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ABSTRACT

The mass function of freshly formed star clusters is empirically often described as a
power law. However the cluster mass function of populations of young clusters over
the scale of a galaxy has been found to be described by a Schechter-function. Here we
address this apparent discrepancy. We assume that in an annulus of an isolated self-
regulated radially-exponential axially-symmetric disk galaxy, the local mass function of
very young (embedded) clusters is a power law with an upper mass limit which depends
on the local star formation rate density. Radial integration of this mass function yields
a galaxy-wide embedded cluster mass function. This integrated embedded cluster mass
function has a Schechter-type form, which results from the addition of many low mass
clusters forming at all galactocentric distances and rarer massive clusters only forming
close to the center of the galaxy.

Key words: stars: formation – stars: luminosity function, mass function – stars:
statistics – galaxies: star clusters – galaxies: stellar content

1 INTRODUCTION

The freshly-formed stellar mass of a galaxy resides in its
embedded star clusters (Lada & Lada 2003; Kroupa 2005;
Megeath et al. 2016; Meingast et al. 2016), which can syn-
onymously be referred to as (about 1 pc extended, 1 Myr
duration) space-time correlated star-formation events. i.e.
essentially in molecular cloud clumps. The investigation of
embedded clusters helps us to understand the build up of
the stellar populations in galaxies. Embedded clusters are
still fully or partially enshrouded in gas and dust, and rep-
resent the earliest stage in the life-time of a formed star
cluster. They may be the forerunners to the open clus-
ters and are therefore valuable probes for cluster formation
(Lada & Lada 2003).

Observations indicate that the masses of the embedded
star clusters in galaxies follow a particular distribution func-
tion, the embedded cluster mass function (ECMF). Locally
it is typically found to be a power-law, while galaxy-wide
observation reveal a Schechter-like turn-down (Gieles et al.
2006). This has also been observed for old, massive glob-
ular clusters (see e.g. Jordan et al. 2007; Burkert & Smith
2000; Parmentier & Gilmore 2007). Massive clusters expe-
rience limited secular mass loss and are therefore still a
reasonable indicator for the initial cluster mass function
(Baumgardt & Makino 2003).

The focus of this paper is on embedded clusters in the
disks of isolated late-type galaxies. Ideally the disk can be
seen as a purely self-regulated axis-symmetric system, such
that it is possible to investigate the ECMF only radially over
the area of the disk galaxy to explain the difference between
the local and integrated distribution1.

In this paper we present for the first time analytical
approaches to the galaxy wide ECMF and also rewrite the
dependency on the galactocentric distance into a mass de-
pendency so that we arrive at a new relation between the
number and the mass of star clusters. Hereby we follow the
ansatz that the galaxy-wide ECMF is the sum of all local
ECMFs.

We constrain these models with observational data and
show that the models account for the data quite well.

1 The assumption of the galaxy being axis-symmetric is made for
computational ease. The model developed here is equally valid in
any galaxy in which the most mast massive cluster forming in a
population of embedded clusters depends on the local gas density.

http://lanl.arxiv.org/abs/1611.07990v1
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2 THE LOCAL EMBEDDED CLUSTER MASS

FUNCTION

The local ECMF (LECMF or ξlecl) describes the surface
number density of star clusters in the stellar mass interval
[Mecl, Mecl + dMecl] in an infinitesimally small surface area
(dA) at a distance r from the center of the star-forming disk
galaxy

ξlecl(Mecl; r) dMecl dA = dNecl , (1)

where dNecl is the number of embedded clusters in dMecl

and dA.
In general the LECMF has the form of a power law, as

derived from observations (Lada & Lada 2003)

ξlecl(Mecl; r) = K(r)M−β
ecl , (2)

where Mecl is the stellar mass of the embedded cluster at
“birth”2 and K(r) the normalization constant and β the
power law index. By observation β was found to be between
β = 1.5 and β = 2.5 (Weidner, Kroupa & Larsen 2004, here-
after WKL, and references therein). K(r) has to be esti-
mated using normalization conditions.

The normalization condition is that the entire freshly
formed stellar mass of a galactic region has to be in embed-
ded clusters. So integrating the mass over all clusters (from
the lower mass limit Mecl,min to the locally upper mass limit
MU,loc(r)) obtains the freshly formed stellar mass. In the
case of an infinitesimally small surface area dA this obtains
the embedded cluster mass surface density. This embedded
cluster mass surface density is defined as the star forma-
tion rate density ΣSFR(r) multiplied with the time-scale ,δt,
which is the time over which a population of embedded clus-
ters forms. ΣSFR(r) is defined as

ΣSFR(r) =
dSFR

dA
, (3)

with SFR being the star formation rate in the
whole galaxy. The total embedded cluster mass den-
sity is obtained by multiplying ΣSFR(r) with δt
(Schulz, Pflamm-Altenburg & Kroupa 2015; WKL):

ΣSFR(r) δt =

∫ MU,loc(r)

Mecl,min

M ′
eclξlecl(M

′
ecl; r)dM

′
ecl . (4)

Mecl,min is assumed to be about 5 M⊙, correspond-
ing to the smallest groups of embedded stars observed
(Kroupa & Bouvier 2003, Kirk & Myers 2012), and is here
assumed to be a constant. δt is roughly 10 Myr, as de-
duced by Egusa, Sofue & Nakanishi (2004). This is the time
it takes for the interstellar medium to transform into a
new population of stars and is essentially the lifetime of
molecular clouds (Fukui et al. 1999; Yamaguchi et al. 2001;
Tamburro et al. 2008). It corresponds to the lifetime over
which the embedded cluster mass function is fully populated
(see the discussion in Kroupa et al. 2013 and Schulz et al.
2015).

