appropriate for the temperatures of interest here

and helps to simplify the integrals of (3.4). In order to further simplify the integrations of (3.4)

when it is to be decomposed into terms in which the energy exchange is positive and negative,

we calculate dqin
dt under the assumption that the sectors have the same temperature (this ensures

that the rate dqout

dt is identical). This is then combined with the rate of energy transferred from

annihilation. A similar calculation of these rates was recently performed in [11], for cases where

the Yukawa couplings do not respect the Z2 twin symmetry.

In Figure 2 we compare the energy transfer rate to the Hubble rate in order to determine when

decoupling occurs. As long as the energy exchange rate exceeds the expansion rate, the sectors

will be thermalised and have the same temperature. Decoupling then occurs once this rate drops

below the Hubble rate. From Figure 2, this occurs at a temperature ∼ 2 GeV. However, even

after the energy exchange rate drops below the Hubble rate, the sectors will remain at the same

temperature unless some event that either injects or redistributes entropy occurs within a sector

(such as the temperature dropping below a mass threshold). As the heavy quark masses roughly

coincide with the decoupling temperature, these do cause the twin sector to be mildly reheated

with respect to the SM below decoupling. However, the resulting temperature difference is small

and the energy exchange rates are expected to continue to be well-approximated by the rates

presented in Figure 2 beyond decoupling.

The lower plot of Figure 2 illustrates the decomposition of the energy exchange rates into

contributions from interactions involving different quarks. The interaction cross sections are

proportional to the Yukawa couplings of the interacting fermions. The greatest heat exchange is

therefore expected to be mediated by the most massive particles, provided that their abundances

are not too Boltzmann suppressed. As expected, at temperatures ∼ 1 GeV, the bottom quark

is the best conduit of thermal equilibration, followed by the charm quark and then the τ (with

colour factors enhancing the former two with respect to the latter). The rate of heat flow that the

top quarks and weak bosons can mediate at these temperatures (or below) is negligible because

of Boltzmann suppression.

The decoupling temperature depends upon f/v, which sets both the mass scale of the twin

sector and the strength of the Higgs-mediated coupling. As f/v is increased, decoupling occurs

earlier because of the greater Boltzmann suppression, although this is only a relatively small

effect that, for f/v = 10, increases the decoupling temperature by only 4 GeV.

When the twin sector is colder than the SM (which will be important for much of what

follows) the heat flow is typically dominated by annihilations of SM into twin particles. However,

the energy exchange from elastic scattering can be comparable to that from annihilations, as

illustrated in Figure 2. Although the energy exchange in an annihilation will generally exceed

that of a scattering because all of the energy involved in the process must be transferred, the

annihilation rate also becomes more Boltzmann or threshold suppressed when the temperature

8
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Figure 2: Rates of energy density exchange per twin entropy density ( 1
3stT̂

dqin
dt ) decomposed into contribu-

tions from scattering and annihilation (top) and for interactions involving different species of SM fermions

(bottom), along with the Hubble parameter, for f/v = 4. The decoupling temperature is that where the

sum of the energy exchange rates equals the Hubble rate, which occurs at Tdecoup ≈ 2 GeV.

drops below the mass of the heavier twin particles. It is therefore not always clear that energy

transfer through annihilations dominates.

Decoupling is not exactly instantaneous and there is some range of temperatures over which

the rate of heat flow freezes-out. The net heat flow rate dq
dt is greater for larger temperature

differences between sectors. The generation of a potentially large temperature difference within

this brief epoch of sector decoupling, such as those discussed below in Section 4, may be cut off
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when the heat flow rate becomes comparable to the Hubble rate. For a given SM temperature

T , the minimum twin-sector temperature T̂min during the decoupling period may be roughly

estimated as that which satisfies

H ∼ 1

3stT̂

dq

dt

∣∣∣
T̂=T̂min

. (3.7)

Twin temperatures colder than T̂min will partially thermalise back to this value. As the partici-

pating fermions are not non-relativistic, instantaneous decoupling is not as accurate an approxi-

mation as it is, for example, for chemical decoupling of a WIMP, although it is still reliable.

In Figure 3, we show the minimum temperature that the twin sector may have as a function

of SM temperature for heat flow to freeze out, estimated using (3.7). Only annihilations have

been included in the determination of the minimum temperature, although we have verified that,

for these temperatures, the scatterings contribute only . 10% to the heat flow. Generally, we

find that decoupling begins at temperatures ∼ 4 GeV. The temperature difference can reach an

order of magnitude without relaxing once the SM temperature drops to ∼ 1 GeV.

SM

Twin

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0
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4

SM Temperature (GeV)

T
em
pe
ra
tu
re
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Figure 3: Minimum twin temperature that will be heated by a hotter SM plasma, as a function of SM

temperature. Also shown is the SM temperature, for reference.

While the extent of thermal decoupling is temperature dependent, the maximum temperature

difference that will not relax grows quickly as the SM temperature drops. Below this temperature,

in the standard cosmology, all events that raise the temperature of one sector relative to the

other (such as the crossing of a mass threshold and the resulting entropy redistribution, the most

significant of which is the confinement of colour) induce temperature differences that are too

small to partially relax, so the sectors may be appropriately described as having decoupled.

At energies . 1 GeV in Figure 2, the reliability of the calculation of the heat flow rate

diminishes because of the strengthening of the strong coupling and the eventual confinement of

colour. Fortunately, for a cooler twin sector, which will be of interest in subsequent sections,

annihilations from the SM dominate other processes over most of the parameter space. These
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are the least sensitive to higher order corrections because of their higher temperature, and hence

energy, compared to the potentially cooler twin sector. The range of temperatures illustrated

in Figures 2 and 3 have been selected to roughly illustrate the duration of decoupling, but may

extend below the range where the perturbative calculation of the heat flow rate is valid. For

example, at temperatures below the twin sector QCDPT, which occurs at ∼
(

1 + log(fv )
)

higher

temperatures than in the SM, the partonic calculation of twin quark/anti-quark pair production

must be corrected to account for hadronisation. Furthermore, the growth of the twin strong

coupling necessitates that the quark-Higgs Yukawa couplings be RG evolved to the scale of the

energy exchanged, which can induce an O(1) change to the cross section, although this has only

a relatively small effect on the decoupling temperature. It is nevertheless clear that decoupling

is mostly complete by then and that these uncertainties are not large enough to affect this

conclusion.

In the standard mirror Twin Higgs cosmology, knowing the decoupling temperature tells

us how the temperatures of the two sectors will be related at subsequent times. The sectors

separately evolve adiabatically after decoupling, though they redshift in the same way and differ-

ences in temperature only arise from events that redistribute entropy. Non-minimal cosmological

events that could potentially cause the temperatures of each sector to diverge can therefore only

be effective if they leave each sector colder than this approximate decoupling temperature.

3.3 Cosmological Constraints

Given that the twin and Standard Model sectors remain in thermal equilibrium to O(GeV)

temperatures, the simplest mirror Twin Higgs scenario is cosmologically inviable due to the

presence of light twin species (photons and neutrinos) with abundances comparable to those of

the SM. The cosmological observables through which evidence of light species may be inferred

are typically represented by Neff , the “effective number of neutrino species” in the early universe,

their individual masses, which determine their free-streaming distances, and the “effective mass”

meff
ν , which parameterises their contribution to the present-day energy density of non-relativistic

matter. These observables are probed by both the CMB and large scale structure (LSS).

3.3.1 Effective number of neutrinos

The parameter Neff describes the amount of radiation-like energy density during the evolution of

the CMB anisotropies before photon decoupling. It is defined as the effective number of massless

neutrinos with temperature as predicted in the standard cosmology that would give equivalent

energy density in radiation:

ρr = ργ +
7

8

(
4

11

)4/3

Neffργ , (3.8)

where ρr is the energy density of radiation and ργ is the energy density of photons (the factor

of
(

4
11

)4/3
arises from the relative reheating of the photons from electron/positron annihilation,

which occurs after most of the neutrinos have decoupled, and the factor of 7/8 is from the opposite

spin statistics). A deviation from the Standard Model prediction of 3.046 [25] is denoted by
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∆Neff = Neff −3.046. This definition of radiation, or equivalently, relativistic degrees of freedom,

becomes less clear if the new fields have a non-negligible mass, as we discuss further below.

Extra radiation affects the features of the CMB in two ways (see [26], [2], for further re-

view). Firstly, it delays the epoch of matter-radiation equality. This has a pronounced effect

on the power spectrum in the vicinity of the first acoustic peak through the early Integrated

Sachs-Wolfe (ISW). The modes corresponding to this feature are entering the horizon close to

matter-radiation equality and the evolution of their potentials is highly sensitive to the radiation

energy density. The angular size and scale of the peak is well-measured and this approximately

fixes the scale factor at matter-radiation equality aeq. However, this effect is degenerate with the

cold dark matter fraction Ωch
2. The impact of raising Neff can be balanced by increasing the

amount of non-relativistic matter, to the extent to which other observations providing indepen-

dent constraints upon Ωc permit (for ΛCDM+Neff , a variation of ∼ 10% in Ωch
2 is consistent

with present CMB+BAO measurements [2], although these variations must be consistent with

other observables). Ultimately, the flexibility within the ΛCDM parameter space is presently

sufficient to neutralise the direct impact of ∆Neff ∼ O(1), making this feature less potent than

the one to be discussed next. This degeneracy is not expected to be broken by CMB-S4 [27].

Instead, the utility of Neff arises because, in simple extensions of the ΛCDM model, it ap-

proximately corresponds directly to the suppression of power in the small scale CMB anisotropies

from Silk damping. The greater expansion rate induced by the extra radiation reduces the time

that CMB photons have to diffuse before decoupling, but also reduces the sound horizon more

severely. As the angular size of the sound horizon is determined by the location of the acous-

tic peaks, the angular diameter distance to the CMB must be reduced by the same factor to

compensate, which consequently reduces the angular size of the diffusion scale. This effectively

raises the angular distance over which photon diffusion proceeds and results in a prediction of

smoother temperature anisotropies at small scales. This correspondence with the Silk damping

allows Neff to be approximately factorised from other parameters and constrained independently,

providing a direct observational avenue for detecting the presence of new, massless fields (see [28]

for further implications for model building).

