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ABSTRACT
We present results from the 2D anisotropic Baryon Acoustic Oscillation (BAO) signal
present in the final dataset from the WiggleZ Dark Energy Survey. We analyse the
WiggleZ data in two ways: firstly using the full shape of the 2D correlation function
and secondly focussing only on the position of the BAO peak in the reconstructed data
set. When fitting for the full shape of the 2D correlation function we use a multipole
expansion to compare with theory. When we use the reconstructed data we marginalise
over the shape and just measure the position of the BAO peak, analysing the data in
wedges separating the signal along the line of sight from that parallel to the line of
sight.

We verify our method with mock data and find the results to be free of bias or
systematic offsets. We also redo the pre-reconstruction angle averaged (1D) WiggleZ
BAO analysis with an improved covariance and present an updated result. The final
results are presented in the form of Ωch

2, H(z), and DA(z) for three redshift bins with
effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we
recover constraints between 5% and 22% error. Our cosmological constraints are con-
sistent with Flat ΛCDM cosmology and agree with results from the Baryon Oscillation
Spectroscopic Survey (BOSS).

c© 2016 The Authors
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1 INTRODUCTION

Modern cosmological observations have given strict con-
straints on cosmological parameters and model viability, and
indicate a late time accelerated expansion of the universe
(Riess et al. 1998; Perlmutter et al. 1999; Spergel et al. 2003;
Riess et al. 2004; Tegmark et al. 2004; Sánchez et al. 2006;
Spergel et al. 2007; Komatsu et al. 2009; Riess et al. 2009;
Percival et al. 2010; Reid et al. 2010; Blake et al. 2011c).
Determining the cause of this accelerating expansion is one
of the foremost problems in cosmology. Continued efforts to
measure the expansion history of the universe and growth of
structure within it will allow differentiation between many
proposed models such as those that invoke “dark energy”
and those that invoke a modification to general relativity
(Sánchez et al. 2012). One area of rapid development is us-
ing Baryon Acoustic Oscillations (BAO) measured in the
large scale structure of the universe to provide a robust
and precise measurement of the history of the universe’s
expansion rate and size (Eisenstein & Hu 1998; Blake &
Glazebrook 2003; Hu & Haiman 2003; Linder 2003; Seo &
Eisenstein 2003). Analysis of the BAO signal has been per-
formed on several cosmology surveys, providing tight con-
straints on cosmological parameters (Eisenstein et al. 2005a;
Percival et al. 2007; Gaztañaga et al. 2009; Percival et al.
2010; Blake et al. 2011b,c; Sánchez et al. 2013; Anderson
et al. 2014a). The constraints BAO measurements provide
are highly complementary to, and can be used in conjunction
with, constraints derived from measurements on the Cosmic
Microwave Background (CMB; Bennett et al. 2003; Planck
Collaboration et al. 2014), weak lensing (Van Waerbeke et al.
2000; Wittman et al. 2000; Kaiser et al. 2000), and super-
nova data (Kowalski et al. 2008; Kessler et al. 2009; Betoule
et al. 2014).

Here we assess the 2D galaxy correlation function, which
groups pairs of galaxies by their angle with respect to the
line of sight. The correlation function of galaxy pair separa-
tions along the line of sight is most sensitive to the Hubble
parameter, H(z), and perpendicular to the line of sight is
more sensitive to the angular diameter distance, DA(z).

Decomposing the BAO signal into the line of sight and
tangential components has only recently become possible
(Gaztañaga et al. 2009; Xu et al. 2013; Anderson et al.
2014b,a). In addition to fitting for the 2D BAO signal in
the full shape of the galaxy correlation function (including
BAO), reconstruction techniques have recently been utilised
to recreate a stronger BAO peak at the expense of marginal-
ising over the broad shape (Padmanabhan et al. 2012; Kazin
et al. 2014).

In this paper we analyse the 2D BAO signal using both
techniques on the WiggleZ Dark Energy Survey data. In
detail we:

(i) Model the multipole correlation function: We
use the full shape information in the correlation function
by modelling its multipoles and fitting it to multipole data
extracted from the WiggleZ survey. This uses the maximal
information in the correlation function, but does not include
reconstruction and therefore has a weaker BAO peak.

(ii) Use reconstruction and only measure the BAO
peak: We perform reconstruction on the WiggleZ data,
which recovers a correlation function with a much stronger
BAO peak, but loses the shape information. We therefore

marginalise over the shape information and only use the
peak itself as a standard ruler.

In this paper Section 2 begins by describing the WiggleZ
data and WizCOLA simulations we utilise, and details rel-
evant previous studies that make use of the datasets. Then
in Section 3 we construct a theoretical model of the full
2D correlation function and we decompose that correlation
function into our two summary statistics — multipole expan-
sion and wedges. Section 4 evaluates those models against
the WizCOLA simulations, and Sections 6 and 7 use the
multipole and wedge models to extract cosmological param-
eters from the unreconstructed and reconstructed WiggleZ
data respectively. In Section 8 we place these results into
the larger cosmological context by incorporating the results
from other surveys & other methodologies, and present final
conclusions.

2 THE WIGGLEZ DARK ENERGY SURVEY

The WiggleZ Dark Energy Survey was carried out between
2006 to 2011 at the Australian Astronomical Observatory
over the course of 276 nights (Drinkwater et al. 2010).
The survey measured redshifts of 225 415 galaxy spectra,
targeting blue emission-line galaxies in a redshift range of
0.2 < z < 1.0. The target selection function is summarised
in Blake et al. (2011b), and explained in detail in Blake et al.
(2010).

A variety of analyses have already been conducted on
the WiggleZ dataset. The one dimensional BAO signal was
analysed for a subset of WiggleZ data in Blake et al. (2011b),
and this analysis was refined by both including the full sur-
vey data and subdividing the data into redshift bins in Blake
et al. (2011c). A final analysis of the 1D BAO signal involv-
ing reconstruction of the BAO peak was performed by Kazin
et al. (2014).

Analyses of the 2D data have also been performed on
WiggleZ data, but not yet on scales large enough to include
the BAO peak. Blake et al. (2011a) and Contreras et al.
(2013) use redshift space distortions to measure the rate
of growth of structure, while Blake et al. (2011d) used the
Alcock-Paczynski test on galaxy clustering as a standard
sphere to measure expansion history. Cosmological results
from the WiggleZ papers were combined with other sur-
veys and datasets in Parkinson et al. (2012) and analysis of
the overlap regions wit the Baryon Oscillation Spectroscopic
Survey (BOSS) were completed in Beutler et al. (2016) and
Maŕın et al. (2016).

One investigation that has not been undertaken with
the WiggleZ data is a two dimensional analysis of the BAO
signal. As the survey meets the criteria for being able to de-
tect the 2D BAO signal – volumes of order 1 Gpc3 with order
of 105 redshifted galaxies (Tegmark 1997; Blake & Glaze-
brook 2003; Blake et al. 2006) – we present that analysis
in this paper. The high-redshift range and low-bias galaxy
selection of the WiggleZ survey makes such an analysis a
useful consistency check on larger current surveys such as
BOSS (Anderson et al. 2014a).