It is noteworthy that to calculate the LECMF Eq. (4)
is sufficient once MU,loc(r) is known. The values for K(r)
are uniquely defined for different β. For β 6= 2,

2 “birth” describes here the idealised state when the entire pop-
ulation is existing directly prior to the expulsion of the gas.
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Figure 1. An exemplary LECMF. Shown here is a LECMF from
the distribution function given by Eq. (2) for a galactic region
with 108 M⊙ of stellar mass. Further we assumed a Mecl,min of 5
M⊙ and a MU,loc(r) of 10

8 M⊙. The solid line shows the LECMF
calculated analytically, whereas the points are the binned results
of stochastic sampling.

K(r) =
ΣSFR(r) δt(2− β)

M2−β
U,loc(r)−M2−β

ecl,min

. (5)

For the special case of β = 2,

K(r) =
ΣSFR(r) δt

ln (MU,loc(r)/Mecl,min)
. (6)

A visual verification that a LECMF calculated by this
method is in agreement with a LECMF that was obtained
by randomly drawing star clusters according to Eq. (2) is
shown in Fig. 1.

The only uncertainty left is the exact form of MU,loc(r).
At the moment we can only state that the local upper mass
limit has to be smaller than the cluster upper mass limit of
the whole galaxy MU: MU,loc(r) 6 MU. Therefore additional
research into this subject is necessary (see Sec. 3.1).

The LECMF with an observable non-infinitesimal sur-
face area ∆A is discussed in Appendix A.

3 THE GALAXY-WIDE EMBEDDED

CLUSTER MASS FUNCTION

In this section the scope of our analysis is to describe the
form of the ECMF after integrating over the axis-symmetric
galactic disk surface area. The previous formulae allow the
normalisation of the LECMF at a fixed distance to the center
of a galaxy.

The galaxy wide or integrated ECMF (IECMF or ξiecl,
not to be confused with the LECMF ξlecl above) is defined
as the number of star clusters in the stellar mass interval
Mecl to Mecl + dMecl

ξiecl(Mecl) dMecl = dNecl , (7)

or

ξiecl(Mecl) =
∫ 2π

0

∫ R′(Mecl)

0
ξlecl(Mecl; r) r drdφ

=
∫ 2π

0

∫ R′(Mecl)

0
K(r)M−β

ecl r drdφ .
(8)
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with R′(Mecl) being the maximal galactocentric distance at
which an embedded cluster of mass Mecl can form, assum-
ing the maximum cluster mass decreases monotonically with
increasing radial distance.

Is the IECMF still similar to a power-law function of
the cluster mass? And if yes, does the power-law parameter
β differ from the local one? These questions are addressed
in the following.

The galaxy wide star formation rate (SFR)

SFR =

∫ 2π

0

∫ Rgal

0

ΣSFR r drdφ , (9)

with Rgal being the radius of the star forming area of the
the galaxy. In order to obtain ξiecl one can insert Eq. (4)
into Eq. (9). The resulting equation (see also Kroupa et al.
2013) is:

SFR δt =
∫ 2π

0

∫ Rgal

0

∫ MU,loc(r)

Mecl,min
Meclξlecl(Mecl; r)dMeclrdrdφ

=
∫ 2π

0

∫ Rgal

0

∫ MU,loc(r)

Mecl,min
K(r)M1−β

ecl r dMecldrdφ .
(10)

Eq. (10) is first an integration over the mass of the clus-
ters and then over the area. It is possible to exchange the
mass integral with the integral over the galactocentric dis-
tance by noting that in a given annulus the theoretical most
massive cluster MU,loc(r) depends on r, that is, we can
invert this function to obtain the galactocentric distance,
R′(Mecl), at which the annulus contains a particular the-
oretical most massive cluster. In other words to exchange
the positions of the r- and Mecl-integration. Assuming that
the mass of the theoretical most massive cluster possible,
MU,loc(r), decreases with the galactocentric distance r then
the integration needs only to extend over the distances 0 to
R′(Mecl) 6 Rgal. Therewith at the low mass end the IECMF
is an integral over 0 to Rgal, while at the high mass end large
radii do not contribute:

SFR δt =

∫ MU

Mecl,min

∫ 2π

0

∫ R′(Mecl)

0

K(r)M1−β
ecl r drdφdMecl .(11)

Neither K(r) nor MU,loc(r) are known for a specific r. K(r)
depends on ΣSFR, see Eq. (4). A direct relation between
ΣSFR and the position within the galaxy, assumed to be
valid for a galaxy in self-regulated equilibrium, is taken from
Pflamm-Altenburg & Kroupa (2008):

ΣSFR(r) = SFR e
Rgal/rd

2πr2
d

(

e
Rgal/rd−

Rgal
rd

−1

)e−r/rd

≈ SFR
2πr2

d

e−r/rd .