In summary, Neff corresponds to the energy density and therefore to the Hubble rate during

the epoch of CMB decoupling. Because the scale factor aeq is well-measured, the Hubble rate

consequently corresponds to the time scale of the evolution of the CMB prior to decoupling in

minimal cosmological models. This determines the extent of the Silk damping of the tail of the

CMB anisotropy power spectrum, which provides the source of the CMB bounds on ∆Neff .

The contribution to Neff (or ∆Neff) in the mirror Twin Higgs arises from two sources: the twin

photons, which can be treated as massless dark radiation with an appropriate twin temperature

T t
eq at the time of matter-radiation equality, and the twin neutrinos, whose non-zero masses may

need to be accounted for. For the twin photons, the contribution to Neff is simple; their equation

of state is always w = 1/3 and their energy density is given by g π
2

30

(
T t

eq

)4
, where g = 2. The

twin temperature at matter-radiation equality is found from the SM temperature using comoving

entropy conservation,

T t
eq

T SM
eq

=

(
gt
?(Tdecoup)

gSM
? (Tdecoup)

)1/3
(
gSM
? (T SM

eq )

gt
?(T

t
eq)

)1/3

, (3.9)
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where the two sectors have the same number of thermalized degrees of freedom by this time.

Here, T SM
eq is the SM photon temperature at matter-radiation equality and Tdecoup is the sector

decoupling temperature.

Since neutrinos are massive, their behavior is more complicated. Their equation of state

parameter takes on a scale factor dependence which is controlled by their mass. In the Standard

Model, this sensitivity is negligible because present CMB bounds imply that neutrinos are ultra-

relativistic at aeq to good approximation [2]. However, the factor by which the twin neutrino

masses are enhanced may raise them to order T teq or greater (see Section 2 for discussion of the

scaling of the masses with f/v).

To better describe the impact of the extra twin (semi-)relativistic degrees of freedom on the

CMB, we choose to define Neff through the effects of neutrinos at matter-radiation equality, when

the impact on the expansion rate of the universe for most of the period relevant for the evolution

of the CMB is greatest. Note that, in their presentation of joint exclusion bounds on Neff and∑
mν (the sum of SM neutrino masses) or meff

ν (effective mass contributing to the present-day

non-relativistic matter density of an extra sterile neutrino), the Planck collaboration define Neff

as the value in (3.8) at temperatures sufficiently high that the neutrinos are fully relativistic.

Our values cannot be directly compared with their analysis, although we consider ours to be

a reasonable rough estimate that is more representative of the CMB constraints. The ensuing

correction from the finite neutrino masses is, in the cases considered in this work, a small effect

anyway.

To determine this correction and provide a definition of Neff that better describes the impact

of quasi-relativistic particles on the CMB, we first define the epoch of matter-radiation equality

as the time at which the average equation of state parameter of the universe is w̄ = 1/6 (the

equation of state is defined as ρ = w̄P , where ρ is energy density and P is pressure). We can

express this condition as
d lnH

d ln a

∣∣∣∣
aeq

= −7

4
, (3.10)

as in [29]. Call the quasi-relativistic neutrino energy density ρ̃(a) with time-evolving equation of

state parameter w(a), which is to be balanced against some extra non-relativistic energy density

∆ρCDM (a) ∝ a−3 to keep aeq the same. This amount of non-relativistic energy density ∆ρCDM
is

∆ρCDM (aeq) = ρr(aeq)− ρm(aeq)− 2aeq
dρ̃

da

∣∣∣∣
aeq

− 7ρ̃(aeq), (3.11)

where ρr and ρm are the energy densities of the radiation and non-relativistic matter. For a

perfect fluid, dρ̃
da = −3(1 + w(a))ρ̃/a (neglecting the anisotropic stress that is expected only to

contribute to a weak phase shift in the CMB [30]), this results in a Hubble parameter of

H2(aeq) =
2

3M2
pl

[ρr(aeq) + 3w(aeq)ρ̃(aeq)] . (3.12)
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This suggests a definition of the effective number of neutrinos, Neff , via

H2(aeq) =
2

3M2
pl

(
ργ +Neffρ

th
ν,m=0

)∣∣∣
aeq

(3.13)

Neff ≡
∑
i

wi
1/3

ρi

ρthν,m=0

, (3.14)

where ρi is the contribution to the energy density from some species i with equation of state

parameter wi and ρthν,m=0 is the energy density of a massless neutrino with a thermal distribution

in the standard cosmology. Then 3w gives the ‘relativistic fraction’ of the energy density. Note

that this is simply a ratio of the pressure exerted by the new fields to that of a massless neutrino.

The effectiveness of this approximation was discussed in [31] in the context of thermal axions

(while effective at keeping aeq fixed, changes to odd peak heights subsequent to the first are

imperfectly cancelled and require further changes to H0 to compensate - see Section 3.3.2 below).

Calling T iν the temperature at which the neutrinos in sector i freeze-out and aiν the corre-

sponding scale factor, then assuming instantaneous decoupling, the phase space number density

for scale factor a is given by a redshifted Fermi-Dirac distribution [32]

f iα(p) ≈
[
1 + epa/(a

i
νT

i
ν)
]−1

(3.15)

for the α neutrino mass eigenstate in the i sector (mi
α � T iν , so has been dropped). The energy

density and pressure are

ρiνα =
gα
2π2

∫ ∞
0

dp p2
√
p2 + (mi

α)2f iα(p) (3.16)

P iνα =
gα
2π2

∫ ∞
0

dp
p4

3

√
p2 + (mi

α)2
f iα(p), (3.17)

where gα = 2 is the number of degrees of freedom for a neutrino species.

Since the neutrino decoupling temperature depends on the strength of the weak interaction

as Tν ∝ G
−2/3
F , while GF ∝ v2, then the twin neutrino decoupling temperature T t

ν is related to

the SM neutrino decoupling temperature T SM
ν by

T t
ν = (f/v)4/3T SM

ν . (3.18)

We can then simply use (3.16) and (3.17) at matter-radiation equality to find ∆Neff (assuming

instantaneous decoupling). We thus obtain

H2(aeq) =
2

3M2
pl

(
ρSM
γ + 3.046ρthν,m=0 + ρt

γ +
∑
α

3wναρ
t
να

)∣∣∣∣∣
aeq

(3.19)

and

∆Neff =

(
11

4

)4/3 120

7π2 (T SM)4

(
ρt
γ +

∑
α

3wtναρ
t
να

)
, (3.20)

where we now have equation of state parameters wνα for each neutrino, while ρSM
γ and ρt

γ are the

SM and twin photon energy densities, ρthν,m=0 and ρt
να are the neutrino energy densities.
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3.3.2 Neutrino masses

Because they are so weakly interacting, the neutrinos have a long free-streaming scale given by

the distance travelled in a Hubble time vν/H, with vν ∝ m−1
ν the speed of the neutrino once

it becomes non-relativistic. This defines a free-streaming momentum scale kfs =
√

3
2
aH
vν
∝ mν ,

above which neutrinos do not cluster. Below this scale, perturbations in the matter density

consist coherently of neutrinos and other matter, but well above it only non-neutrino matter

contributes to density perturbations. This results in a suppression of the matter power spectrum

on large scales which is proportional to the fraction of energy density in matter which does not

cluster. Since this occurs at late times when neutrinos are non-relativistic, the energy density is

simply ρνα = nναmνα for each neutrino species α, where nνα is the number density. The scale at

which the suppression of the matter power spectrum begins, kfs ∝ mν , cannot yet be resolved,

so cannot be used to constrain each mass separately. Constraints on the sum of neutrino masses

instead come from the power on small scales, which is suppressed relative to that expected for

massless neutrinos by a factor ∝∼ 1 − 8fν , where fν = Ων/Ωm is the fraction of non-relativistic

energy in neutrinos at late times [33].

More generally, these measurements of the matter power spectrum constrain the present-day

energy density fraction of free-streaming species that do not cluster on small scales and have since

become non-relativisitic, Ων = (
∑
mν +meff

ν )/(94.1 eV), where, in
∑
mν +meff

ν , the first term is

the sum of SM neutrino masses and the second is the sum of twin neutrino masses weighted by

their number density

meff
ν =

nt
ν

nSM
ν

∑
α

mt
να . (3.21)

Here nt
ν is the number density of a relic twin neutrino flavour and nSM

ν is that for a SM neutrino.

It is assumed that the neutrinos have been thermally produced as hot relics.

The relic abundance of a neutrino species is given by its number density when it decoupled,

diluted by the factor by which the universe has since expanded. The scale factors at which

neutrino decoupling occurs in the two sectors, aSM
ν and at

ν can be determined from (3.18), the

relative temperatures in the two sectors and comoving entropy conservation, to obtain

at
ν = aSM

ν

(
v

f

)4/3( gt
? (Tdecoup)

gSM
? (Tdecoup)

)1/3

(3.22)

where the same mass thresholds have been assumed in each sector below their neutrino decoupling

temperatures, so that gSM
?

(
T SM
ν

)
= gt

?

(
T t
ν

)
. The neutrino number densities are then

nt
ν

nSM
ν

=

(
T t
νa

t
ν

T SM
ν aSM

ν

)3

=
gt
? (Tdecoup)

gSM
? (Tdecoup)

. (3.23)

For f/v from 3 to 10 and using Tdecoup ∼ 2− 6 GeV from Section 3.2, we find

gt
? (Tdecoup) / gSM

? (Tdecoup) ∼ 0.8 and thus arrive at

meff
ν ≈ 0.8

(
f

v

)n∑
α

mSM
να , (3.24)

where n = 1 for Dirac masses and n = 2 for Majorana masses.
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If they are sufficiently light and hot, the twin neutrinos only affect the CMB as dark radiation

and their masses may then only be inferred from tests involving large scale structure. However,

if heavier and colder, they are better described as a hot dark matter component. Their impact

on the CMB is discussed in [34], where, as for LSS, the shape of the power spectrum can depend

upon the individual neutrino kinetic energies through their characteristic free-streaming lengths.