This analysis is motivated by two recent improvements
to the WiggleZ survey data. The first improvement is that re-
construction has now been performed to remove some of the
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Figure 1. The WizCOLA simulation mean data (Kazin et al. 2014; Koda et al. 2016) (both pre-reconstruction multipoles and post-

reconstruction wedges), unreconstructed WiggleZ multipoles, and reconstructed WiggleZ wedges shown in four respective columns. Rows
represent different redshift bins in the data. For the multipole data, the monopole contribution and quadrupole contribution are shown

in blue circles and green diamonds respectively. For the wedge data, we show the transverse component (blue circles) and line-of-sight

component (green diamonds). Uncertainty is determined by looking at simulation variance over 600 realisations of fiducial cosmology.
For details on multipole and wedge constructions of the 2D correlation function, see §3.

effect of peculiar velocities (Kazin et al. 2014), which sharp-
ens the BAO peak and thus makes it easier to measure in the
2D correlation function (previous analyses had amplified the
signal by averaging the information across all angles). The
second improvement is the creation of accurate mock cata-
logues from the WizCOLA simulations (Koda et al. 2016) for
both the pre- and post-reconstruction data. The simulations
provide more accurate covariance estimates than the log-
normal realisations used in the early analyses. We therefore
also revisit the pre-reconstruction angle-averaged (1D) con-
straints from the final WiggleZ survey and present updated
results. By fitting our theoretical models to the mock data
and recovering the correct cosmological model (the model
that was used to make the simulations) we are able to per-
form rigorous checks that our correlation function models

are sufficiently accurate, and optimise the range of scales
over which the theory is adequate to include in the fits. Fig-
ure 1 shows these improvements - detailing the galaxy cor-
relation function for the WizCOLA mean multipole data,
pre-reconstruction WiggleZ multipole data, and the post-
reconstruction WiggleZ wedge data.

3 THE 2D CORRELATION FUNCTION

3.1 Base Model — before reconstruction

For fits to the unreconstructed data, we fit against not just
the BAO peak, but also to the broad shape of the correla-
tion function. We begin the model with a linear power spec-
trum Plin(k), which is generated using the camb software
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created by Lewis et al. (2000). We limit our analysis to a
Flat ΛCDM cosmology, appropriate as the data are of insuf-
ficient strength to tightly constrain more parameters. We set
Ωch

2 as a free parameter, and fix other values to the Wiz-
COLA simulation fiducial cosmology in our analysis, such
that σ8 = 0.812, ns = 0.961, h = 0.705. We fix Ωbh

2 to
0.0226, as Ωbh

2 is well constrained by CMB data and vari-
ations even up to 5σ are negligible to the BAO model when
testing Flat ΛCDM cosmology. This value is consistent with
the WizCOLA simulation value Ωbh

2 = 0.02266.
We model the BAO peak smoothing caused by displace-

ment of matter due to bulk flows with a smoothing parame-
ter (Crocce & Scoccimarro 2008; Sánchez et al. 2008, 2009;
Blake et al. 2011b; Beutler et al. 2011). This smoothing pa-
rameter takes the form of a Gaussian dampening term which
reduces the amplitude of the BAO signal as a function of k:

Pdw(k) = e−k
2σ2

vPlin(k) + (1− e−k
2σ2

v )Pnw(k), (1)

where Pnw(k) is a power spectrum without the BAO sig-
nal. Whilst advances in renormalization perturbation the-
ory (RPT; Crocce & Scoccimarro 2008) allow a theoretical
determination of σv as

σ2
v =

1

6π2

∫
Plin(k) dk, (2)

however σv is set to a free parameter due to inaccuracies
in the theoretical determination from non-linear effects. It
is important to note that past studies have also used an
analogous term to σv, defining k∗ = 1/(

√
2σv).

In most studies the power spectrum without the BAO
signal present is generated using the tffit algorithm given
by Eisenstein & Hu (1998). Reid et al. (2010) investigated
an alternate method of generating a no-wiggle power spec-
trum from the linear camb power spectrum in which an 8
node b-spline was fitted to the linear power spectrum, con-
cluding the likelihood surfaces generated when fitting us-
ing splines and the algorithm from Eisenstein & Hu (1998)
agree well. For our work we introduce a new method to at-
tain a no-wiggle power spectrum Pnw(k) utilising polynomial
subtraction. For a comparison of this methodology against
the tffit algorithm supplied by Eisenstein & Hu (1998) or
spline fitting, please see Appendix A.

The non-linear effects of gravitational growth are incor-
porated by using halofit from Smith et al. (2003), which
generates a power ratio rhalo as a function of k

Pnl = Pdwrhalo. (3)

We take into account galaxy bias b and also follow Blake
et al. (2011b) who incorporate extra scale dependent bias de-
rived from the GiggleZ simulations, B(s), into to the model,
via

ξgalaxy(s) = B(s)b2ξ(s), (4)

where B(s) = 1 + (s/s0)γ , with s0 = 0.32h−1 Mpc and γ =
−1.36.

The Kaiser effect from coherent infall can be modelled
simply in Fourier space (Kaiser 1987):

Pnl(k, µ) = (1 + βµ2)2Pg(k), (5)

where Pg is the power spectrum of galaxy density fluctua-
tions δg, µ is the cosine of the angle to line of sight, and
β = f/b and f is the growth rate of growing modes in linear

theory. When reconstructing the BAO signal (see Padman-
abhan et al. 2012; Kazin et al. 2014, for details), the Kaiser
effect is corrected for and thus does not have to be inserted
into the cosmological model.

Peculiar velocity does not have to be coherent to affect
observational cosmology, and the random peculiar velocities
of galaxies in clusters, which are related to the cluster mass
via the virial theorem, create artifacts known as Fingers of
God. In the investigation of growth rate with WiggleZ data,
Blake et al. (2011a) adopts a Lorentzian model of velocity
dispersion with

Pgal =
1

1 + (kσV µ)2
Pnl(k, µ), (6)

where σV is the pairwise peculiar velocity dispersion and not
to be confused with the σv term accounting for BAO peak
damping. We adopt this in our analysis. For a more complete
treatment of the underlying model, see Hinton (2016).

3.1.1 Moving to a correlation function

The power spectrum and correlation functions are related
to each other via Fourier transform. One dimensional BAO
analyses generally look at the angle-averaged correlation
function, which is simply the monopole moment. A power
spectrum can be decomposed into its multipole components
via

P`(k) =
2`+ 1

2

∫ 1

−1

Pgal(k, µ) L` dµ (7)

where L` represents the `’th Legendre polynomial. These
multipole components can be turned into correlation func-
tions by Fourier transforming them, giving

ξ`(s) =
1

(2π)3

∫
4πk2 P`(k) j`(ks) (8)

where j`(ks) are spherical Bessel functions of the first kind.
The increased power of small scale oscillations from the non-
linear corrections decreases convergence of this function, so
we multiply the integrand by a Gaussian factor exp(−k2a2)
to improve convergence, where we found a = 0.5h−1Mpc to
be the optimal factor to improve computational speed while
maintaining accuracy (Hinton 2016). (The results are not
sensitive to the exact choice of a; Anderson et al. 2012, set
a = 1h−1Mpc.)

3.1.2 Multipoles and Wedges

It is impractical to fit the data to a full 2D correlation func-
tion, as the calculation of the covariance matrix is infeasible.
Instead one typically reduces the 2D information into a sim-
plified measure that encapsulates the essential anisotropy.
Two methods by which this can be done are wedges and
multipoles.

The wedges method splits the 2D correlation function
into wedges based on angle, and averages the correlation
function in that wedge. One could in principle have many
wedges, but for our data (and all previous data) the signal to
noise limits us to two wedges – one taking the half of the data
along the line of sight (µ ≥ 0.5), the other perpendicular to
it (µ < 0.5), where µ is the cosine of the angle with respect
to the line of sight. The multipole method decomposes the
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correlation function into multipoles – with the vast major-
ity of signal being found in the monopole and quadrupole
moments. For extended treatment of the mathematics, see
Kazin et al. (2012, 2013); Sánchez et al. (2013); Xu et al.
(2013).