(12)

In this case rd is the disc scale length. The equation is nor-
malised in such a way that an integral over the whole area
results in the total SFR. Therefore both sides of Eq. (12)
can be multiplied with δt so that it is equal to Eq. (4) (in
the following we will write SFR δt as Mtot, the total stellar
mass formed galaxy wide in time δt):
∫ MU,loc(r)

Mecl,min

M ′
eclξlecl(M

′
ecl)dM

′
ecl =

Mtot

2πr2d
e−r/rd . (13)

This gives a relation betweenK(r) and MU,loc(r). For β 6= 2:

K(r) =
(2− β)Mtot

2πr2d
(

M2−β
U,loc(r)−M2−β

ecl,min

)e−r/rd . (14)

For β = 2:

K(r) =
Mtot

2πr2d ln (MU,loc(r)/Mecl,min)
e−r/rd . (15)

To get an unambiguous expression for K(r) and
MU,loc(r) more constraints are needed. For this purpose we
use a model (henceforth called the exponential model) based
on an ansatz from Pflamm-Altenburg & Kroupa (2008).
Other possible models, found to be not working as well as
this one, are discussed in Appendix C.

3.1 Exponential Model

Pflamm-Altenburg & Kroupa (2008) propose the ansatz
that the radial dependence of Mecl,max,loc(r) should have
the same form as the radial dependence of the gas surface
density Σgas(r):

Σgas(r) = Σgas,0 e
− r

rd , (16)

with Σgas,0 being the gas surface density at the center of the
galactic disk. Thus

Mecl,max,loc(r) = Mecl,max e
− r

rd . (17)

With this ansatz they were able to show that the Hα radial
cut-off in disk galaxies is naturally explained, given that star
formation extends well beyond this cut-off radius.

As our model usesMU,loc instead ofMecl,max, we modify
Eq. (17) to

MU,loc(r) = MUe
− r

rd . (18)

Inserting Eq. (18) into Eq. (13) with β 6= 2 results in a
definite K(r):

K(r) =
(2− β)Mtot

2πr2d

[

(

MUe
− r

rd

)2−β

−M2−β
ecl,min

]e−r/rd , (19)

and for β = 2 in

K(r) =
Mtot

2πr2d ln
[(

MUe
− r

rd

)

/Mecl,min

]e−r/rd . (20)

For each r in the axis-symmetric disk galaxy there is a theo-
retical maximal cluster mass MU,loc(r). Regarding the entire
galaxy, each MU,loc(r) is a theoretical possible cluster mass
Mecl. And in this relation r is the maximal galactocentric
distance R′(Mecl), at which a cluster of mass Mecl can still
be found. This is true for every Mecl, R

′(Mecl) being the re-
verse function of MU,loc(r). R

′(Mecl) is needed for Eq. (11),

R′(Mecl) = −rd ln
(

Mecl

MU

)

. (21)

Now ξiecl(Mecl) can be calculated:

ξiecl(Mecl) =

∫ 2π

0

∫ R′(Mecl)

0

K(r)M−β
ecl r drdφ . (22)

This integration can only be solved numerically (because of
the r-dependence in K(r)). The remaining free parameters
(β and MU) can be fixed using empirical data. WKL derived
a fitting function for the mass of the most massive very
young cluster in a galaxy (Mvyc,max) depending on the SFR
of the host galaxy:
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Mvyc,max = kML · SFR0.75(±0.03)
· 106.77(±0.02) , (23)

with SFR in M⊙/yr and kML being the mass-to-light ratio
in the photometric V-band, which can be assumed to be
0.0144 M⊙/LV,⊙ for young (< 6 Myr) clusters. Mvyc,max is a
good approximation for the stellar mass of the most massive
embedded star cluster of a galaxy, Mecl,max.

To determine Mecl,max we use two conditions: first there
is only one most massive cluster. Second the mass of the
most massive cluster is Mecl,max.

To implement the first condition we choose a mass in-
terval between the upper mass limit MU and Mecl,t, with
Mecl,t chosen in such a way that there is only one cluster
between these limits:

1 =

∫ MU

Mecl,t

ξiecl(M
′
ecl)dM

′
ecl . (24)

The second condition implies that the mass between these
limits is Mecl,max:

Mecl,max =

∫ MU

Mecl,t

M ′
eclξiecl(M

′
ecl)dM

′
ecl . (25)

As Mecl,max depends on SFR it therewith follows that also
MU depends on SFR. Note that these conditions differ from
those employed on previous occasions, as explained in Ap-
pendix B.