The early Integrated Sachs-Wolfe effect (eISW) is also sensitive to the masses if the neutrinos

become non-relativistic during decoupling (thereby affecting the radiation energy density and the

growth of inhomogeneities) [33].

There is a significant degeneracy in cosmological fits to the CMB between Ωm and H0 (the

Hubble constant) [35], where raising the non-relativistic matter fraction, such as with nonrela-

tivistic neutrinos, can be accommodated with a decrease in H0 (or equivalently, the dark energy

density), which keeps the angular diameter distance to the CMB approximately fixed. This de-

generacy can be broken by measurements of the baryon acoustic oscillations (BAOs), which are

sensitive to the expansion rate of the late universe and provide an independent measurement of

Ωm and H0. It is through combination with these results that bounds from Planck on neutrino

masses are strongest [2].

3.3.3 Bounds

The authors are unaware of any specialised analysis of the present and projected future cos-

mological constraints on scenarios with both massless dark radiation and additional light, semi-

relativistic sterile neutrinos. In the absence of this, we use bounds from [2] as a rough indication

of the present level of sensitivity to these parameters, which we expect to be a reasonable indi-

cation of the (in)viability of this model. Separately, 95% confidence limits on theses parameters

are Neff = 3.2± 0.5 and
∑
mν < 0.32 eV, when both are allowed to float independently. This, of

course, overlooks correlations between the impacts of masses and ∆Neff on the CMB and LSS.

Bounds on an additional sterile neutrino as the only source of dark radiation are also presented

with its number density, or contribution to ∆Neff, left to float. These are similar to the limit

on
∑
mν . It was found in [36] that, allowing

∑
mν and meff

ν to float independently for a single

extra sterile neutrino, degeneracy between these parameters permits a mildly relaxed bound of

meff
ν . 1 eV, possibly stronger depending on the combination of data sets chosen (the lensing

power spectrum presently prefers higher neutrino masses and raises the combined bounds if in-

cluded). Other bounds from LSS on
∑
mν exist and are potentially stronger than those placed

from the CMB, possibly as low as meff
ν . 0.05 eV, again depending on data sets combined (see

[37], [38]), although these are subject to greater uncertainties in the inference of the power spectra

of dark matter halos from galaxies surveys and the Lyα forest.

It must also be noted that the shape of the CMB temperature anisotropies is sensitive to

both the mass of individual neutrino components (through their free-streaming distance) and

their contribution to the energy density of the nonrelativistic matter that has not clustered

on small scales. However, it is not expected that improvements in bounds on the former will

be made from improved measurements of the CMB itself, but rather from weak lensing of the

CMB by the LSS, in conjunction with future measurements from DESI of the BAOs to break

degeneracy with Ωm. The lensing spectrum, like inferences of the matter power spectrum made
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in galaxy surveys, is expected to measure the suppression of small scale power and therefore to

strengthen constraints upon meff
ν , rather than the individual neutrino masses (it is not expected

that measurements of the shape power spectrum will improve sufficiently for the free-streaming

scale to be determined). One of the goals of CMB-S4 will be the detection of neutrino masses,

given the present lower bound
∑
mν & 0.06 eV from oscillations. Projected bounds are as low as

∼ 0.02 eV [27], although this assumes no extra dark radiation or sterile neutrinos. A projection

of the joint bound on Neff (from extra massless dark radiation) and meff
ν combining improved

measurements CMB temperature measurements, lensing and BAOs indicates a limit of meff
ν . 0.1

eV at 1σ [27]. Any contribution from additional states to meff
ν may therefore be testable and

bounded by the excess of the neutrino mass inference over the minimum neutrino mass, although

laboratory measurements or measurements of ∆Neff will be required to ascertain the amount of

this that actually arises from the new particles.

Constraints on ∆Neff from improved measurements of the damping tail as part of CMB-S4 are

projected to be ∼ 0.02− 0.05 at 1σ. Again, when
∑
mν is allowed to jointly float, degeneracies

raise this to ∼ 0.05 [27]. In the following sections, we use an optimistic estimate of 0.02 for its

reach in order to identify as much of the potentially testable parameter space as possible.

To estimate the impact of current and projected CMB limits on the mirror Twin Higgs,

we consider two scenarios: the minimal Standard Model neutrino mass spectrum of mν =

[0.0, 0.009, 0.06 eV] and a degenerate spectrum of mν = [0.1 eV, 0.1 eV, 0.1 eV] /3 from [2]. In

Figure 4 we plot the predictions of the mirror Twin Higgs for ∆Neff and meff
ν for both types of

spectra, as well as for both Dirac and Majorana masses (which scale differently with f/v). As is

plainly evident, the mirror Twin Higgs is ruled out cosmologically, no matter the choices of neu-

trino masses one makes, if only for the presence of the twin photon. In the standard cosmology,

the twin sector will have roughly the same temperature as the SM, giving 4.6 . ∆Neff . 6.3 for

f/v < 10, according to the definition of (3.20). This range depends upon f/v through the twin

neutrino decoupling temperature (3.18), which determines the extent to which the twin photons

are reheated relative to the twin neutrinos after twin electron/positron annihilations. This is suf-

ficiently large that even the cold dark matter fraction cannot be adjusted to keep matter-radiation

equality fixed, resulting inevitably in changes to the height and shape of the first acoustic peak.

The energy density in neutrinos is predicted to be above the present observational upper bounds

for most neutrino mass configurations, with the exception of the minimal values permitted by

neutrino oscillation measurements with f/v . 6. We therefore discuss cosmological mechanisms

in which the twin radiation is diluted to levels compatible with these observational bounds in the

subsequent sections of this paper.

4 Reheating by the decay of a scalar field

We now turn to simple scenarios that reconcile the mirror Twin Higgs with cosmological bounds,

while taking care to respect the softly-broken Z2 symmetry. We begin with the out-of-equilibrium

decay of a particle with symmetric couplings to the Standard Model and twin sectors, in which

the desired asymmetry is generated kinematically. That is to say, the dimensionless couplings

between the decaying particle and the two sectors are equal, and asymmetric energy deposition
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Figure 4: Predicted values of ∆Neff and
∑
mν +meff

ν for minimal and degenerate neutrino mass spectra

with both Dirac and Majorana masses for f/v from 3 to 10. The Planck 2015 constraint[2] is the dashed

line; the corresponding Neff upper bound is well below the bottom of the plot. All points are excluded by

the combination of bounds on ∆Neff and
∑
mν +meff

ν .

into the two sectors is a direct consequence of the asymmetric mass scales. In this respect,

the scenario is philosophically similar to Nnaturalness [39], albeit with a parsimonious N = 2

sectors. See also [40], [41] and [24] for other recent related ideas of using long-lived particles for

the dilution of dark sectors.

For simplicity, here we will focus on the case of a real scalar X coupled symmetrically to

the A and B sector Higgs doublets. Due to the difference in masses between the sectors after

electroweak symmetry breaking, simple kinematic effects give X a larger branching ratio into the

Standard Model. This occurs over a range of X masses within a few decades of the weak scale.

If X decays out-of-equilibrium below the decoupling temperature of the two sectors, this injects

different amounts of energy into the two sectors, effectively suppressing the temperature of the

twin sector relative to the Standard Model. This relative cooling suppresses the contribution of

the light degrees of freedom of the mirror Twin Higgs to below cosmological bounds. Insofar as the

asymmetry is driven entirely by kinematic effects arising from v � f , the resulting temperature

inequality between the two sectors is proportional to powers of v/f .
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The requisite suppression of the twin sector temperature relative to the Standard Model tem-

perature necessitates that the X dominate the cosmology before it decays. Our main discussion

will follow the simplest case of an X which dominates absolutely before it decays, comprising all

of the energy density of the universe and effectively acting as a ‘reheaton’. Afterwards, we will

discuss the possibility of a ‘thermal history’ for X – a scenario where X is in thermal equilibrium

with the two sectors, then chemically decouples at some high temperature and grows to dominate

the cosmology before it decays. This scheme will result in additional stringent constraints on the

viable parameter space.

4.1 Asymmetric Reheating

A Z2-even scalar X which is a total singlet under the SM and twin gauge groups admits the

renormalisable interactions

V ⊃ λxX(X + x)
(
|HA|2 + |HB|2

)
+

1

2
m2
XX

2, (4.1)

where mX is the mass of X (neglecting corrections from mixing that will be shown below to

be tiny), λx is a dimensionless coupling and x is a dimensionful parameter, which one may

imagine identifying as a vacuum expectation value (vev) of X in an UV theory. Note that

these interactions preserve the accidental SU(4) symmetry of the Twin Higgs. The X field may

additionally possess self-interactions, which we omit here as they do not play a significant role in

what follows.

The interactions in (4.1) allow X to decay into light states in the Standard Model and twin

sectors. If X reheats the universe through out-of-equilibrium decays, the reheating temperatures

of the two sectors will be determined by its partial decay widths, assuming that the decay

products do not equilibrate. In the instantaneous decay approximation, X decays when the

Hubble parameter falls to its decay rate ΓX ∼ H. As we will show in Section 4.2, in order to

evade cosmological constraints we need the X to decay mostly into the SM, so we may estimate

ΓX ∼ Γ(X → SM). Then the energy that was contained in the X is transferred into radiation

energy density, with the resulting temperature of the radiation given by (see [42])

T ∼ 1.2

√
ΓXMpl√

g?
(4.2)

where g? is the effective number of relativistic degrees of freedom, as defined in Section 3, of the

particles that are being reheated. Our numerical calculation of the reheating temperature, which

will be presented in Section 4.2.2, indicates that the approximation T ∼ 0.1
√

ΓXMpl reliably

reproduces the reheating temperature over the range of interest.