In all cases we have used a fiducial cosmology to convert
observed right ascension, declination, and redshift into dis-
tances (separations) and thus generate the correlation func-
tion. So the variables we fit for are not the distances (sep-
arations) themselves, but rather the ratio of the distance
in the true model to the distance in the fiducial model.
This is achieved by scaling the model distances to give
stest = αsmodel.

Thus the primary variable we fit for is α. Depending
on which type of analysis we are performing, α relates to
distances in different ways. Blake et al. (2011b) show, for
example, the degeneracy lines between α and Ωm and how
they change depending on whether you fit to the correlation
function shape or power spectrum, or only the BAO peak.
When fitting to the BAO peak, the degeneracy direction lies
along a line of constant rs/DV (in the 1D case) where

DV =

[
(1 + z)2DA(z)2 cz

H(z)

]1/3

(9)

and rs is the sound horizon at drag epoch, given by

rs =
c√
3

∫ 1/(1+z)

0

da

a2H(a)
√

1 + (3Ωb/4Ωγ)a
, (10)

with Ωγ = 2.469 × 10−5h−2 for Tcmb = 2.725 K and
Ωr = Ωγ(1 + 0.2271Neff), where we utilise Neff = 3.04.
However, when fitting for the correlation function shape
the degeneracy direction lies along a line of constant A =
DV (z)

√
ΩmH2

0/zc, which was a parameter introduced by
Eisenstein et al. (2005a) for exactly that reason. Note that
A(z) does not depend on rs.

When we update the pre-reconstructed angle averaged
1D measurement of Blake et al. (2011c) we fit for

α =
DV (z)

D′V (z)
, (11)

with the prime denoting the value from fiducial cosmology.
For the multipole expansion used in the 2D pre-

construction fits, we fit a scaling factor α and warping pa-
rameter ε such that

α(1 + ε)2 ≈ α(1 + 2ε) ≈ H ′(z)

H(z)
(12)

α(1 + ε)−1 ≈ α(1− ε) ≈ DA(z)

D′A(z)
. (13)

In summary, our model generates a linear power spec-
trum, with input parameter Ωch

2. The damping term
k∗ (equivalently σv), galaxy bias b2, growth rate β, and
Lorentzian factor σV are marginalised over, leaving final con-
straints in the form of Ωch

2, α and ε.

3.2 Base model — after reconstruction

Eisenstein et al. (2007) proposed that the “blurring” of the
baryon acoustic peak due to the large-scale coherent mo-
tion of galaxies could be partially remedied by a procedure
of “linear reconstruction,” in which the displacement field

~ψ is estimated from the observed density field using linear
theory, and used to retract galaxies by −~ψ to an approx-
imation of their initial position. In Kazin et al. (2014) we
applied density-field reconstruction to the WiggleZ Survey
data, and demonstrated that it resulted in a sharpening of
the acoustic peak in the angle-averaged correlation function
and thereby in improved distance constraints, with consis-
tent behaviour found in mock catalogues. We overcame edge
effects and holes within the survey by applying a Weiner-
filtering procedure similar to that presented in Padmanab-
han et al. (2012). For full details of the procedure please
refer to §2.3 in Kazin et al. (2014).

We now examine the anisotropic baryon acoustic peak
signature present in the reconstructed WiggleZ density field,
marginalizing over the broadband shape information. A full
description of our procedure is given in our previous analysis
of the SDSS DR9 CMASS galaxies Kazin et al. (2013, see
§5.3). In brief, we measured the correlation function of the
reconstructed data in two “clustering wedges”.

We fitted the data assuming a BAO template including
quasi-linear corrections based on the renormalized perturba-
tion theory of Crocce & Scoccimarro (2008). This template
is distorted in the tangential and radial directions by param-
eters α⊥ and α‖ which are given by

α⊥ ≈
DA(z)r′s
D′A(z)rs

, (14)

α‖ ≈
H ′(z)r′s
H(z)rs

, (15)

where the rs term is present (unlike in the pre-reconstruction
α) due to the degeneracy direction of fitting only for the
BAO peak.

We assume a flat prior in (α⊥, α‖) between 0.5 and 1.5.
For each clustering wedge we also marginalized over an am-
plitude parameter and the coefficients of three additive poly-
nomial terms, producing a 10-parameter model. We explore
the parameter space using MCMC chains, and present re-
sults for (α⊥, α‖), marginalizing over the other 8 parameters.

4 VALIDATION OF UNRECONSTRUCTED
MULTIPOLE ANALYSIS

To validate our model we employ several tests. Firstly we
compare it to past analyses (the 1D WiggleZ results) and
then in more detail to simulated data (WizCOLA). Follow-
ing that we test two methods by which to combine the in-
formation in the different redshift bins.

4.1 Validation against prior WiggleZ analyses

We use our model to repeat the 1D BAO analysis using the
WiggleZ unreconstructed dataset over the same data range
utilised by Blake et al. (2011b) and Blake et al. (2011c):
10 < s < 180h−1Mpc. Our model is very similar to the one
used by Blake et al. (2011c), but differs from theirs by imple-
mentation (MCMC methods in comparison to a grid search),
dewiggling methodology, covariance matrix, and choice of
statistical measures reported (we use maximum likelihood
statistics, as opposed to mean statistics used in Blake et al.
2011b). The most important difference in the analysis is that
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Figure 2. Likelihood surfaces when fitting the 1D BAO signal

from WiggleZ using the new WizCOLA covariance matrices. Pa-
rameters b2, β, and σV are marginalised over, with σv set to

5h−1 Mpc. The three redshift bins, 0.2 < z < 0.6, 0.4 < z < 0.8

and 0.6 < z < 1.0 are shown in blue, red and green respectively.
Dashed lines represent the values of fiducial cosmology.

we use the improved knowledge of covariances from the Wiz-
COLA simulations (as compared to the lognormal realisa-
tions used in Blake et al. 2011c).

We first fit using σv as a free parameter, and find-
ing σv unconstrained, fix it to a specific value. We fix
σv = 5h−1 Mpc, which is approximately its theoretically ex-
pected value. This gives tighter constraints due to the fewer
degrees of freedom, and does not bias results since the fit
is insensitive to the value of this parameter (mean param-
eter deviation between fixing σv and fitting for σv was less
than 0.05σ). The likelihood surface for our fits can be seen
in Figure 2, and our results are compared in Table 1.

We see that most results follow closely those obtained in
Blake et al. (2011c), however the result of Ωmh

2(zeff = 0.73)
shifts by more than 1σ. This shift increases the value of
Ωmh

2(zeff = 0.73), bringing it into agreement with the Ωmh
2

determination from the other redshift bins. These shifts were
confirmed to be due to the change in covariance matrix and
not any difference in changes to the modeling process, as
rerunning the same fit using the original lognormal reali-
sations bought the deviation to below 0.5σ. Comparisons
against fits using the WizCOLA covariance and lognormal
covariance indicate in all redshift bins that the dominating
contribution in fit difference is due to the improved covari-
ance.

4.2 Fitting range

Before fitting our model correlation function to the data, we
need to assess the range of scales over which the data are
useful. We expect the model to do poorly at small distances
(where non-linearities are strong), while the data’s sample

variance increases at large distances. So there will be an op-
timal range of scales over which to fit the data, and that
range will be dependent on the data set (less biased tracers
can go to smaller scales, larger volume data sets can go to
larger scales). We determined our optimal fitting range us-
ing simulations (see §B) and conclude that a data range of
25 < s < 180h−1Mpc allows maximum utilisation of avail-
able data without introducing bias into our model.