Using these we can find for every β a SFR-Mecl,max-
curve that aligns with Eq. (23). In order to narrow β down,
a fitting MU is needed. MU is supposed to be larger than
any observed cluster mass but not so large that there would
be unrealistic gaps between the mass of the most massive
clusters and MU. In the following we assume rd = 2.15 kpc,
as this is roughly the determined disk scale length of the
Milky Way (Bovy & Rix 2013; Porcel et al. 1998). With that
we find for β = 2.3 ± 0.1 and δt = 10 Myr a SFR-Mecl,max-
curve that aligns with Eq. (23) and resulting MU that fulfils
the above criteria (see also Fig. 2). This way we can give for
every SFR a corresponding MU. E.g. for SFR = 1 M⊙/yr
we obtain MU = 400000 M⊙.

4 COMPARISON TO EMPIRICAL DATA

We already used empirical data in Sec. 3.1 to align the SFR-
Mecl,max-curve of the exponential model with the empirical
fit by WKL (Eq. 23) and in doing so constrained the free pa-
rameters (β and MU) of the model. In the following we want
to determine whether the model, using said constraints, is
also in reasonable agreement with other observations.

Empirical data has been indicating that the galaxy-wide
ECMF should be a Schechter-function (Gieles et al. 2006),
i.e.

ξiecl,Schechter(Mecl) = K′e−Mecl/McM−β′

ecl . (26)

3 In order to calculate Mvyc,max from the observed absolute mag-
nitude (MV) the following formula has been used (Abdullah pri-
vate communication):

MV = 4.79 − 2.5 log10
Mecl,max

kML
,

with kML being the mass to light ratio.
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is Mecl,max and MU, as calculated using the model from Sec. 3.1
for β = 2.3 against the galaxy-wide SFR. All observed clusters
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uncertainties.
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Figure 3. A comparison between the IECMF acquired from
the exponential model (the solid line) and the IECMF from the
Schechter form (Eq. 26, the dashed line) for SFR = 1 M⊙/yr and
a δt = 10 Myr. For the exponential model β = 2.3, while for the
ξiecl,Schechter model β = 2.24.

In this case Mc is the turn-down mass, at which the ECMF
turns down. Our formalism results in a similar form for the
ECMF as the Schechter form. This is shown in Fig. 3.

Note that the ξiecl,Schechter model uses a different β than
the exponential model. The exponential model has a sharper
turn down than the Schechter formalism for the same β.
Therefore β needs to be modified for a good fit. The smaller
the SFR the bigger the divergence between the needed β
form the exponential model and the Schechter form.

Up until now no theoretical formulation existed which
allowed Mc to be predicted from properties of the galaxy.



Cluster Mass Function of Young Clusters 5

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

104 105 106 107

ξ i
ec
l/
[M

−
1

⊙
]

Mecl/M⊙

exponential model

Figure 4. Combined binned young cluster mass function for two
galaxies (NGC 5236 and NGC 6946, data taken from Larsen 1999,
Larsen 2009 and Larsen private communication). Also shown is
the exponential model. For the single galaxies see Figs. 5 and 6.

With our formulation we can derive the turn-down mass in
dependence of the exponential density profile of the galaxy.

Fitting the Schechter-function to the exponential model
allows us to determine a relation between Mc and the SFR:

Mc = (85000 ± 5000) SFR(0.73±0.02) . (27)

Comparing this to Eq. (23) shows that these two equa-
tions are the same within the uncertainties. Therefore Mc =
Mecl,max is at least a good approximation.

Next we compare the exponential model to actual em-
pirical data. For this we confront the model with galaxy-
wide observations of NGC 5236 and NGC 6946 (data taken
from Larsen 1999, Larsen 2009 and Larsen private com-
munication). The empirical data consists of a list of clus-
ter masses, which were binned. To compare these data to
the models we need the SFRs of the galaxies. Dopita et al.
(2010) calculated a SFR of 2.76 M⊙/yr for NGC 5236,
whereas Hong et al. (2013) determined SFRs of 1.52 and
0.18 M⊙/yr, depending on the method used. For NGC 6946
Heesen et al. (2014) measured, depending on the method, a
SFR of 4.6± 0.2 and 3.5± 0.2 M⊙/yr. For our models we
are therefore adopting SFR = 1.5 M⊙/yr for NGC 5236 and
SFR = 4 M⊙/yr for NGC 6946. From Larsen (2009) we get
the ages of the brightest and 5th brightest cluster. From
these we can assume that δt = 10 Myr is a good approxi-
mation for the age. As ξlecl ∝ K ∝ δt a change in δt does
not change the overall behaviour of the function. A compar-
ison of the data to the combined ξiecl calculated using the
exponential model is shown in Fig. 4. The only difference
between the IECMF models that has been applied here are
the differing galaxy-wide SFRs. All other parameters are
identical to the fit from Fig. 2. We can also compare the
model to the individual galaxies (Figs. 5 and 6) but this has
the disadvantage of having higher uncertainties. Nonetheless
the model fits quite well, given the uncertainties.