As shown in Section 3.2, the two sectors thermally decouple when the temperature falls

below Tdecoup ∼ 1 GeV, so reheating must take place to below this temperature. At even lower

temperatures, big bang nucleosynthesis (BBN) places strong constraints on energy injected into

the SM at temperatures below O(1−10) MeV [43]. Requiring that the SM reheating temperature

is above ∼ 10 MeV, these constraints on the SM reheating temperature become constraints on

the decay rate of the X into the SM, which in the above approximation becomes

5× 10−21 GeV . ΓX . 3× 10−16 GeV. (4.3)
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This then constrains the couplings λx and x of the X to the Higgs sector. Importantly, it means

that X must couple very weakly, in order to be long-lived enough to reheat to a low temperature,

as will be shown below.

The asymmetry in partial widths arises from different effects depending upon the mass of X.

For masses below the SM Higgs threshold, it is predominantly differences in mass mixing with the

two Higgs doublets that produces the asymmetry, where the size of the mixing angles determines

the effective coupling of X to the SM and twin particles and therefore its branching fractions.

For masses below the twin scale, the relative size of the mixing scales inversely with the vevs in

each sector. Thus the hierarchy v � f already present in the Higgs sector can automatically

gives rise to a hierarchy in partial widths. Note that additional threshold effects can enhance the

asymmetry further, in particular when X has mass above threshold for a significant decay channel

in the SM, but below the corresponding mass threshold in the twin sector. Decays into on-shell

Higgses complicate this picture further. In what follows, we first give an analytic calculation of

the mass mixing effect, then present a more precise calculation of the decay widths into each

sector.

To lowest order, X decays via its interactions with the SM and twin Higgs, and only to other

fermions and gauge bosons through its mass mixing with the Higgs scalars. Expanding the X

potential after the SU(4) is spontaneously broken, the mixing term between X and hA in the

scalar mass matrix is
√

2λxxvA, while that between X and hB is
√

2λxxvB. The hA and hB
components of the X mass eigenstate, which we denote respectively as δXA and δXB, can then be

determined. The expressions for the mixing angles are in general complicated, but they simplify

in limits mX < f and mX � f :

(δXA, δXB) ≈


4λxxvA
m2
X−m

2
h

(
1√
2
, vAf

)
mX < f

λxxf
m2
X

(√
2vA
f , 1

)
mX � f

(4.4)

to lowest order in (v/f)2 and κ/λ. The partial width for the decay of X into SM states (excluding

the Higgs) is

Γ(X → SM) ≈ |δXA|2 Γh(mh = mX), (4.5)

where Γh(mh = mX) denotes the decay width of a SM Higgs if it were to have mass mX . Note

that the Higgs partial width must be computed using the vev vA ≈ v/
√

2 to determine the masses

and couplings of the SM particles. The partial width of the X into twin states is computed the

same way using δXB and the vev vB ≈ f/
√

2.

From the mixing angles (4.4), it is already apparent over what mass range asymmetric re-

heating from X decays will work. These give

Γ(X → SM)

Γ(X → Twin)
∼

{
f2/v2

A � 1 mX < f

v2
A/f

2 � 1 mX � f.
(4.6)

Thus when the mass of X is less than the twin scale, the Standard Model will be reheated to a

higher temperature than the twin sector, but in the large mass limit this mechanism works in

the opposite direction and would appear to lead to preferential reheating of the twin sector.

More precise statements about the relative branching ratios and resulting temperatures require

additional care. In addition to decaying through mass mixing, X can decay into the Higgs mass
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eigenstates themselves if above threshold. As the energy is ultimately transferred to the SM and

twin sectors, we then need to consider how these states decay and account for the further mixing

of the Higgs mass eigenstates into Higgs gauge eigenstates.

For mX > 2mh, decay can occur into the lighter (SM-like) Higgs mass eigenstate h with

partial width

Γ(X → hh) ≈ λ2
xx

2

16πmX

√
1−

(
2mh

mX

)2

. (4.7)

Similarly, for mX > 2mH , decays can proceed into HH with a similar partial width, but with the

h mass replaced with that of the H. Above the intermediate threshold mX > mh +mH , there is

also the mixed decay

Γ(X → hH) ≈ λ2
x

2πmX

√
1−

(
mH +mh

mX

)2

(fδAX + 2vAδBX)2. (4.8)

Here, δAX ≈ −δhAδXA − δhBδXB is the component of the hA gauge eigenstate in the X mass

eigenstate and δBX ≈ δhBδXA − δhAδXB is the corresponding component of the hB gauge eigen-

state, where δhA and δhB are, respectively, the components of the SM Higgs in the hA and hB
gauge eigenstates to zeroth order in λx. Combining all ingredients, this decay width is of order

λ4
xx

2. Since it is only the total decay width that is constrained to be small by the demand that

the SM reheating temperature lie in the required window, this fixes only a product of λx and x.

If x ∼ v, then the mixed decay to hH is effectively second order in the small coupling λ2
x and can

be neglected relative to the other partial widths. Conversely if x� v, then λx is much larger and

this decay cannot be neglected. In what follows we will work in the region of parameter space

where mixed decays to hH are negligible.

The rate of heat flow into each sector may be well approximated by adding the decay rates of

X into each channel and weighting these by the fraction of energy transferred into the particular

sector. Of course, when X decays into Higgs particles, these in turn decay out of equilibrium into

both the Standard Model and twin sectors. As the Higgs decays are almost instantaneous, the

fraction of energy transferred into each sector is simply that carried by the Higgs decay products

multiplied by their branching fractions for each sector. The total rate at which X particles are

transferred into the SM plasma is

W (X → SM) ≈ Γ(X → SM) + Γ(X → hh)Br(h→ SM)

+ Γ(X → HH)(Br(H → SM) +Br(H → hh)Br(h→ SM)). (4.9)

The corresponding rate for energy deposition into the twin sectors is simply given by the replace-

ment of SM 7→ Twin. The first term is the rate at which X decays directly into the SM through

mass mixing with the Higgs. The second is the fraction of X energy that is transferred into

lighter Higgs states that subsequently decay into the SM. The third is the analogous term for

decays into the heavy Higgs, where cascade decays of the H into the h and subsequently other

SM particles must be included. Note that decays of the heavy Higgs into the light Higgs make

up a majority of decay width, because of the large quartic coupling required for the twin Higgs

potential.
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Figure 5: The partial widths of the X into the SM (solid blue line) and twin sector (dashed orange) for

f/v = 3 in units of (λxx)2. The light gray bands indicate regions of QCD-related uncertainty in the SM

calculation, while the darker gray bands indicate the corresponding regions of uncertainty for the twin

calculation.

Below the hh threshold, it is possible for X to decay via one on-shell and one off-shell Higgs

boson. The partial width for off-shell Higgs production was calculated for X → hh∗ → hbb̄

and found to be negligible compared to two-body decays through mass mixing and so we omit

three-body decay widths in what follows.

Ultimately, the complete partial widths for the decay of X into the Standard Model and

twin sectors includes the sum of decays into Higgs bosons h and H and direct decays into the

fermions and gauge bosons of the two sectors. We compute the latter to an intended level of

accuracy of ∼ 10% (including, e.g., NLO QCD corrections to decays into light-flavor quarks),

mostly following [44]. The resulting partial widths into the Standard Model and twin sectors are

shown as a function of mX in Figure 5 with the ratio of branching fractions displayed in Figure

6.

Over much of the space below the Higgs mass, the branching ratio exhibits the expected

(f/v)2 scaling from the mass mixing. Below ∼ 40 GeV, suppression of the twin partial width

arises because the twin bottom quark pair production threshold is crossed. As mX nears mh,

the SM branching fraction grows by ∼ 4 orders of magnitude as the WW ∗, ZZ∗, and then WW

and ZZ decays go above threshold. Since the analogous thresholds are at much higher energies

in the twin sector, the enhancement is not paralleled by decays into the twin sector until mX is

close to the twin scale. There is therefore a large range of masses mh . mX . mH over which

the SM branching fraction dominates by several orders of magnitude.

Above the X → hh threshold, the ratio of decay widths is roughly constant in mass up to the

HH threshold. The twin sector decay rate is dominated by decays of on-shell light Higgs into
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Figure 6: The ratio of branching fractions of the X into the SM and twin sectors at f/v = 3. The dashed

line gives the expected (v/f)
2

scaling from the mass mixing; deviations are due to various mass threshold

effects.

twin states, Γ(X → Twin) ≈ Γ(X → hh)Br(h → Twin) ∝ 1/mX as in (4.7). If the SM were

also predominantly reheated through this channel, then the ratio of branching fractions would

again be approximately δ2
hA/δ

2
hB ≈ (f/v)2. However, the SM decay width also receives a larger

contribution from decays through mass mixing between the X and the Higgs gauge eigenstates.

For masses mX > 2mh, decays through mass mixing are dominated by the SM WW and

ZZ channels. In this mass region, the decay rate of a Higgs into longitudinally polarized vector

bosons scales as Γ(h → WW,ZZ) ∼ m3
X , but the mixing angle scales as δ2

AX ∼ 1/m4
X (as in

(4.4)), resulting in the same ∼ 1/mX scaling and thus a roughly constant ratio in this range

of masses. Near mX ∼ 1 TeV, decays into twin vector bosons through mass mixing begin

to dominate, and there is no favourable asymmetry in the branching fractions, as discussed in

this section. Even at higher masses, the effects of heavy Higgs decays into light Higgs do not

compensate sufficiently, as this partial width scales with mX in the same way as the partial width

for longitudinally polarised weak bosons.

The constraint on the decay width from the required reheating temperature (4.3) translates

into a constraint on the size of the coupling λxx. For mX & mh, this gives 10−8.5 GeV . λxx .
10−6 GeV, while for lower masses, this range increases to 10−7 GeV . λxx . 10−5.5 GeV at

mX ∼ 20 GeV.