4.3 Validating the multipole expansion model
against WizCOLA data

To validate our model we test it against the WizCOLA sim-
ulations. WizCOLA used known survey geometry and an
underlying fiducial cosmology to simulate 600 realisations of
the WiggleZ survey, where the fiducial cosmology is parame-
terised by Ωm = 0.273, ΩΛ = 0.727, Ωb = 0.0456, h = 0.705,
σ8 = 0.812 and ns = 0.961 following WMAP cosmology
(Komatsu et al. 2009). Putting this in terms of Ωch

2, we
have Ωch

2 = 0.113. We fit against these individual realisa-
tions and compare the distribution of our recovered results
to the known fiducial cosmology, and also fit to the mean of
all 600 simulations to create a single high quality dataset,
where the standard deviation of the data was reduced by a
factor of

√
600 as the simulations are independent.

As the cosmology used in the WizCOLA simulations
is identical to the fiducial cosmology values used to extract
data from the WizCOLA simulations, we do not expect to
observe anisotropic warping when fitting to the simulation
realisations. As such, we can validate our model by ensur-
ing that it recovers α = 1.0 and ε = 0.0 when fitting the
WizCOLA correlation functions.

Prior analyses have found poorly constrained values for
σv (Blake et al. 2011b) using WiggleZ data, and to validate
that the bounds applied to σv in prior analyses were not in-
fluencing or biasing fits, we take the mean realisation dataset
(with its increased data strength) and fit to log(k∗) instead
of σv, where the shift into log scale allows us to check values
typically outside of allowed prior ranges. Thus we can con-
firm if the best-fitting log(k∗) value (and associated value
of σv) fall within the predictions of current theory and past
priors. Final parameter constraints are detailed in Table 2.

For all redshift bins, our best fits recovered the fiducial
parameters well within the 1σ uncertainty limit. We can also
see that, looking at the mean value of the determined val-
ues for log(k∗) = −2.10, this gives a σv = 5.77h−1 Mpc,
which is in the magnitude expected by the theory given in
equation (2) and the values found in Blake et al. (2011c)
and Blake et al. (2011b). Within the range σv ∈ [0, 10], we
find no significant difference in χ2 values, indicating that
σv is not tightly constrained within theoretically predicted
ranges. Fixing σv = 5h−1 Mpc, as we did in the 1D exam-
ple, has negligible effect on the cosmological parameters of
interest, and therefore we do that for the rest of our analysis.

Some past surveys have included hexadecapole terms
in the multipole analysis (Xu et al. 2013). In order to test
the significance of the hexadecapole term, we ran the above
analysis with and without it. We find that the statistical un-
certainty dominates any loss of information contained in the
hexadecapole signal. Due to computational constraints and
the low impact of the term, the hexadecapole contribution
was left out of the final model.
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Table 1. A comparison between the fits found in this analysis and those found in Blake et al. (2011c). These analyse the same data,

but this analysis uses a slightly different model and an improved covariance matrix. The results given in Blake et al. (2011c) use mean

statistics, whilst we utilise maximum likelihood statistics, but the dominant difference comes from the improved covariance matrix. We
convert our fit results from Ωch2 to Ωmh2 for a direct comparison, using our fixed fiducial value of Ωbh

2.

Sample zeff Blake et al. (2011c) This analysis

χ2/DoF Ωmh2 α χ2/DoF Ωmh2 α

0.2 < z < 0.6 0.44 0.88 0.143± 0.020 1.024± 0.093 1.01 0.143± 0.017 1.07+0.13
−0.09

0.4 < z < 0.8 0.60 0.78 0.147± 0.016 1.003± 0.065 0.85 0.151+0.017
−0.014 1.00+0.09

−0.08

0.6 < z < 1.0 0.73 1.05 0.120± 0.013 1.113± 0.071 1.22 0.138+0.012
−0.015 1.10+0.09

−0.10

Table 2. Recovered parameter constraints when fitting to the combined 600 realisations of the WizCOLA simulation data multipoles,

where the uncertainty given by the WizCOLA simulations has been reduced by a factor of
√

600 to account for the independent nature

of each mock. Minimum χ2 values correspond to 39 DoF.

Sample zeff min χ2 Ωch2 α ε log(k∗)

0.2 < z < 0.6 0.44 12.0 0.112+0.005
−0.006 1.006+0.023

−0.022 0.002+0.016
−0.016 −2.18+0.22

−0.20

0.4 < z < 0.8 0.60 8.6 0.114+0.005
−0.004 1.004+0.017

−0.016 0.005+0.012
−0.010 −2.05+0.20

−0.17

0.6 < z < 1.0 0.73 10.8 0.113+0.005
−0.005 1.006+0.021

−0.018 0.007+0.015
−0.012 −2.07+0.26

−0.23

Input 0.113 1.0 0.0

0.15 0.00 0.15 0.30

ε

0.6

0.8

1.0

1.2

1.4

α

0.04 0.08 0.12 0.16 0.20

Ωch
2

0.15

0.00

0.15

ε

0.8 1.0 1.2

α

0.2<z<0.6

0.4<z<0.8

0.6<z<1.0

Figure 3. Maximum likelihood Ωch2, α and ε values from Wiz-

COLA realisations of the WiggleZ multipole data are shown in

the bottom left corner plots. Dashed black lines indicate simula-
tion parameters, and the solid black distributions in the diagonal
subplots represent the final distribution across all bins for the

specific parameter.

We can perform a validation of the multipole method-
ology by fitting to individual realisations of the WizCOLA
simulation instead of the mean data set. The results are
shown in Figure 3, which confirms that the recovered pa-
rameter distribution matches the simulation.

For small ε, cosmological parameters can be extracted
via Eq. 12 and Eq. 13.

Figure 4. Correlations between final cosmological parameters

when fitting to the three redshift bins of each WizCOLA simu-
lation for the multipole data. The subscript numbers after each

parameter are used to denote the redshift bin, with 0, 1, and 2

respectively denoting the 0.2 < z < 0.6, 0.4 < z < 0.8, and
0.6 < z < 1.0 bins.

4.4 Combining redshift bins for multipole data

The data present in the WizCOLA simulations and the
final WiggleZ dataset is available in three redshift bins,
0.2 < z < 0.6, 0.4 < z < 0.8, and 0.6 < z < 1.0. If these bins
were independent, we could obtain our final parameter con-
straints simply by combining the results for each individual
bin. However, the redshift bins that we have chosen overlap
and are thus correlated.

There are two methods we can use to combine the
binned data, and we utilise both methods in our multipole
analysis so that we can check they give consistent results.
The first method uses the correlation between final parame-
ter values, and the second method calculates the covariance
between the correlation function data points across all red-
shift bins and runs a separate fit that utilises all available
data simultaneously.
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Figure 5. Full data correlation matrices constructed for both the

multipole expression of the WizCOLA data. The b = 0, b = 1 and

b = 2 labels respectively refer to the redshift bins 0.2 < z < 0.6,
0.4 < z < 0.8 and 0.6 < z < 1.0. We can see that, even though

the b = 0 and b = 2 bins do not overlap, some faint correlation

still persists. This is expected, as data is generated using different
snapshots of the same initial conditions, and thus the same set of

modes are imprinted in both measurements.

4.4.1 First Method: Parameter Covariance

In order to determine final parametrisations across all red-
shift bins, the correlation between fit parameters from indi-
vidual redshift bins needs to be quantified and accounted for.
To do this, we fit individual realisations of the WizCOLA
simulation, and construct a 9×9 covariance matrix from the
peak likelihood fit values for parameters (Ωch

2, α and ε for
a multipole analysis), such that we construct,

Cij =
1

N − 1

N∑
n=1

(θi,n − θ̄i)(θj,n − θ̄j), (16)

where θ represents the list of parameters, such that θi,n rep-
resents the value of θi on the nth WizCOLA realisation.