The r-dependency of MU,loc(r) also allows a
test of the exponential model. We compare the
theoretical MU,loc-r dependence with the observed
very young star clusters in M33 (data taken from
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Figure 5. Binned young cluster mass function for NGC 5236
(data taken from Larsen 1999, Larsen 2009 and Larsen pri-
vate communication). Also shown is the exponential model for
SFR = 1.5 M⊙/yr and for SFR = 2.76 M⊙/yr. See text for fur-
ther details.
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Figure 6. Binned young cluster mass function for NGC 6946
(data taken from Larsen 1999, Larsen 2009 and Larsen pri-
vate communication). Also shown is the exponential model for
SFR = 4 M⊙/yr. See text for further details.

Pflamm-Altenburg, González-Lópezlira & Kroupa 2013) in
Fig. 7. Fig. 7 shows the r-dependence of MU,loc for the
model compared to observed very young star clusters. As
MU,loc is the upper mass limit for star clusters at a given
galactocentric distance we would expect that no observed
cluster is heavier than it. But several observed ones are.
Also using the observed SFR (0.16 M⊙/yr, Skibba et al.
2011) in the empirical fit by Weidner (Eq. 23) results in
a Mvyc,max much smaller than several observed clusters.
But taking into account that individual cluster masses
have large uncertainties it becomes apparent that the
exponential model fits quite well to the observed radially
decreasing upper masses.
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Figure 7. Comparison of the dependence on the galactocen-
tric distance of MU,loc for the exponential model with observed
very young clusters in M33 (Pflamm-Altenburg et al. 2013). The
model uses SFR = 0.16 M⊙/yr, δt = 10 Myr and β = 2.31. These
values have been chosen so that the model fits the experimental
data from the SFR-Mecl,max relation (Fig. 2).

5 CONCLUSION

In this paper we calculated for the first time the galaxy-
wide integrated embedded cluster mass function for galax-
ies, which we assumed for computational ease to be axis-
symmetric exponential disks, and showed that it has the
form of a Schechter-like function, although locally the
ECMF is a pure power-law.

To do that we first described an analytical solution of
the LECMF. It was assumed there that the theoretical local
upper cluster mass limit, MU,loc(r), depends on the galac-
tocentric distance r.

Integrating the LECMF over the area of the star
forming disk yields the galaxy-wide or integrated em-
bedded cluster mass function (IECMF or ξiecl). For
this purpose a model describing the r-dependence of
MU,loc(r) was needed. The exponential model, introduced
by Pflamm-Altenburg & Kroupa (2008), is found to be in
agreement with observational data.

Even though the LECMF is a power law, the IECMF
resembles a Schechter-like function, the reason being that
the upper mass limit of the local power law is defined by
MU,loc(r), which decreases with an increasing galactocentric
distance.

Additionally given a locally estimated power-law index
β for an ensemble of embedded clusters in a region in a
galaxy, we have shown here that other regions elsewhere are
expected to have different logarithmic ECMF, depending on
the size and position of the region in the galaxy, and that the
size of the region implies a Schechter-type turn-down of the
embedded cluster mass function. The galaxy-wide ECMF,
the integrated ECMF, IECMF, thus becomes a Schechter-
type form.

All of this opens further possibilities for research. We as-
sumed radially axis-symmetric disk galaxies but it is worth
investigating whether a barred galaxy would cause signifi-
cant changes. Also as has been stated, the exponential model
depends on the theoretical upper limit for the mass of clus-

ters in a galaxy of a specific stellar mass. At the moment
we can only give a lower limit to these values, which could
underestimate them. Further research in the context of star
and cluster formation should be able to give improved in-
sights on the theoretical upper mass limits. Another step,
which has to be done, would be to combine the stellar ini-
tial mass function (IMF) and the ECMF into the integrated
galactic initial mass function (IGIMF) (Weidner et al. 2013,
Recchi & Kroupa 2015), which is the galaxy-wide stellar ini-
tial mass function.
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APPENDIX A: THE LECMF WITH A

NON-INFINITESIMAL SURFACE AREA

In this section we discuss what differences there are to Sec. 2
if one uses an observable non-infinitesimal surface area ∆A
instead of dA. First Eq. (1) becomes

ξlecl(Mecl; r) dMecl ∆A = dNecl . (A1)

For a given region ∆A, ΣSFR(r) becomes the local star
formation rate LSFR:

LSFR(r) =
∆SFR

∆A
, (A2)

with ∆SFR being the star formation rate in the galactic
region ∆A.

The total mass formed in stars is then obtained by mul-
tiplying LSFR(r) with δt (WKL):

LSFR(r) δt =

∫ MU,loc(r)

Mecl,min

M ′
eclξlecl(M

′
ecl; r)dM

′
ecl . (A3)

For β 6= 2 we obtain

K(r) =
LSFR(r) δt(2− β)

M2−β
U,loc(r)−M2−β

ecl,min

. (A4)

For the special case of β = 2,

K(r) =
LSFR(r) δt

ln (MU,loc(r)/Mecl,min)
. (A5)

Using the LECMF it is now possible to calculate the
mass of the most massive observable cluster in the region ∆A
(Mecl,max,loc(r)). To determine Mecl,max,loc(r) we use two
conditions: first there is only one most massive cluster. Sec-
ond the mass of the most massive cluster is Mecl,max,loc(r).