The gray bands in Figure 5 highlight regions where our analytic estimates of the partial

widths encounter enhanced uncertainties arising from the bottom and charm thresholds in both

sectors. Over most of these ranges, we estimate the size of these uncertainties to be either

∼ 10% or confined to very small subregions. The thicknesses of these bands have been chosen

conservatively, and ultimately the branching ratios should be accurate to within a factor of

±ΛQCD of the bottom and charm mass thresholds. In particular, the prescription of [45] has

been followed for approximating the bottom partial width close to the open flavour threshold.
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Resonant decay into gluons from bottomonia mixing has been neglected, although these resonant

mass ranges are expected to be only ∼ MeV wide at the CP-even, spin-0 bottomonia masses

mX = mχbi (see [45] and [46]). It should be noted, however, that at temperatures above that of

the QCD phase transition, the quark decay products behave differently compared to that expected

in a low temperature environment. In particular, for hot enough temperatures, the b or c quarks

may not hadronise and the partonic partial widths may more reliable. The applicability of the

treatment of the flavour thresholds used here may therefore not be valid if the decay occurs in

the hot early universe. However, it is only very close to the threshold itself (within several GeV)

that this uncertainty becomes significant. Finally, quark masses have been neglected in the gluon

partial width. For mX close to the flavour thresholds, this approximation breaks down, but the

gluon branching fraction is only ∼ 10% and so the error does not contribute to the uncertainty

of the total width by more than this order (it is this uncertainty that is responsible for most of

the extension of the length of the gray bands about the flavour threshold).

Close to the charm threshold, the analogous uncertainties are even more poorly understood.

Below the charm threshold, hadronic decays of a light scalar are highly uncertain (see [47] for

discussion). We avoid these regions altogether by restricting our considerations to mX roughly

above the twin charm threshold. Note that below the SM charm threshold, the smaller decay

rate of a Higgs-like scalar necessitates larger couplings λXx for X to have a lifetime within the

required reheating window. The larger couplings then imply potentially stronger constraints

from invisible mesonic decays. See [46, 47, 48] for further discussion and recent analysis of the

pertinent experimental constraints.

Taken together, the results in Figures 5 and 6 bear out the expectation that a scalar X with

symmetric couplings to the Standard Model and twin sectors may nonetheless inherit a large

asymmetry in partial widths from the hierarchy between the scales v and f . Across a wide range

of masses mX , the asymmetry is proportional to (or greater than) v2/f2, tying the reheating of

the two sectors to the hierarchy of scales.

Before proceeding to our computation of cosmological observables, we comment on an alter-

native variation on the reheating mechanism presented here that involves having X odd under

the twin parity. This permits two renormalisable interactions with the Higgses to give a Higgs

potential of the form:

V ⊃ m2
0

(
|HA|2 + |HB|2

)
+ λ0

(
|HA|4 + |HB|4

)
+ εX2

(
|HA|2 + |HB|2

)
+ ε̃X

(
|HA|2 − |HB|2

)
.(4.10)

If X then acquires a vev at some scale, it may be possible to arrange for the resulting spontaneous

breaking of the Z2 to give that required in the Higgs potential. However, we find that, in

order for X to be long-lived and reheat the universe, its couplings to the Higgs must be highly

suppressed and therefore that the resulting vev of X required to explain the soft Z2-breaking

in the Higgs potential must be many orders of magnitude above the twin scale. If this is to be

identified with the characteristic mass scale of X, then a UV-completion of the twin Higgs is

required for anything further to be said of the prospects of this possibility. However, if such a

UV completion has similar structure to the couplings in (4.10), then asymmetric reheating may

require a cancellation between the odd and even couplings of X to the Higgs potential in order

to suppress its twin-sector branching fraction (because the odd coupling appears with opposite
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signs in the coupling between X and the hA and hB states). We do not consider this possibility

further.

4.2 Imprints on the CMB

For appropriate values of mX , the out-of-equilibrium decay of X reheats the two sectors to

different temperatures and effectively dilutes the energy density in the twin sector. We obtain

an analytic estimate of the effects of the X decay on the number of light degrees of freedom

observed from the CMB by approximating both the decay of X and the decoupling of species as

instantaneous in Section 4.2.1. We then demonstrate that this estimate is reliable over most of

the parameter space of interest with a numerical calculation in Section 4.2.2. In Section 4.2.3 we

consider neutrino masses and their joint constraints with Neff .

4.2.1 Analytic estimate of Neff

If X dominates the energy density of the universe and then decays, instantaneously depositing

energy ρSM and ρt into the SM and twin sectors respectively, then the temperature ratio is

determined by

ρt

ρSM
=

gt
?(T

t
reheat)

gSM
? (T SM

reheat)

(
T t

reheat

T SM
reheat

)4

≈ Γ(X → Twin)

Γ(X → SM)
, (4.11)

where T SM
reheat and T t

reheat are the reheating temperatures for each sector, while gSM
? and gt

? are the

SM and twin effective number of relativistic degrees of freedom, respectively. We have assumed

that the two sectors are cool enough that they have already decoupled. We point out that not

only does the number of effective degrees of freedom in each sector need to be evaluated at the

temperature of that sector, but that gt
? and gSM

? differ as functions of temperature due to the

differences in the spectra of the sectors, as seen in Figure 1.

The temperatures of both sectors then redshift in the same way, so the only additional dif-

ferences between their temperatures arise from changes to the effective number of degrees of

freedom in each sector. By conservation of comoving entropy within each sector, each evolves as

T ieq/T
i
reheat =

(
gi?(T

i
reheat)/g

i
?(T

i
eq)
)1/3

a(Treheat)/a(Teq) where T ieq is the temperature of the sector

at matter-radiation equality, which the CMB probes as explained in Section 3.3, and a(T ) is the

scale factor as a function of temperature. In the mirror Twin Higgs model, the two sectors have

the same number of light degrees of freedom at recombination (three neutrinos and a photon,

assuming that the neutrinos are still relativistic), so(
T t
eq

T SM
eq

)4

=

(
T t

reheat

T SM
reheat

)4(
gt
?(T

t
reheat)

gSM
? (Treheat)

)4/3

=
Γ(X → Twin)

Γ(X → SM)

(
gt
?(T

t
reheat)

gSM
? (Treheat)

)1/3

. (4.12)

As our range of reheat temperatures encompasses the QCD phase transitions of both sectors, the

factors of g? can be important.

Given the temperatures of the two sectors after X decays, we can obtain a simple estimate

of the contribution to Neff that neglects the impact of masses of the twin neutrinos discussed in
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Section (3.3.1),

(∆Neff)mν=0 =
4

7

(
11

4

)4/3

gSM
? (T SM

eq )
ρt(T

t
eq)

ρSM(T SM
eq )

(4.13)

≈ 7.4× Br(X → Twin)

Br(X → SM)

(
gt
?(T

t
reheat)

gSM
? (T SM

reheat)

)1/3

. (4.14)

In this limit the most recent Planck data give a 2σ bound of ∆Neff . 0.40 assuming pure

ΛCDM+Neff [2]. This translates into the requirement
ρt(T t

eq)

ρSM(TSM
eq )
≈ Γ(X→Twin)

Γ(X→SM) . 0.05, ignoring

possible differences in g?.

Of course, as discussed in Section 3, the twin neutrino masses are relevant at the temperature

of matter-radiation equality, so we can obtain a more meaningful estimate of ∆Neff using the

results of Section 3.3.1 evaluated at the twin temperature determined above:

∆Neff =

(
11

4

)4/3 120

7π2
(
T SM
eq

)4
(
ρt
γ

(
T t
eq

)
+
∑
α

3wtνα
(
T t
eq

)
ρt
να

(
T t
eq

))
(4.15)

T t
eq = T SM

eq

(
Γ(X → Twin)

Γ(X → SM)

)1/4( gt
?(T

t
reheat)

gSM
? (T SM

reheat)

)1/12

(4.16)

with T SM
eq ≈ 0.77 eV [2] the photon temperature. While the right-hand side of this equality has

implicit dependence on T t
eq through gt

?, this is only important if the reheating occurs between

the SM and twin QCDPTs and the neglecting of the factors of g? is otherwise reliable. With

the further inclusion of Standard Model neutrino masses or an extra sterile neutrino, the bound

described above weakens to ∆Neff . 0.7. As discussed in Section 3.3.3, we are not aware of any

analyses specific to our model involving both pure dark radiation and three sterile neutrinos with

masses of order the photon decoupling temperature of the CMB and possibly cooler temperatures.

In the absence of such an analysis, we use the inequality ∆Neff . 0.7 to indicate where the present

CMB measurements are likely to constrain the light degrees of freedom of this model, leaving a

more detailed analysis of the CMB constraints as future work. In this case, the bound on the

decay width ratio is Γ(X→Twin)
Γ(X→SM) . 0.09. The next generation of CMB experiments are projected

to strengthen this constraint to ∆Neff . 0.02 at the 1σ level [49].

4.2.2 Numerical Calculation of Neff

A more precise study of the effect of X decay on the number of effective neutrino species at

recombination may be performed by numerically solving a system of differential equations for the

entropy in X and the two sectors as a function of time. Following the analysis of Chapter 5.3 of
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[42] we have

H =
1

a

da

dt
=

√
1

3M2
Pl

(ρX + ρSM + ρt) (4.17)

dρX
dt

+ 3HρX = −ΓXρX (4.18)

ρi =
3

4

(
45

2π2gi?

)1/3

S
4/3
i a−4 (4.19)

S
1/3
i

dSi
dt

=

(
2π2gi?

45

)1/3

a4
(
ρXΓX→i +

dqj→i
dt

)
, (4.20)

where Si are comoving entropy densities and it has been assumed that X is cold by the time it

decays so that ρX = mXnX with number density nX (this is reliable as we only consider mX > 10

GeV, which is above the decoupling temperature of ∼ 1 GeV). The rate of heat flow from sector

j to i per proper volume,
dqj→j

dt , is defined in (3.6). To account for the temperature-dependence

of the effective number of relativistic degrees of freedom in each sector, these equations are solved

iteratively in the profiles of gi?(T
i).

The equations are solved in three stages: before, during and after the decoupling of the SM

and twin sectors. The ratio f/v is fixed to 4 for this analysis. The sectors are assumed to be in

thermal equilibrium and sharing entropy until a temperature of 10 GeV, below which they are

evolved separately with the heat flows
dqi→j

dt switched on. Elastic scatterings were neglected from

the heat flow rate to accelerate the computation. It was verified for the results found below that

their contribution to the heat flow was always . 10% while the heat flow was itself not dominated

by the Hubble rate. Heat flow was switched off again once the twin temperature reaches 0.1

GeV, by which time thermal decoupling is long-since complete, and the sectors are subsequently

evolved separately. Again, although the strengthening of the colour force and the QCDPT make

the perturbative tree-level computation of the scattering rates unreliable at temperatures below

∼ 1 GeV, as found in Section 3.2 and also in the results below, the sectors decouple above these

temperatures. Notably, the impact of X on the expansion rate causes decoupling to occur at

slightly hotter temperatures than expected from the analysis of Section 3.2 for the decoupling in

the standard cosmology.