θ =
{

Ωch
2(z = 0.44),Ωch

2(z = 0.60),Ωch
2(z = 0.73),

α(z = 0.44), α(z = 0.60), α(z = 0.73),

ε(z = 0.44), ε(z = 0.60), ε(z = 0.73)} .

Similarly to the covariance matrix, we can also calculate the
correlation matrix, defined as

Rij =
1

N − 1

N∑
n=1

(θi,n − θ̄i)(θj,n − θ̄j)
σiσj

, (17)

where σi represents the standard deviation of the ith param-
eter. The correlation matrix Rij determined from analysis
of the WizCOLA realisations is shown in Figure 4.

This covariance matrix can now be used to fit for a final
Ωch

2, α and ε, by minimising the χ2 statistic, given as,

χ2(Ωch
2, α, ε) = (Ωch

2 − Ωch
2
0,Ωch

2 − Ωch
2
1, ..., ε− ε2)T

C−1
ij (Ωch

2 − Ωch
2
0,Ωch

2 − Ωch
2
1, ..., ε− ε2),

(18)

Figure 6. Fits to the mean data of all 600 WizCOLA realisations

for the multipole expansion expression of the data. Fits using all
three bins simultaneously are shown as the “All data” fits, and

the combination of maximum likelihood parameters from 3 bins

using parameter covariance is shown as the“Combined” likelihood
surfaces. In all cases we recover simulation cosmology well within

1σ limits. The three redshift bins, 0.2 < z < 0.6, 0.4 < z < 0.8
and 0.6 < z < 1.0 are shown in blue, red and green respectively.

Dashed lines represent the values of fiducial cosmology.

where again the subscript indices on the Ωch
2, α and ε refer

to the redshift bins. In essence, we utilise the parameters
fitted to each bin as datapoints in a secondary model, which
we minimise with respect to the final parameters Ωch

2, α
and ε.

4.4.2 Second method: All data covariance

The covariance matrices utilised so far in our analysis have
been supplied from the WizCOLA simulations, and give data
covariance inside each redshift bin. However, also having
the 600 WizCOLA realisations, we can reconstruct a full
covariance matrix to give the covariance between values of
the correlation function across redshift bins. The correlation
matrices for the multipole data are shown in Figure 5.

When using the full data covariance to simultaneously
fit all three redshift bins, a further question becomes whether
marginalisation parameters b2, β, σv, and σV should be free
between redshift bins, or consistent across them.

From a physical motivation, we expect the bias param-
eter b2 to be dependent on redshift bin. This is because we
only observe the most massive, luminous galaxies at high
redshift, which have higher bias than the less massive galax-
ies we can see at lower redshifts. However, when performing
fits, b2 and β are well constrained, whilst σv and σV are
not. As this implies that those two parameters do not sig-
nificantly contribute to the likelihood calculations, it is un-
known if setting σV free between bins will have a noticeable
benefit.
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To investigate this, we ran fits to the combined Wiz-
COLA data where we set no nuisance parameters free be-
tween redshift bins, when we only set b2 free, when we set
all but b2 free, and then when we set all four nuisance pa-
rameters free. These fits indicate a strong preference for fit-
ting with separate b2 values in different redshift bins due
to tighter constraints achieved, and an accompanying small
improvement in χ2. However allowing the other nuisance
parameters to vary between redshift bins has negligible ben-
efits (it neither decreases the uncertainty in parameter fits
nor removes bias), and adds computational time in the form
of delayed chain convergence.

Based on these results, we utilise independent b2 values,
whilst fixing β, σv, and σV between bins when fitting with
the full data set and full data covariance.

4.5 Multipole model testing conclusions

A graphical comparison of fits to the mean WizCOLA data
for individual redshift bins, all data fits, and combining bin
parameters can be found for the multipole data format in
Figure 6. The results are consistent between bins, and be-
tween methods of combining bins, and all are consistent with
the input cosmology. We therefore conclude that our model
can accurately be used to derive cosmological constraints
from WiggleZ-like data. The results with real data are pre-
sented in Section 6, but before presenting these results we
continue our validation testing, now on the reconstructed
data.

5 VALIDATING RECONSTRUCTED WEDGE
DATA

For the reconstructed data that we analyse in wedges we
also tested our procedure using the WizCOLA mock cat-
alogues. We focus here on results from the mocks of the
∆zFar redshift slice, which are representative of the be-
haviour in all redshift bins. In Figure 7 we present the best-
fitting values of α‖ and α⊥ from each of the 600 simula-
tions, and in Figure 8 we show the corresponding uncer-
tainties. Post-reconstruction data fitting ranges follow Kazin
et al. (2014), with bin separations of 6.7h−1 Mpc and fit-
ting range s > 50h−1 Mpc. The uncertainties are typically
large, indicating a marginal detection of the baryon acous-
tic peak in the clustering wedges. This motivated us to con-
sider, in addition to the 50% priors on α‖ and α⊥ men-
tioned above, additional flat priors on their combination,
which we parameterize as α = α

2/3
⊥ α

1/3

‖ ∝ D2
Ar
′
s/(Hrs) and

ε = (α‖/α⊥)1/3− 1 ∝ 1/(DAH). The α parameter is mostly
sensitive to the monopole and ε to the quadrupole, although
both terms appear in all multipoles (see Padmanabhan &
White 2008, for a discussion). In the final analysis we ap-
plied a 15% flat prior on ε, which is marked by the red
dot-dashed lines in Figure 7. We did not apply a prior in α,
but for illustration we show the ±25% threshold as the blue
dashed lines in Figure 7. We selected from the 600 realiza-
tions those that have a significance of BAO detection equal
to or greater than that in the real dataset (2.9σ). We find 87
such mocks (15%; marked as large blue circles). In Figure 8
we also show our WiggleZ ∆zFar result with a yellow star.

Many WiggleZ mock realizations do not permit good

Figure 7. WizCOLA simulation fits for the redshift 0.6 < z < 1

bin using the wedge data. The large blue circles (87/600) are

realizations that have a significance of detection of 2.9σ (as the
observation) or higher. The red circles are below this threshold.

The red dot-dashed lines mark the ±15% value of the fiducial ε

which we use as a flat prior in this calculation. The dashed blue
lines mark ±25% of the fiducial α, but are just for visualisation

as we did not apply these as a prior. The thicker lines indicate

the higher values of the α and ε limits.

constraints on both α⊥ and α‖. However, for the subset of
realizations with similar detection significance to the Wig-
gleZ data, we find that our procedure enables us to extract
unbiased distance measurements, with median and standard
deviations 〈α⊥〉 = 1.001±0.081 and 〈α‖〉 = 1.00±0.15. The
median and standard deviation of the errors in these param-
eters, for this subset of mocks, are < σα⊥ >= 0.052± 0.037
and 〈σα‖〉 = 0.107±0.061. Similar results are obtained when

analyzing mocks at ∆zMid and ∆zNear. In all cases, the re-
sults for the WiggleZ data are consistent with the range
covered by the simulations.

We now consider the degree to which our 15% prior
in ε impacts the model-independence of our results. Using
MCMC chains based on Planck temperature and WMAP
polarization data, we found that the scatter in ε at our red-
shifts of interest was 2.0% for a flat ΛCDM model and 2.5%
for an owCDM model. We hence argue that our much larger
15% prior does not significantly compromise our model-
independence.

6 UNRECONSTRUCTED MULTIPOLE
RESULTS

Using the methodology outlined in Section 4 we fit to the
final unreconstructed WiggleZ dataset from Kazin et al.
(2014) – firstly fitting in each individual redshift bin and
combining the results (Sect. 4.4.1), and secondly fitting all
redshift bins simultaneously (Sect. 4.4.2). The final distri-
butions are given in Table 3 and illustrated in Figure 9. The
two methods give consistent results.