To implement the first condition we choose a mass inter-
val between the upper mass limit MU,loc(r) and Mecl,t,loc(r),
with Mecl,t,loc(r) chosen in such a way that there is only one
cluster between these limits:

1 ≈

∫ MU,loc(r)

Mecl,t(r)

ξlecl(M
′
ecl; r)dM

′
ecl ∆A , (A6)

and the second condition implies that the mass between
these limits is Mecl,max,loc(r):

Mecl,max,loc(r) ≈

∫ MU,loc(r)

Mecl,t(r)

M ′
eclξlecl(M

′
ecl; r)dM

′
ecl ∆A .(A7)

The reason for the equation being approximated is that
ξlecl(M

′
ecl; r) depends on r. One would have to perform an

integration over ∆A to get the exact value (see also Sect.
3). But for small ∆A the above equation is a good approxi-
mation.

Using Eqs. (A6) and (A7) Mecl,max,loc(r) becomes for
β 6= 2:

Mecl,t(r) ≈

(

M1−β
U,loc(r)−

1− β

K(r)∆A

) 1
1−β

, (A8)

Mecl,max,loc(r) ≈
K(r)

2− β

[

M2−β
U,loc(r)−M2−β

ecl,t (r)
]

∆A . (A9)

And for β = 2:

Mecl,max,loc(r) ≈ K(r)

[

ln

(

1 +
MU,loc(r)

K(r)∆A

)]

∆A . (A10)

This is a simple method to determine Mecl,max,loc(r) without
having to perform an integration over the area, as long as
∆A is small enough compared to the galaxy.

APPENDIX B: COMPARISON TO THE WKL

NORMALIZATION

WKL defined Eq. (4) slightly differently:

ΣSFR(r) δt =

∫ Mecl,max,loc(r)

Mecl,min

M ′
eclξlecl(M

′
ecl; r)dM

′
ecl . (B1)

Instead of using a theoretical most massive cluster
MU,loc(r) as an upper mass limit, Mecl,max,loc(r) was
used. This Mecl,max,loc(r) was defined by claiming that
there was exactly one cluster in the mass interval
[Mecl,max,loc(r), MU,loc(r)]:

1 ≈

∫ MU,loc(r)

Mecl,max,loc(r)

ξlecl(M
′
ecl; r)dM

′
ecl ∆A . (B2)

A criticism of this LECMF formulation is the claim that
Eq. (B2) would result in one most massive cluster with mass
Mecl,max,loc(r). In fact it only ensures that there is a most
massive cluster without guaranteeing that this most mas-
sive cluster has the mass Mecl,max,loc(r). For this another
equation is needed:

Mecl,max,loc(r) ≈

∫ MU

Mecl,max,loc(r)

M ′
eclξlecl(M

′
ecl; r)dM

′
ecl ∆A .(B3)

Now it is ensured that there is a massMecl,max,loc(r) between
Mecl,max,loc(r) and MU. But in general an equation system

1 =
∫ b

a
f(x) dx ,

a =
∫ b

a
xf(x) dx ,

(B4)

does not have a real, non-imaginary, solution for power laws.
If f(x) is a distribution function this set of equations re-
quests that the mean of x over the interval [a, b] has the
same value as the minimal value of x. This can only be pos-
sible if a = b.

The WKL normalization is thus not correct, but the
differences obtained when applying it relative to the correct
normalization (Eq. 4) are not significant.

APPENDIX C: OTHER MODELS

Alternatives to the exponential model described in Sec. 3.1:
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C1 Phantom Cluster Model

In the past Eq. (B2) had been used to calculate the LECMF.
It had been assumed that MU is a very large mass, often
approximated as infinity. In order to get similar results to
the previous method we use a slightly modified form of that
equation (introduced in Schulz et al. 2015):

1 ≈

∫ M∞

MU,loc(r)

ξlecl(M
′
ecl; r)dM

′
ecl ∆A , (C1)

with M∞ going towards infinity.
This resulting model, the phantom cluster model, makes

the claim that if there would not be an upper mass limit,
then there would be one more cluster in the mass range
between the upper mass limit and an infinite mass. A phan-
tom cluster, so to speak. But there is no physical reason for
claiming that there is exactly one cluster between the upper
mass limit and infinity (Schulz et al. 2015).