The ratio of energy densities in each sector determines Neff, from (4.15). A plot of this

ratio over time is shown in Figure 7, with the expectation under the approximations of the

previous section shown as well. This approximation is reliable as long as the lifetime of X is

much longer than the temperature at which decoupling concludes, here ∼ 1 GeV. The larger

asymptotic value of the ratio of the blue line arises because the lifetime lies in the decoupling

period, so that a significant fraction of the energy is transferred while the sectors are thermalised

or partially thermalised and does not contribute toward asymmetric reheating. The subsequent

bump represents the period between the reheating of the twin sector by its QCD phase transition

followed by that of the SM. The green and orange lines correspond to reheating temperatures

that lie between SM and twin QCD phase transitions. In these cases, the reheating of the SM

from the subsequent SM QCD phase transition raises its energy density relative to the twin

sector above that expected from the ratio of branching fractions. As this occurs after the lifetime
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Figure 7: Ratio of twin to SM energy densities throughout decoupling and reheating, for different decay

rates ΓX . The dashed line corresponds to the prediction of from the ratio of decay widths, here selected

to be 1/16.

of the reheaton, the estimate of the reheating temperatures presented in (4.12) is still good as

subsequent changes in the ratio due to the evolution of g? are accounted for in our analysis of

the reheating scenarios.

Contour plots of ∆Neff as a function of mX and f/v appear in Figure 8, along with cur-

rent and predicted bounds using the analytic results of Section 4.2.1. The minimum neutrino

mass configuration with Dirac masses has also been assumed, although the results are relatively

insensitive to this provided that the twin neutrino masses are not well above the eV scale. A

SM reheating temperature of 1 GeV has been assumed. At this temperature, the twin sector

reheating temperature is always roughly above the twin neutrino decoupling temperature over

the parameter space of the figure, ensuring that the neutrinos thermalise once produced in the

decays and hence that the predictions of Section 4.2.1 are valid. A treatment of the case in which

the twin neutrinos are produced below their decoupling temperature is beyond the scope of this

analysis, but would involve the computation of the phase space spectrum of the neutrinos decay

products of the X. Also, as discussed in Section 3.2, a large temperature difference may partially

relax back if reheating occurs close to sector decoupling. This effect is important for f/v . 5 in

the region where the twin sector partial width is suppressed relative to the SM by several orders

of magnitude (the “valley” region in the plot with mh . mX . 2mh). When the twin-sector

reheating temperature predicted in (4.16) lies below the minimum temperature at which heat

flow will cease, as estimated in (3.7) for SM temperature of 1 GeV, the latter has been used

instead to predict ∆Neff .

CMB-S4 observations will be able to probe a large portion of the most natural parameter

space, save the region mh . mX . 2mh where decays into the Standard Model dominate well
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beyond the ratio f2/v2, as previously discussed. Significantly, precision Higgs coupling measure-

ments at the LHC are unlikely to probe the mirror Twin Higgs model beyond f ∼ 4v, so that

the observation of additional dark radiation may be the first signature of a mirror Twin Higgs.
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Figure 8: Contours of log10 ∆Neff as a function of mX and f/v, for T SM
reheat = 1 GeV. The dark blue region

is in tension with Planck, while the light blue region will be tested by CMB-S4. Gray regions are where

the X mass is below the twin charm threshold and our calculation of the twin sector partial width is

unreliable.

4.2.3 Neutrino Masses

In addition to the bounds on Neff , we must also respect the bounds on neutrino masses. The

analysis remains nearly the same as in Section 3.3.2, but now with the twin neutrinos at a lower

temperature, as determined above. As mentioned above, for large enough f/v and SM reheating

temperature sufficiently close to the lower bound, the reheating temperature of the twin sector

may be below the twin neutrino decoupling temperature and the resulting energy density would

be more difficult to compute. For simplicity, we choose λxx large enough such that the twin

reheating temperature is always above the twin neutrino decoupling temperature.
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As before, we compute meff
ν as

meff
ν =

nt
ν

nSM
ν

∑
α

mt
να . (4.21)

In relating the scale factors at neutrino decoupling in each sector, we now have to use the above

temperature ratio to find, analogously to Section 3.3.2, that

meff
ν =

(
Γt

ΓSM

)3/4
(
gt
?

(
T t

reheat

)
gSM
?

(
T SM

reheat

))1/4(
f

v

)n∑
α

mSM
να , (4.22)

where, again, n = 1 for Dirac masses and n = 2 for Majorana masses. Interestingly, if the

branching ratios scale as Γt/ΓSM = (v/f)2, then we have meff
ν ∝ (f/v)−3/2+n, so the contribution

grows with f/v for Majorana masses, but is suppressed for Dirac masses.

As before, we consider the minimal mass spectrum of mν = [0.0, 0.009, 0.06 eV] and a degen-

erate spectrum of mν = [0.1 eV, 0.1 eV, 0.1 eV] /3. In Figure 9 we plot the predictions of the X

reheating for ∆Neff and meff
ν for both spectra and both Dirac and Majorana masses using the

approximations of Section 3.3, for f/v from 3 to 10 and assuming the Γt
ΓSM
∼ (v/f)2 scaling; there

are regions in the space of mX where the suppression of meff
ν would be much higher.

Dashed lines indicate the rough locations of present experimental limits from Planck 2015,

and projected bounds from CMB-S4. As mentioned in Section 3.3.2, we are unaware of any study

of bounds on both meff
ν and ∆Neff treated jointly. In the absence of this, we show present and

projected constraints on Neff and
∑
mν from [50] and [27], ignoring correlations, as described in

Section 3.3.3.

4.3 Thermal Production

In our discussion up to this point, we have been agnostic about the origin of the cosmic abundance

of X and have operated under the assumption that it absolutely dominates the cosmology just

before it decays. Here, we consider the possibility that X was thermally produced through freeze-

out and subsequently dominates the universe as a relic before decaying. This thermal history is

viable, but places strong constraints on the mass and couplings of the X.

The energy density of relativistic species redshifts as ρr ∝ a−4 ∝ T 4, while the energy density

of non-relativistic, chemically decoupled matter scales as ρm ∝ a−3. The energy density contained

in the X can therefore only grow relative to the energy density in the thermal bath once it becomes

non-relativistic. We found in Section 4.2.1 that by recombination, ρt/ρSM . 0.09 is needed to

evade current bounds on ∆Neff. Thus we need to have the energy density in the X dominate over

the SM and twin plasmas by more than this factor when it decays. If X becomes non-relativistic

instantaneously at the moment that its temperature reaches some fraction c ∼ O(0.1) of its mass,

then, as T ∝ 1/a and ρX is ∼ 1/g? of the total energy density, the mass is required to satisfy

mX & 10/c× g? (T = mX)T SM
Xreheat. Since the SM reheating temperature is strongly constrained

to be above BBN, this effectively puts a lower limit on the mass of the X. Importantly, X must

freeze-out when relativistic or its energy density will be further Boltzmann suppressed. The lower

limit on the mass of the X becomes an upper limit on the X’s couplings - if it couples too strongly

to the thermal bath, then it won’t freeze out early enough to be hot.
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Figure 9: Predicted values of ∆Neff and
∑
mν +meff

ν for minimal and degenerate neutrino mass spectra

with both Dirac and Majorana masses for f/v from 3 to 10. The Planck 2015 [2] bounds on
∑
mν and Neff ,

as discussed in Section 3.3.3, are represented by the dashed lines, and the projected CMB-S4 constraints

are given by the dotted lines. It has been assumed that Γt

ΓSM
∼ (v/f)2. Note however, that, from Figure 8,

this scaling of the partial widths holds only for the mass range 50 GeV . mX . 120 GeV, outside of which

the twin partial width is more suppressed and the model is only testable through ∆Neff over a smaller

range in f/v.

In fact the situation is somewhat less favorable than the above analysis suggests, because it is

relevant operators that must keep X in thermal equilibrium. For an X with the interactions intro-

duced in Section 4.1, the annihilations have rates that scale with temperature as Γ ∼ nX 〈σv〉 ∼ T
for T & mX ,mh (where nX is the number density of X and 〈σv〉 is its thermally averaged an-

nihilation cross section). However, in a radiation-dominated universe, H ∼ T 2. Thus, at high

enough temperatures, X is not in thermal equilibrium with the plasma and it is only once the

universe cools enough that it may thermalise. Then, as the temperature drops, XX → qq̄ anni-

hilations become suppressed by the Higgs mass and subsequent Boltzmann suppression causes X

to freeze-out. Note that the rates of these annihilation processes are controlled by the coupling

λx, independently of x, which is unconstrained by itself (other processes mediated by λxx are

found to be subdominant in the ensuing analysis, for the range of λx over which thermal produc-

tion is successful). If the coupling is too weak to begin with, then the X never thermalises and

thermal production cannot happen. Thermal production therefore requires a careful balancing of

parameters - small coupling λX is preferred for X to freeze-out hot and as early as possible, but
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the coupling is bounded from below by the requirement that X reach thermal equilibrium. This

combination of constraints severely restricts the size of the parameter space over which thermal

production is viable to cases in which the coupling is selected so that X enters and departs from

thermal equilibrium at close to the same temperature.

To obtain numerical predictions for this scenario, the calculation of Section 4.2.2 was modified

to account for the time after the freeze-out of X before it becomes non-relativistic. During this

period we use (3.15) and (3.16) for the energy density of the X, approximating decays as being

negligible, before switching over to (4.18) when the temperature drops below the mass of the X.

The approximation that the X does not decay appreciably while it is relativistic must be good

if there is to be sufficient time for it to grow to dominate between becoming non-relativistic and

decaying.