The conversion from α and ε to DA(z) and H(z) is
given by equations (12) and (13). Using these relationships,
we formulate parameter constraints. Figure 10 displays the
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Figure 8. Uncertainty on the WizCOLA simulation fits for the
redshift 0.6 < z < 1 bin using the wedge data. The large blue

circles are realizations that have a significance of detection of 2.9σ
(same as the observation) or higher. The red circles are below this

threshold. For comparison, the star is our WiggleZ result.

Figure 9. Likelihood surfaces and marginalised distributions of

Ωch2, α and ε for the WiggleZ multipole expression of the data.

The three redshift bins, 0.2 < z < 0.6, 0.4 < z < 0.8 and 0.6 <
z < 1.0 are shown in blue, red and green respectively. Combining
the fits of these three bins is shown as the purple “Combined”
surface, and fitting for all the data simultaneously is shown in
yellow. Dashed lines represent the values of fiducial cosmology.

WiggleZ monopole and quadrupole data with the best fitting
model overplotted in the three redshift ranges investigated.
Baryonic acoustic peak signatures are present in all three
redshift bins.

To determine the significance of the BAO peak detected
in our analysis, we reran the multipole analysis with a model
devoid of the BAO peak and converted the ∆χ2 into a de-
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Figure 10. WiggleZ pre-reconstruction 0.2 < z < 0.6 (upper),

0.4 < z < 0.8 (mid), 0.6 < z < 1 (lower) monopole ξ0 (blue),

quadrupole ξ2 (red) and best-fit models.

tection significance, which we found to be just over 2σ in all
redshift bins. The low significance of the BAO peak is ex-
pected: the 1D BAO analysis from Blake et al. (2011b) found
a significance of 3.2σ when using all data in one combined
bin, while our analysis used the data divided over three bins,
and includes extra parameters to model angular dependence,
so it is expected the statistical significance of the BAO peak
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Figure 11. WiggleZ post-reconstruction 0.2 < z < 0.6 (upper),

0.4 < z < 0.8 (mid), 0.6 < z < 1 (lower) clustering ξ|| (line-
of-sight; red circles), ξ⊥ (transverse; blue squares) and best-fit

models.

would decrease. The analysis in Blake et al. (2011c), which
utilised three redshift bins, the same as our analysis, found
statistical significances between 1.9σ and 2.4σ, consistent
with our results.

7 RECONSTRUCTED RESULTS

Figure 11 displays the clustering wedges ξ⊥(s) (transverse
wedge µ < 0.5; blue squares) and ξ‖(s) (line-of-sight wedge
µ > 0.5; red circles) in the three redshift ranges investigated

∆zNear, ∆zMid, and ∆zFar. We overplot best-fitting models
for which we calculated χ2 = 35.3, 24.8, and 34.4, respec-
tively, with 36 degrees of freedom. We see baryonic acoustic
peak signatures in both ξ⊥ and ξ‖ for the z = 0.60 and
z = 0.73 redshift bins. The fluctuations from zero at large
scales are consistent with the characteristic sample variance
seen in the WizCOLA simulations.

Figure 12 displays the posterior probability distribu-
tions of cz/(H rs) and DA/rs. In the 2D panels the solid red
contours indicate 68% and 95% confidence level regions, and
we indicate a Gaussian approximation in each panel based
on the statistics of the full probability distributions. It is ap-
parent that the BAO-only analysis of the ∆zFar and ∆zMid

samples yield reasonable distance constraints, whereas the
data in the ∆zNear bin lacks the constraining power needed
to draw significant conclusions. Table 4 lists our resulting
measurements of DA/rs and cz/(H rs).

To quantify the significance of detection of the
anisotropic baryonic feature in the WiggleZ clustering
wedges we compared χ2 results obtained with best-fit models
using a ΛCDM-based template and a “no-wiggles” template
(∆χ2 ≡ χ2

min,no−wiggle − χ2
min,ΛCDM). In this procedure, for

each model we vary Hrs and DA/rs and marginalize over
all other shape parameters, as explained in detail in §6.1 of
Kazin et al. (2013). We find that the significance of detec-
tion, defined as

√
∆χ2 to be 1.6, 2.7, and 2.9 for ∆zNear,

∆zMid, and ∆zFar, respectively. Applying our pipeline to
the WizCOLA simulations, we find our results are consis-
tent with the range of expectations.

The results we find fitting the reconstructed wedges
are consistent with both prior WiggleZ studies, BOSS con-
straints from Anderson et al. (2014a), and Planck cosmology
(Planck Collaboration et al. 2015), as illustrated in Figure
13.

8 DISCUSSION AND CONCLUSION

We have presented the first measurement of the 2D BAO
signal in the WiggleZ Dark Energy Survey data (Kazin
et al. 2014), where we fit for the cosmological parameters
Ωch

2, DA(z), and H(z) for the three redshift bins z ∈
[0.44, 0.60, 0.73]. Our final pre-reconstruction constraints ap-
pear in Table 3. These results are consistent with the Flat
ΛCDM cosmology derived from best-fitting Planck cosmo-
logical values and with previous large-scale structure mea-
surements. Post-reconstruction results can be found in Table
4, and are also consistent with best-fitting Planck cosmol-
ogy. Pre- and post-reconstruction results are consistent, with
there only being slight tension (< 2σ) between results in
the z = 0.60 redshift bin. However, as the fitting methods
make use of different data (full shape vs BAO peak), and the
post-reconstruction likelihoods are highly non-Gaussian (as
evidenced by Figure 12), the disagreement is smaller than
the error bars might suggest, and is within the bounds of
reasonable statistical fluctuation.

The constraints given by this analysis provide an
important high-redshift consistency check against BOSS
results as given in Anderson et al. (2014b), who re-
ported for their z = 0.57 redshift bin, constraints of
DA = (1421 ± 20 Mpc)(rd/rd,fid) and H = (96.8 ±
3.4 km s−1 Mpc−1)(rd/rd,fid). We find results consistent with
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Table 3. Final parameter constraints from fitting the 2D BAO signal in the pre-reconstruction WiggleZ multipole correlation function.
Minimum χ2 values correspond to 39 DoF. DA(z) given in units of Mpc, and H(z) is presented in km s−1 Mpc−1. Correlation values are

given in Appendix C.

Sample zeff D′A(z) H′(z) χ2 Ωch2 α ε DA(z) H(z) BAO peak significance

0.2 < z < 0.6 0.44 1175.5 87.4 55.0 0.117+0.029
−0.023 1.07+0.10

−0.10 −0.03+0.07
−0.10 1330± 150 85+19

−12 2.2σ

0.4 < z < 0.8 0.60 1386.2 95.5 69.3 0.156+0.035
−0.028 0.98+0.08

−0.10 0.05+0.07
−0.10 1280+190

−160 91+15
−14 2.1σ

0.6 < z < 1.0 0.73 1509.4 102.8 59.1 0.143+0.033
−0.026 1.00+0.08

−0.07 0.12+0.06
−0.05 1340+150

−130 80+9
−10 2.3σ

Table 4. Model-independent measurements using the post-reconstruction ξ||,⊥. The values quoted are the modes and the 68% CL

regions. The percentages indicate half of the 68% CL regions. r denotes the correlation between parameter fits. Values for the z = 0.44
bin are not reported as the data was insufficient to provide constraints and final surfaces were heavily dependent on choice of prior.In

the χ2 fitting we use 36 DoF. These results are displayed in Figure 13.