The resulting relation between K(r) and MU,loc is:

K(r) ≈ (β − 1)Mβ−1
U,loc(r)/∆A . (C2)

If one inserts Eq. (C2) into Eq. (13) , so inserting K(r) as
a function of MU,loc(r), a direct relation between MU,loc(r)
and r is obtained:
∫ MU,loc(r)

Mecl,min

(β − 1)
M1−β

ecl

M1−β
U,loc(r)∆A

dMecl ≈
Mtot

2πr2d
e−r/rd . (C3)

This equation is not analytically solvable for MU,loc. But nu-
merically it is possible to calculate for every r a correspond-
ing MU,loc(r) and K(r). The only remaining free parameters
are β and ∆A.

We can use these two last equations to calculate a
R′(Mecl) for every Mecl, as in the exponential model.

∆A has to be sufficiently small, so that Eq. (C1) is still
a good approximation, but has to be large enough to ensure
that a complete LECMF can be found in the area. In the
following we make the assumption of ∆A being constant, for
simplicity reasons.

The free parameters (β and ∆A) can be fixed by com-
paring the model to the empirical SFR-Mecl,max by WKL
(see Eq. (23))

Similar to the local case (see Eqs. (A6) and (A7)) the
mass of the heaviest cluster in the entire galaxy (Mecl,max)
is determined by

1 =

∫ MU

Mecl,t

ξiecl(M
′
ecl)dM

′
ecl (C4)

and

Mecl,max =

∫ MU

Mecl,t

M ′
eclξiecl(M

′
ecl)dM

′
ecl . (C5)

Using the above Eqs. (C4) and (C5) it is possible to calcu-
late for any β a corresponding SFR-Mecl,max-relation. These
relations can be compared with the empirical found relation
from Eq. (23) to constraint β. For β = 1.73 ± 0.01 and
∆A = (2.9 ± 0.1) kpc2 the SFR-Mecl,max-curve aligns best
to the fit from WKL.MU should be larger than any observed
cluster. Given the error bars from the observation this re-
quirement is reasonably fulfilled by the chosen parameters,
as can be seen in Fig. C1.
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phantom cluster model Mecl,max

phantom cluster model MU

Figure C1. The observational data are as in Fig. 2. Plotted
here is Mecl,max and MU against the SFR as calculated using
the phantom cluster model for β = 1.73 and ∆A = 2.9 kpc2.
All observed clusters should be below the MU-line within their
error-bars, which is not the case here but the data might be con-
sistent with this requirement given the uncertainties. See also
Schulz et al. (2015) for a discussion of the outlying data points.

Another concern is whether the chosen ∆A is still small
enough that Eq. C1 is still a good approximation for an
integration over the area ∆A. Numerical tests show that
using ∆A = 2.9 kpc2 results in a deviation of up to 3%,
compared to an integration over ∆A, which is still quite
accurate. Also observations of the LECMF often use a larger
observational area, e.g. Lada & Lada (2003) use an area of
roughly 12.6 kpc2.

C2 Constant K Model

The following is an ansatz that tries to be as simple as possi-
ble while being consistent with the observational data. If we
assume that K does not depend on the galactocentric dis-
tance r, then Eq. (13) should also be valid for r = 0. Hence
K has for β 6= 2 the form (with MU,loc(0) = MU):

K =
(2− β)Mtot

2πr2d
(

M2−β
U −M2−β

ecl,min

) (C6)

and for β = 2:

K =
Mtot

2πr2d ln
(

MU
Mecl,min

) . (C7)

The corresponding MU,loc as obtained from Eq. (13), using
the above form for K, is for β 6= 2:

MU,loc(r) =
[

e
− r

rd

(

M2−β
U −M2−β

ecl,min

)

+M2−β
ecl,min

] 1
2−β

, (C8)

and for β = 2:

MU,loc(r) = Mecl,min

(

MU

Mecl,min

)e
−

r
rd

. (C9)

We can use these two last equations to calculate R′(Mecl),
as in the exponential model. For β 6= 2:
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R′(Mecl) = −rd ln

[

M2−β
ecl −M2−β

ecl,min

M2−β
U −M2−β

ecl,min

]

(C10)

and for β = 2:

R′(Mecl) = −rd ln





ln
(

Mecl
Mecl,min

)

ln
(

MU
Mecl,min

)



 . (C11)

Consequently ξiecl(Mecl) takes the form

ξiecl(Mecl) = K

∫ 2π

0

∫ R′(Mecl)

0

M−β
ecl r drdφ . (C12)

It is now possible to solve this integral analytically to get an
IECMF, which depends only on Mecl:

ξiecl(Mecl) = KπR′ 2(Mecl)M
−β
ecl . (C13)

This model has two remaining free parameters (β and MU).
As in the other models we want to calculate Mecl,max in
order to compare it to the empirical SFR-Mecl,max by WKL
(see Eq. (23)) and constrain these parameters. Similar to the
local case (see Eqs. (A6) and (A7)) the mass of the heaviest
cluster in the entire galaxy (Mecl,max) is determined by

1 =

∫ MU

Mecl,t

ξiecl(M
′
ecl)dM

′
ecl (C14)

and

Mecl,max =

∫ MU

Mecl,t

M ′
eclξiecl(M

′
ecl)dM

′
ecl . (C15)

Therefore we can find for every β a SFR-Mecl,max-curve that
aligns with Eq. (23). Doing so we can find for every β a
corresponding MU:

MU =
74138

2− β
SFR0.91−0.15β . (C16)

In order to be realistic this MU has to be heavier than any
relevant observed cluster for this specific SFR, but also not
so much larger than the mass of the heaviest observed cluster
that there would be an unrealistic gap between them. As can
be seen in Fig. C2, β = 1.83± 0.1 fulfils these observational
constraints well.