The predictions for ∆Neff from a thermally produced X are shown in Figure 10 for the small

regions of parameter space where this is viable, with f/v = 4. We find that the dominant

annihilation channels over this region are XX → tt̄ and XX → bb̄, mediated by the light Higgs,

as well as their twin analogues, mediated by the heavy Higgs. As expected, the primordial energy

density in the twin sector is too large compared to that generated by the X for the asymmetric

reheating to be effective when mX is too light (. 100 GeV in this case). Similarly, when the

coupling is too strong, the X is held in equilibrium for longer and freezes-out underabundant

compared to the twin energy density. However, when the coupling is too weak (the gray region),

X never thermalises to begin with (close to the boundary with this region, X freezes-out almost

immediately after thermalising). The peak in the contours occurs because of the “H-funnel” in

which the twin Higgs resonantly enhances annihilations into twin quarks. All of this region will

be testable by CMB-S4.

5 Twinflation

As an alternative to the model presented above of late, out-of-equilibrium decays of a Z2-

symmetric scalar, one may imagine that the field driving primordial inflation reheats only the

Standard Model to below the decoupling temperature of the two sectors. Production of the twin

particles then ceases at some time after the temperature drops below the decoupling temperature

during reheating.

To make this consistent with a softly-broken Z2 symmetry, we extend the inflationary sector

and introduce a ‘twinflaton’ that couples solely to the twin sector. The combined inflationary

and twinflationary sectors respect the Z2 symmetry. However, if the two sectors are entirely

symmetric then one generally expects both inflationary dynamics to happen coincidentally, which

would result in identical reheating. We therefore rely on soft Z2-breaking to give an asymmetry

between the two sectors that causes the twinflationary sector to dominate the universe first. With

the right arrangement we can end up with two distinct periods of inflation - a first caused by

the “twinflaton” and a second that then reheats the Standard Model to below the decoupling

temperature, having diluted the sources of twin-sector reheating from the first period.

One simple mechanism for Z2-breaking which is well-suited for introducing asymmetry to

inflationary sectors is to introduce an additional Z2-odd scalar field η (as was done in [51]). This
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Figure 10: Parameter space where thermal production of X gives a large enough relic abundance to dilute

the twin sector, for f/v = 4. In the gray region, the coupling is too weak for X to ever reach thermal

equilibrium. The blue region is in tension with recent Planck measurements of ∆Neff , whereas all of the

white region will be tested by CMB-S4. Predictions presented here for ∆Neff close to the gray boundary

are more uncertain because of the high sensitivity of the freeze-out temperatures to the coupling.

admits linear and quadratic interactions to antisymmetric and symmetric combinations of the

inflationary sector fields, respectively. When η acquires a vev, this introduces an asymmetry in

the fields to which it was coupled, dependent on the combination of its vev and its couplings. If

η is coupled to both the inflationary sectors and the Higgs sectors, it could be the sole source of

Z2-breaking in a twinflationary theory. One may generally imagine that, in some UV completion,

the mechanism that softly breaks the symmetry in the Higgs potential could also be the origin

of the soft breaking of the inflationary sector.

Cosmologically, this possibility may have similar observational signatures as the model dis-

cussed in Section 4, where the amount of twin-sector dark radiation is determined by the partial

widths of the inflaton of the second inflationary epoch. If this dominantly couples to the SM,

then ∆Neff will be suppressed which, while successfully resolving the cosmological problems of

the Mirror Twin Higgs, may also be observationally inaccessible. However, additional, distinctly
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inflationary signatures may make this potentially testable by other cosmological observations.

The mechanism of twinflation completes a catalog of models of asymmetric reheating by late

decays, which may be indexed by representations of the twin parity: the case of a Z2-even particle,

in which a kinematic asymmetry in the partial widths provides the reheating asymmetry, the case

of a Z2-odd particle, which can also provide the spontaneous Z2-breaking required in the Higgs

potential, and the case where two distinct, long-lived particles couple to each sector, which may

also be related to inflation.

5.1 Toy Model

As a toy model we here consider ‘twinning’ the simple ϕ2 chaotic inflation scenario. The infla-

tionary dynamics in this case are easy to understand and we have the additional benefit that

this inflationary model has been considered in the literature before as ‘Double Inflation’ (see [52],

[53] and [54]). We furthermore specialize to ‘double inflation with a break’, where there are two

distinct periods of inflation which produces a step in the power spectrum, and we consider the

constraints that this places on our model. In this case, it is assumed that each inflaton field

couples and therefore decays dominantly into the sector to which it belongs. We will comment

briefly on the case without a break and the additional signals one could look for in that case.

The potential of the inflationary sector for inflaton ϕA and twinflaton ϕB is

V =
1

2
m2
Aϕ

2
A +

1

2
m2
Bϕ

2
B, (5.1)

where mA 6= mB may arise from soft Z2- breaking, perhaps related to the soft Z2-breaking in

the Higgs potential. In order for the ‘twinflation’ to occur first, we require that the energy of

the B field initially dominates the energy density of the universe. We take the initial positions

of the fields to be the same and m2
B � m2

A.5 Call ϕA(0) = ϕB(0) = n
√

2Mpl = nϕc, where

ϕc is the critical value at which inflation stops and mB = rmA = rm with n, r > 1. The

inflationary dynamics are then those of slowly-rolling scalar fields. At some point in the early

universe we imagine that the slow-roll approximation holds for both fields and the inflationary

sector dominates the universe. The dominating field then slow-rolls down its potential for n2−1
2

e-folds, while the lighter field’s velocity is suppressed by approximately ϕA
r2ϕB

. Solving the system

numerically reveals that the motion of ϕA during this period can be neglected entirely.

After ϕB reaches the critical value
√

2Mpl, it stops slow-rolling and begins oscillating around

the minimum of its potential. For there to be two distinct periods of inflation, there must be a

period where these oscillations dominate the universe, which requires that the energy densities

of each inflaton ρA and ρB satisfy ρB(ϕc) = r2m2M2
pl > ρA(ϕ(0)) = n2m2M2

pl and therefore

r > n. For a ϕ2
B potential, the energy in these oscillations redshifts as ρB ∼ a−3. Eventually, the

energy density in ϕB drops below that of ϕA and a new epoch of inflation, driven by ϕA, begins.

This provides a further n2−1
2 e-folds of inflation to give n2− 1 in total, while the B-sector energy

density is diluted away.

5Note that merely giving the twin field a much larger initial condition does not instigate twinflation. The

dynamics of the subdominant field in this case are such that it will track the dominant field and both will reach

the critical value at the same time. This is easily confirmed numerically.
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Note that in order for our toy model to reheat below the decoupling temperature of the two

sectors, reheating must occur well after the end of inflation. If, during the coherent oscillation

of an inflaton, it becomes the case that the inflaton decay width Γ ∼ H, then reheating will

occur and result in temperature Treheat ∼ 0.1
√

ΓMpl. However, if Γ � H when inflation ends,

then all of the energy in the inflaton is immediately transferred and we instead have reheating

temperature Treheat ∼ 0.1
√
mαMpl for an inflaton of mass mα. But in order for Treheat . 1 GeV,

it is required that mα . 10−7 eV, so this possibility that the inflaton is short lived is not viable.

The procedure of twinning inflationary potentials may be generalised to other, more realistic

models, provided that this constraint upon the reheating temperature can be satisfied.

5.2 Observability

One could always make a twinflationary scenario consistent with observational constraints by

letting the second inflationary period of inflation last long enough. In our toy model, this would

correspond to setting n high enough that the momentum modes which left the horizon during

the first inflation have not yet re-entered the horizon - such a scenario would look exactly like

single-field chaotic inflation.

Alternatively, we may also allow for n small enough that all the momentum modes that left

the horizon during the second inflation are currently sub-horizon. In this case, fluctuations at

large enough wavenumbers (equivalently, small enough length scales) are ‘processed’ (cross the

horizon) at a different inflationary energy scale than those that were processed earlier, giving a

step in the power spectrum. While Planck has measured the primordial power spectrum for modes

with 10−4 Mpc−1 . k . 0.3 Mpc−1 (where the lower bound is set by the fact that smaller modes

have not yet re-entered the horizon), proposed CMB-S4 experiments will increase this range [27]

somewhat, as will be discussed further below. We wish to show that the power spectrum of our

toy model is not ruled out and, furthermore, may be observed in the coming decades.

The height of the step in the primordial power spectrum is determined by the energy scale of

each period of inflation, so modes crossing the horizon in the second inflationary period should be

suppressed by a factor of r2 > n2 & 25 compared to those exiting in the first period. This degree

of suppression is ruled out by Planck for the range of modes over which it has reconstructed the

power spectrum [50]. A computation of the primordial power spectrum for double inflation was

given in [53]. It was found that significant damping does not occur for modes which cross outside

the horizon during the first inflationary period, re-enter during the inter-inflationary period and

again cross the horizon during the second inflationary period. It is only those scales which first

cross the horizon during the second inflationary period that are significantly damped (although

other features in the shape, such as oscillations, may be present for modes that are subhorizon

during the intermediate period).

The relation of this characteristic scale to present-day observables is easily done using the

framework given in [55]. Let the subscripts a, b, c, d, e respectively correspond to the beginning

of the first inflationary period, the end of that period, the beginning of the second inflationary

period, the end of that period, and the beginning of radiation domination. During the coherent

oscillation periods, the inflaton acts as matter and the energy density falls as ρ ∝ a−3. Let ki
be the momentum whose mode is horizon-size at the i epoch; ki = aiHi. The scales ki can
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Figure 11: Schematic evolution of the characteristic scales in Twinflation, as seen by comparing wavenum-

bers to the Hubble radius over time. Note that the time axis is not a linear scale.

be related using the number of e-folds in each period, which are themselves determined from

the first Friedmann equation. Denoting Nij = ln
aj
ai

, we have ka = e−Nabnkb, kb = e
1
2
Nbckc and

similarly for the other characteristic modes, where, in particular, slow-roll inflation predicts that

Nab = Ncd = n2−1
2 . The evolution of the characteristic momentum scales is shown schematically

in Figure 11. Finally, ke can be determined using the conservation of comoving entropy:

ke =
πg

1/3
? (T0)g

1/6
? (Treheat)T0Treheat

3
√

10Mpl

, (5.2)

where T0 and a0 are the temperature and scale factor today and Treheat is the reheating tempera-

ture (which is sufficiently low that only SM particles are produced). We work explicitly with the

convention a0 = 1. The characteristic modes associated with the break can then be determined.