Fiducial Measured

zeff cz/(Hrs) DA/rs cz/(Hrs) DA/rs r χ2 BAO peak significance

0.60 12.27 9.03 11.5+1.3
−1.6 (13%) 10.3+0.4

−0.5 (5%) -0.16 25 2.7σ

0.73 13.87 9.84 15.3+2.1
−1.8 (13%) 9.8+1.1

−0.4 (7%) -0.36 35 2.9σ

the BOSS analysis, and show the BOSS constraints along-
side our constraints and Planck cosmology in Figure 13. Dur-
ing the preparation of this manuscript, BOSS released a new
analysis in Alam et al. (2016), which are also consistent with
the results we find. The larger uncertainty in our measure-
ments compared to the BOSS is as-expected from the rela-
tive sizes of the data sets. Nevertheless our results show that
using a different type of galaxy tracer with much lower bias
(bright blue galaxies as opposed to luminous red galaxies),
we recover the same standard cosmological model.

The main results of this analysis can be summarised as
follows:

• We update the unreconstructed 1D BAO measurement
from Blake et al. (2011c) using a more accurate covariance
matrix based on WizCOLA mocks instead of lognormal real-
isations. The new best-fit parameters are consistent with the
original measurements, with the maximum shift occurring
in the highest redshift bin, whose value moved by slightly
over 1σ bringing it closer in line with the other two bins.
See Table 1 for results. Our results represent the final 1D
BAO measurement using the unreconstructed WiggleZ data.
The most precise 1D BAO measurement from WiggleZ uses
the reconstructed WiggleZ data as found in Kazin et al.
(2014), which represents the final WiggleZ constraints from
an angle-averaged BAO analysis.

• We validated our methodology by fitting 600 realisa-
tions of the WiggleZ survey generated by the WizCOLA
simulations (Koda et al. 2016). Our analysis recovered the
input parameters of the simulation with no evidence for sys-
tematic bias. We also validate our methodology by testing
agreement of cosmological parameters when analysing the
1D BAO signal with Blake et al. (2011c).

• We thoroughly tested subtle methodological differences
that could possibly have effected our analysis, such as dif-
ferent ways to combine the data from redshift bins, varying
or fixing σv, or including the hexadecapole, which all gave
consistent results.

• We performed the first cosmological analysis using the
2D BAO measurement of WiggleZ data using both pre and
post reconstruction techniques. We detect the 2D BAO peak
at a significance of slightly over 2σ in each redshift bin
for pre-reconstruction results, and approximately 3σ for the

z = 0.6 and z = 0.73 redshift bins for the reconstructed
results, with the z = 0.44 bin unable to provide convincing
constraints. The best fit values of Ωch

2, H(z) and DA(z) for
the pre-reconstruction fits are shown in Table 3 and Fig. 9.
The results for H(z) and DA(z) for post-reconstruction fit-
ting are given in Table 4 and in Figures 12 and 13. These
results are consistent with previous WiggleZ results, BOSS,
and best fitting Planck cosmology.
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Figure 12. Marginalized posteriors of cz/(Hrs) and DA/rs
(red solid) obtained with WiggleZ post-reconstruction ξ⊥,|| in

the three redshift bins 0.2 < z < 0.6 (upper), 0.4 < z < 0.8

(mid), 0.6 < z < 1.0 (lower), using a flat prior on ε [-0.15,0.15].
The blue dashed lines are the Gaussian approximation when us-
ing the mode values, mean of the 68% CL regions and the cross-

correlation r. The 2D even contours are the 68% and 95% CL re-
gions and the thin gray dashed line marks the fiducial cosmology.

In the lowest redshift bin the data are not sufficient to constrain

these parameters well.
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Figure 13. The WiggleZ results of DA(z), H(z) and da/dt
for the pre-reconstruction results (dark blue circles) and post-

reconstruction results (light blue squares). This is plotted against

results from BOSS (both the results from Anderson et al. (2014a)
in green and Alam et al. (2016) in red), all with 68% CL re-
gions in the y-axis (and redshift range on the x). The thick

gray bands show the 1σ contour using Planck final constraints
(TT,TE,EE+lowP+lensing+ext) (Planck Collaboration et al.

2015). The dashed line indicates a cosmology with no acceler-

ation (assuming Planck H0).
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APPENDIX A: DEWIGGLING PROCESS

In the literature the tffit algorithm developed by Eisen-
stein & Hu (1998) is the most common method used to gen-
erate a power spectrum without the BAO feature. However,
the use of this algorithm necessarily constrains an analysis
to not only the precision of the algorithm, but also to the
cosmologies considered when the algorithm was developed.
Whilst most changes in cosmological models have been sub-
tle in the past decade, a quick inspection of the changelog for
CAMB1 (Lewis et al. 2000) shows over fifty software releases
since the publication of the tffit algorithm – representing
a continual divergence between CAMB and tffit as CAMB
continues to become more accurate and consistent with mod-
ern cosmological models, whilst tffit remains static.

Given these reasons, we decided to develop an alternate
method for generating a power spectrum without the BAO
feature present. Given the regular updating of the CAMB
software, a replacement algorithm would be most useful if
it was capable of taking a standard linear power spectrum
from CAMB and returning a filtered version, such that any
changes in future cosmology would be reflected in the no wig-
gle power spectrum simply due to its presence in the original
linear power spectrum from CAMB. To this end, several dif-
ferent methods of filtering power spectra were investigated,
implemented, and tested, and we summarise those efforts
here. For more detail see Hinton (2016).

A1 Comparison of methods

The BAO signal is present in the linear power spectrum
generated by CAMB in the form of small scale oscillations
after the main power peak, as illustrated in Figure A1.

Given the BAO signal is of small amplitude and re-
stricted periodicity, both polynomial data fitting, low order
spline interpolation, and frequency based filtering are all vi-
able candidates for investigation. We found that low-pass
and band-stop filters both failed because the strong broad
range signal present in the power spectrum means that sig-
nal remains present at all frequencies, and thus there were
no viable filters that extracted only the BAO signal. The

1 http://camb.info/readme.html
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two methods that were successful were polynomial regres-
sion and spline interpolation.

A1.1 Polynomial regression

Polynomial regression is a tried and tested method for deter-
mining broad shape in a given spectrum (Baldry et al. 2014).
The higher order the polynomial fit becomes, the better the
broad band shape extraction becomes, at the cost of eventu-
ally, as one keeps increasing the order, the polynomial model
becomes detailed enough it begins to recover BAO signal.
To counter this, one can introduce weights on the points,
where the data points in the range of the BAO wiggle are
down-weighted. To make this method more viable, a specific
k/h is not chosen as the centre point (as this strongly re-
moves our model independence), instead we can note that
the wiggle will appear approximately at the data peak, and
down weight this area using a Gaussian weighting function,
such that the weights supplied to the polynomial regression
take the form w = 1− α exp

(
−k2/2σ2

)
. Using this, we can

construct an array of polynomial fits where the polynomial
degree, Gaussian width and amount of down-weighting are
varied to determine the most effective construction to re-
move the BAO signal. In order to take advantage of the
smooth shape of the power spectrum in the log domain,
the polynomial regression is applied to the logarithm of the
power spectrum.

By comparing a wide array of parametrisations of poly-
nomial degree n, Gaussian width σ, and Gaussian weight
α, a final combination of n = 13, σ = 1, α = 0.5 was cho-
sen to act as the best choice for both strong BAO signal
subtraction and non-distortion of the original linear power
spectrum.