C3 Comparison of the three models

All the models can be written as

ξiecl(Mecl) = f(Mecl, β)M
−β
ecl , (C17)

with f(Mecl, β) varying from model to model. All three mod-
els use a different f(Mecl, β) and also different values for β
in order to be in agreement to the empirical fit by WKL
(Eq. 23). Eq. (C17) shows that ξiecl is not a pure power-law,
so β is not the logarithmic slope of ξiecl. For a compari-
son of ECMFs resulting from the best fits of the models, see
Fig. C3. One can see that the exponential (Sec. 3.1) and the
constant K (Sec. C2) model look very similar, although they
have different values for β. This is because in these models
β is no longer the logarithmic slope. In contrast to the ex-
ponential and the constant K model, the phantom cluster
model looks different: its logarithmic slope is less steep.
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Figure C2. The observational data are as in Fig. 2. Plotted here
is Mecl,max and MU, as calculated using the constant K model
for β = 1.83 against the SFR. All observed clusters within their
uncertainties should be below the MU-line, which is fulfilled here
well.
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Figure C3. Comparison of the three models for a galaxy-wide
SFR of 1 M⊙/yr and for δt = 10 Myr. For the phantom cluster
model β = 1.73 was used, for the exponential model β = 2.31
and for the constant K model β = 1.83. These values have been
chosen so that the models fit the observational data shown in
Figs. 2, C1 and C2.

The models also result in different dependencies on the
distance to the the galactic center in the case of the LECMF.
This is illustrated in Fig. C4 with parameters chosen in such
a way that the models result in the same LECMF for r = 0
kpc.

An important difference of the LECMF between the
phantom cluster model (Sec. C1) and the other models is
that the phantom cluster model has the free parameters β
and ∆A, in comparison to the other two which have instead
of ∆A a direct dependence on the parameter MU. Therefore
the exponential and the constant K model allow for a MU

which is larger than the masses of the observed clusters (see
Figs. 2 and C2).
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Figure C4. Comparison of the dependence on the galactocentric
distance of the three models. All models are shown with β =
1.73, MU = 400000 M⊙, SFR = 1 M⊙/yr, δt = 10 Myr and
rd = 2.15 kpc. These values are not the previous fit values but
were chosen so that all models produce the same LECMF for a
galactocentric distance of 0 kpc. Note that the constant K model
leads to a significantly smaller MU,loc(r), for r = 5 kpc, than the
other models.

Another difference is that the constant K model can
be solved analytically, whereas the other models need to be
solved numerically.

Summarizing, overall the exponential model, which is
physically motivated (Pflamm-Altenburg & Kroupa 2008),
works best, as the phantom cluster model depends on a
rather arbitrary ∆A and the constant K model does not
reproduce well local data. But one may still apply these
models, e.g. if one needs an IECMF without numerical mod-
elling, one can use the constant K model.

APPENDIX D: SUMMARY OF VARIABLES
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Table D1. List of variables that were introduced.

Variable Definition Reason for Introduction

Necl number of embedded star clusters see definition of ξlecl

Mecl mass of an embedded star cluster see definition of ξlecl

A surface area see definition of ξlecl

r galactocentric distance see definition of ξlecl

ξlecl local embedded cluster mass function: dN
dMecldA

at r parameter studied in this paper

K normalization constant the normalization constant for ξlecl

β power law index power law index and logarithmic slope of ξlecl
Mecl,min minimal embedded cluster mass the smallest cluster mass
Mecl,max the largest cluster mass in a given galaxy used to compare theory with observations
Mecl,max,loc local Mecl,max used to compare theory with observations
δt star formation time-scale proportional to K
SFR star formation rate used to calculate the normalization constant K
LSFR local star formation rate proportional to K in the local case
ΣSFR proportional to K in the local, infinitesimal case
MU theoretical most massive cluster physically possible upper limit for Mecl in a galaxy

MU,loc local MU upper limit for Mecl at r
Mecl,t auxiliary variable needed together with MU,loc to calculate Mecl,max,loc:

there is exactly one cluster of mass Mecl,max,loc

between Mecl,t and MU,loc

ξiecl integrated embedded cluster mass function : dN
dMecl

parameter studied in this paper

Rgal radius of the star forming area upper limit for r

R′ maximal theoretical galactocentric distance for a cluster necessary to change the r-dependence into a mass dependence

rd disk scale length necessary to describe the exponential galactic disk

Mvyc,max observationally derived maximal very young cluster mass a good approximation for Mecl,max

WKL Weidner, Kroupa & Larsen (2004) gets cited often in this paper
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