As mentioned above, [53] shows that damping occurs for modes that exit the horizon only

during the second inflationary period, so we should take the characteristic damping scale to be

the smallest such scale, which here corresponds roughly to kb This can be determined as

kb = ne
1
2
Nbc−Ncd+ 1

2
Ndeke

= n
( r
n

)1/3
exp

(
−n

2 − 1

2

)[ 1
2m

2M2
pl

π2

30 g?(Treheat)T
4
reheat

]1/6
πg

1/3
? (T0)g

1/6
? (Treheat)T0Treheat

3
√

10Mpl

(5.3)
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where kc only differs by the factor of (r/n)1/3 (which is roughly close to unity). Once again,

between kb and kc are oscillatory features, so kb should merely be taken as the rough characteristic

scale of the damping.
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Figure 12: The prediction for the characteristic suppression scale as a function of the initial values of

the fields. The mapped regions should be interpreted not as having hard boundaries, but rather fuzzy

endpoints where they break down. Here we have used Treheat = 10 MeV and r = 2n.

Now the characteristic damping scale is determined by m, n, r, and Treheat. Our observa-

tional bound on kb is that Planck has not seen this suppression on momentum scales at which

it has been able to reconstruct the primordial power spectrum from the angular temperature

anisotropy power spectrum, which is roughly k . 0.3 Mpc−1. We have constraints on the reheat-

ing temperature from rethermalization of the twin sector or interrupted big bang nucleosynthesis

10 MeV . Treheat . 1 GeV, on having a period of intermediate matter domination between the

two inflations r > n and on the total number of e-folds n2 − 1 & 25 to solve cosmological prob-

lems. Note that we require fewer e-folds of inflation than is typically assumed in the standard

cosmology. Since the low reheating temperature gives fewer e-folds from reheating up to today,

less inflation is needed to explain the large causal horizon and flatness.

The normalization of the spectrum provides a further constraint, the most recent measurement

of which come from Planck [50]. The scalar power spectrum at k? = 0.05 Mpc−1 is measured to

be PR(k?) = e3.094±0.034 × 10−10. Then for k? < kc (i.e. k? having left the horizon during the

first period of inflation and not re-entered before the second, so no deviation from single-field

inflation would be seen at this scale), the spectrum of [53] yields the constraint

2.03× 10−6 =
r2m2

M2
pl

ln

(
kb
k?

)(
ln
kb
k?

+
n2

2

)
. (5.4)

The characteristic scale (5.3) depends much more strongly on n than it does on any of the

other parameters. In Figure 12, we give a rough idea of the scale as a function of n, having set

Treheat = 10 MeV and r = 2n, while m is chosen to satisfy the normalization condition. We also

show the constraint on kb set by Planck. Note again that the region described as “observationally

single-stage inflation” does still provide a solution to the problem of reconciling cosmology with

the mirror Twin Higgs.
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CMB-S4 will improve the constraint on kb through its improved measurement of polarization

anisotropies [27]. With only precision measurements of temperature anisotropies, the un-lensed

power spectrum cannot be so easily reconstructed from the lensed spectrum. The effects of grav-

itational lensing of CMB place an upper limit on the size of primordial temperature anisotropies

that can be measured [56], which Planck has saturated. However, the polarization anisotropy

power spectrum allows the removal of lensing noise from the temperature spectrum so that higher

primordial modes can be detected. The polarization power spectrum itself also gives us another

window into the high-` modes of the primordial power spectrum, as the signal does not become

dominated by polarized foreground sources until higher scales near ` ∼ 5000. CMB-S4 is pro-

jected to make cosmic variance limited measurements of both the temperature and polarization

anisotropy power spectra up to the modes where they become foreground-contaminated and so

provide additional information on the shape of the primordial power spectrum [27]. The map

from measurements of angular modes ` to contraints on spatial modes k depends on the evolu-

tion of the power spectrum between inflation and the CMB, so forecasting constraints requires

careful study. However, these improvements will not test most of the parameter space presented

in Figure 12, where the step is predicted on extremely small distance scales.

We have discussed a twinflationary model of double inflation with a break for simplicity, but

there is a parametric regime where double inflation without a break gives the required amount of

asymmetric reheating into the Standard Model. With two periods of inflation, the second period

dilutes the energy density of the heavier field sufficiently that there is no observable signal of

it produced in reheating. However, even with only one period, inflation can continue for long

enough after the inflaton turns the corner in field space such that, at late times, the fraction of the

inflaton in the B state relative to the A state is small enough that the expected energy densities

that are transferred into each sector satisfy ρB/ρA < 0.1. This occurs as long as r & 1.2, assuming

that the mixing angle of the slow-rolling field with the ϕA and ϕB fields entirely determines the

fraction of its energy that reheats each sector. There is thus a much larger range of r where this

toy model of inflation passes Neff bounds than our above analysis shows. The resulting imprint on

the CMB could resemble that of the long-lived decay model of Section 4, with ∆Neff again being

related to the ratio of branching fractions, although this is dependent upon the UV completion

of the Twin Higgs.

When there is only one period of inflation, the step is smoothed out and less pronounced

and it is necessary to locate the feature numerically. Furthermore, having multiple degrees

of freedom available allows for non-trivial evolution of momentum modes after they become

super-horizon, which does not occur in single-field inflation but may be calculated from the full

solution to the field equations [54]. While a twinned potential leading to two periods of inflation

generally predicts a step in the power spectrum, when there is no break the predictions, and

thus constraints, this prediction become more model-dependent. Therefore we leave detailed

predictions in that case for future study using realistic models and merely state that the range

of r = 1 to n interpolates between the single field spectrum and that with a step, as one would

expect.

There are also at least two other detectable effects one might expect in double inflation

without a break and in general realistic twinflationary models. Interactions between inflaton

fields may produce primordial non-Gaussianities, while the presence of additional oscillating
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degrees of freedom may produce isocurvature perturbations. These do not appear in our toy

model because the heavy field is exponentially damped during the second inflation. CMB-S4 is

projected to improve Planck’s bounds on non-Gaussianities by a factor of ∼ 2 and on isocurvature

perturbations by perhaps an order of magnitude (though model-independent projections have not

been made), so may be able to detect or place useful constraints on realistic twinflationary models

[27].

We have introduced twinflation as a mirror Twin Higgs model which suppresses the cosmo-

logical effects of twin light degrees of freedom. It extends the mirror symmetry to the inflationary

sector. The soft Z2 symmetry-breaking of the Higgs sector may be used in the inflationary sector

to cause distinct periods of inflation. There exists a parametric region where this is cosmologi-

cally indistinct from single-stage inflation, but also another in which it may be observable. As the

direct product of inflation and the Mirror Twin Higgs, this is in some sense a minimal solution.

6 Conclusion

In this work we have considered scenarios in which cosmology provides meaningful insight on

solutions to the electroweak hierarchy problem. In particular, we have demonstrated several

simple mechanisms in which the cosmological history of a mirror Twin Higgs model is reconciled

with current CMB constraints and provides signatures accessible in future CMB experiments. In

the case of out-of-equilibrium decays, we have found that decays of Z2-even scalars sufficiently

dilute the energy density in the twin sector without the addition of any new sources of Z2-breaking.

In much of the parameter space, the residual contribution to ∆Neff is directly proportional to the

ratio of vacuum expectation values v2/f2 parameterizing the mixing between Standard Model and

twin sectors (as well as the tuning of the electroweak scale), and may be within reach of CMB-S4

experiments. In the case of twinflation, we have found that a (broken) Z2-symmetric inflationary

sector may successfully dilute the energy density in the twin sector, as well as potentially leave

signatures in the form of a step in the primordial power spectrum or in departures of primordial

perturbations from adiabaticity and Gaussianity. In both cases, these models raise the tantalizing

possibility that signatures of electroweak naturalness may first emerge in the CMB, rather than

the LHC.

There are a variety of possible directions for future work. Here we have focused on the cosmo-

logical consequences of late-decaying scalars and twinned inflationary sectors without specifying

their origin in a microscopic model. It would be interesting to construct complete models (where,

e.g., supersymmetry or compositeness protect the scale f from UV contributions) in which the ex-

istence and couplings of late-decaying scalars arise as intrinsic ingredients of the UV completion.

Likewise, we have considered only a toy model of twin chaotic inflation; it would be interesting

to see if twinflation may be realized in complete inflationary models that match the observed

spectral index and constraints on the tensor-to-scalar ratio.

While we have taken care to ensure that our scenarios respect the well-measured cosmological

history beneath T ∼ 1 MeV, we have not addressed the origin of the observed baryon asymmetry.

In the case of out-of equilibrium decays, there are a number of possibilities. It is plausible that a

somewhat larger baryon asymmetry is generated through various conventional mechanisms and
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diluted by late decays. Alternatively, the decay mechanism itself may possibly be expanded to

generate a baryon asymmetry or some other late decay may generate the baryon asymmetry

below ∼ 1 GeV. In the case of twinflation, inflationary dilution of pre-existing baryon asymmetry

requires that baryogenesis occur in association with reheating or via another mechanism at tem-

peratures below ∼ 1 GeV. It would be worthwhile to study models for the baryon asymmetry

consistent with these scenarios. Steps in this direction have been taken in [17], which attempted

to relate this to asymmetric dark matter in the twin sector.

Finally, we have only approximately parameterized Planck constraints and the reach of CMB-

S4 on twin neutrinos and twin photons. Ultimately, more precise constraints and forecasts may be

obtained via numerical CMB codes. This strongly motivates the future study of CMB constraints

on scenarios with three sterile neutrinos and additional dark radiation whose temperatures differ

from the Standard Model thermal bath.
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