A1.2 Spline Interpolation

The final method of removing the BAO signal from the lin-
ear power spectrum investigated was using spline interpo-
lation. Similarly to the polynomial fits, it has the option
of being supplied relevant weights for each data point, and
thus a similar investigation as to weights was carried out for
spline interpolation as was carried out for polynomial fit-
ting. The spline fitting was found to be completely insensi-
tive to modified weights, but highly sensitive to the positive
smoothing factor s. A value of s = 0.18 compromises be-
tween BAO subtraction and low levels of distortion at high
k/h, as determined by minimising the difference between the
resultant spline model and the output of tffit. Spline inter-
polation was similarly investigated in Reid et al. (2010), who
found that use of a cubic b-spline with eight nodes fitted to
Plin(k)k1.5 produced likelihood surfaces in high agreement
with formula from Eisenstein & Hu (1998). In testing this
methodology for potential use, no benefit was found to come
from rotating the power spectrum via the k1.5 in our algo-
rithm. This was found for both tests using a univariate spline
and a b-spline, however the similarity between the results of
the different splines was such that only the univariate spline
is documented.

Table B1. A comparison of data fitting ranges found in prior

literatures.

Study Range (h−1Mpc)

Xu et al. (2012) 30 < s < 200

Sánchez et al. (2012) 40 < s < 200

Sánchez et al. (2009) 40 < s < 200
Gaztañaga et al. (2009) 20 < s

Chuang & Wang (2012) 40 < s < 120

Eisenstein et al. (2005b) 10 < s < 180
Blake et al. (2011b) 10 < s < 180

Kazin et al. (2012) 40 < s < 150

Blake et al. (2011b) 30 < s < 180
Blake et al. (2011b) 50 < s < 180

This work 25 < s < 180

A2 Selection of final model

Selecting the final method of dewiggling input spectra was
done via looking explicitly at how the spectra are used in cos-
mological fitting: they are transformed into correlation func-
tions and compared to observed data points. As such, the
chosen optimal configurations for the polynomial and spline
method were compared to tffit by performing a cosmolog-
ical sensitivity test wherein fits to WizCOLA data using the
polynomial method, spline method and the algorithm given
by Eisenstein & Hu (1998) are directly compared. To ensure
this is robust, the value k∗ is fixed to 0.1, representing a fit
with a very high level of dewiggling (hard thresholds are of-
ten limited to around this value, ie Chuang & Wang (2012)
have minimum k∗ = 0.09), whilst still preserving some of
the BAO peak with which to match. This analysis is given
in Figure A4, and shows that for both spline and polynomial
methods outlined above, statistical uncertainty in fits far ex-
ceeds any difference in matching results due to the change
in dewiggling process. The polynomial method was selected
to be the final method due to computational speed.

APPENDIX B: OPTIMISING RANGE OF
SCALE INCLUDED IN FIT

The failure of correlation function models at small separa-
tions and their similarity at large separations mean it is
important to evaluate the range of scales to include in the
fit to the BAO signal, as detailed in §4.2. As the optimal
data ranges vary depending on the survey volume, number
density, and tracer bias, we investigate the effect of selecting
different s-ranges on the recovered parameters when fitting
to the WizCOLA simulation data. In order to constrain sta-
tistical uncertainty as much as possible, fits were performed
to the combined dataset, in which the input values are deter-
mined from the mean of all 600 realisations of the WizCOLA
simulation. We then compare the output Ωch

2 and α with
the simulations as a function of the scales fitted. These are
shown in Figure B1, and the outcome of the comparison is
the decision to use a dataset range of 25 < s < 180 h−1

Mpc. We compare this range to previous analyses in Table
B1.
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Figure A1. A comparison of the effects of increasing polynomial weight. Due to the high number of data points in the linear CAMB
model (> 600), even a high degree polynomial such as the 15 degree polynomial displayed in red, does not attempt to recover the BAO

signal. Given the range of k∗ values typically used in model fitting, the right hand side of the graph where k/h > 0.1 is most relevant. It

is desired that the polynomial fit converge to the CAMB power spectrum at high k/h, as occurs with higher order polynomial fits.
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Figure A4. A cosmological sensitivity test between the algo-

rithm from Eisenstein & Hu (1998), polynomial fitting and spline

fitting. Likelihood surfaces and marginalised distributions were
calculated using the WizCOLA simulation data at the z = 0.6

redshift bin, where all 600 realisations have been used as input

data, and k∗ fixed to 0.1. With the low value of k∗ to increase
the significance of the dewiggling algorithm and high data quality

to reduce statistical uncertainty beyond the scope of the WiggleZ

dataset, any deviation between the different methodologies should
be represented by changes in the likelihood surface. However, as

all likelihood surfaces agree to a high degree, we can conclude any
difference in methodology is negligible in comparison to statistical

uncertainty.

Table C1. Gaussian approximation of parameter summaries in
Table 3. DA(z) given in units of Mpc, and H(z) is presented in

km s−1 Mpc−1.

Sample Ωch2 DA H

0.2 < z < 0.6 0.126± 0.028 1300± 170 90± 16

0.4 < z < 0.8 0.163± 0.031 1320± 180 95± 16
0.6 < z < 1.0 0.153± 0.030 1380± 150 81± 10

APPENDIX C: PRE-RECONSTRUCTION
CORRELATION

Correlation coefficients corresponding to the outputs re-
ported in Table 3, namely correlations between Ωch

2,DA(z),
and H(z) across the three redshift bins, are given in Ta-
ble C2. These were calibrated using WizCOLA mocks. We
chose to report these in terms of DA(z) and H(z), we could
equivalently have reported the correlations in α and ε. To
convert between the two one would use equations 12 and 13.

We note that the values reported in Table 3 are deter-
mined using maximum likelihood statistics, and represent
the best way to provide a summary statistic of the value
as a data point. However, when combining these results by
multivariate Gaussian approximation, the correct values to
utilise change, and are given in Table C1.

0.10 0.11 0.12 0.13 0.14

Ωch
2

0.92

0.96

1.00

1.04

1.08

α

10<s<180

25<s<180

40<s<180

40<s<150

Figure B1. We show four different dataset truncation values fit
to the WizCOLA z = 0.6 mean dataset. Utilising the 10 < s <

180h−1 Mpc range employed by Blake et al. (2011b) provided

strong constraints on the parameters Ωch2 and α, but recovered
values more than 3−σ away from the desired outcomes (away from

the known parameters used to create the simulation). Increasing

the lower bound of the data shifted the recovered parameters to
be well below 1−σ deviation from the desired outcome, at the cost

of larger uncertainty in the likelihood surfaces. A reduced upper

bound was tested as well due to its presence in prior literature,
however minimal impact was found by reducing the upper limit.

We increase the lower bound until we find unbiased parameter

recovery at s > 25h−1 Mpc, and find the upper bound to be
relatively insensitive to change, and fix it to s < 180h−1 Mpc.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Table C2. Correlation values for the pre-reconstruction fits detailed in Table 3. Redshift bins are placed in brackets after the parameter
name.

Ωch2(0.44) Ωch2(0.60) Ωch2(0.73) DA(0.44) DA(0.60) DA(0.73) H(0.44) H(0.60) H(0.73)

Ωmh2(0.44) 1 0.33 0.30 -0.19 0.02 -0.08 0.13 0.05 0.02
Ωmh2(0.60) 0.33 1 0.19 -0.07 -0.21 -0.03 0.06 0.20 0

Ωmh2(0.73) 0.30 0.19 1 -0.05 -0.01 -0.28 -0.05 0.08 0.20

DA(0.44) -0.19 -0.07 -0.05 1 0.01 0.04 0.12 -0.01 0.03
DA(0.60) 0.02 -0.21 -0.01 0.01 1 -0.01 0 0.10 -0.01

DA(0.73) -0.08 -0.03 -0.28 0.04 -0.01 1 0.01 0 0.07

H(0.44) 0.13 0.06 -0.05 0.12 0 0.01 1 0.06 0.03
H(0.60) 0.05 0.20 0.08 -0.01 0.10 0 0.06 1 0

H(0.73) 0.02 0 0.20 0.03 -0.01 0.07 0.03 0 1
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