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ABSTRACT

We report the detection of thermal continuum radio emissionfrom the K0 III coronal giant Pollux (β Gem) with the Karl G. Jansky
Very Large Array (VLA). The star was detected at 21 and 9 GHz with flux density values of 150± 21 and 43± 8µJy, respectively.
We also place a 3σrms upper limit of 23µJy for the flux density at 3 GHz. We find the stellar disk-averaged brightness temperatures
to be approximately 9500, 15000, and< 71000 K, at 21, 9, and 3 GHz, respectively, which are consistent with the values of the quiet
Sun. The emission is most likely dominated by optically thick thermal emission from an upper chromosphere at 21 and 9 GHz.We
discuss other possible additional sources of emission at all frequencies and show that there may also be a small contribution from
gyroresonance emission above active regions, coronal free-free emission and free-free emission from an optically thin stellar wind,
particularly at the lower frequencies. We constrain the maximum mass-loss rate from Pollux to be less than 3.7 × 10−11 M⊙ yr−1

(assuming a wind terminal velocity of 215 km s−1), which is about an order of magnitude smaller than previousconstraints for coronal
giants and is in agreement with existing predictions for themass-loss rate of Pollux. These are the first detections of thermal radio
emission from a single (i.e., non-binary) coronal giant anddemonstrate that low activity coronal giants like Pollux have atmospheres
at radio frequencies akin to the quiet Sun.
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1. Introduction

Unlike low mass stars, moderate-mass (M⋆ ∼ 3 M⊙) late B and
early A spectral type stars lose little angular momentum during
their main-sequence (MS) phase (Wolff & Simon 1997). Once
shell hydrogen burning commences, these stars move away from
the MS and begin to form surface convection zones while evolv-
ing rapidly through the F and G spectral types. As the surface
convection zone deepens, coronal activity is activated andthe
star ascends the red giant branch (RGB). Subsequently it returns
close to the base of the RGB where it becomes a ‘clump’ giant
burning helium in its core (Ayres et al. 1998). This coronal ac-
tivity will inevitably subside as the star spins down. Therefore,
late B and early A spectral type stars which do not have coronae
on the MS, will develop coronae during a period of their post
MS evolution. This is in contrast to lower mass stars like the
Sun, which display strong coronal emission on the MS due to in-
tense rotation-induced dynamo-driven magnetic activity (Parker
1970), which subsides as they evolve to red giants.

The atmospheres of coronal giants have been exten-
sively studied at both X-ray (Haisch et al. 1991; Maggio et al.
1990; Huensch et al. 1996) and ultra-violet (UV) wavelengths
(Ayres et al. 2003; Dupree et al. 2005). X-ray studies have re-
vealed that stellar coronae are common in the giant branch for
spectral types earlier than K1 III but become rare redward of
K1 III, a region which has thus been dubbed the ‘coronal grave-
yard’ (Ayres et al. 1991). The UV emission line studies agree
with these findings but also suggest pervasive transition re-
gion material at 105 K among many of the non-coronal giants
(Ayres et al. 1997).

⋆ ogorman@cp.dias.ie

Detecting radio emission from coronal giants provides an al-
ternative method to study their atmospheres and allows a com-
parison with the atmospheres of coronal MS stars. Active coro-
nal MS stars can have intense radio luminosities many orders
of magnitude greater than that of the disk-averaged quiet (i.e.,
active region free) solar value. These high values have been
associated with gyrosynchrotron emission from a continuously
generated population of non-thermal electrons in their coronae
(Linsky & Gary 1983). Less active coronal MS stars, like the
Sun, emit only thermal emission at radio frequencies in their
quiescent (i.e., non-flaring) states which is entirely due to free-
free processes. Subsequently, their radio luminosities are much
lower than those from more active coronal MS stars and only
recently has this thermal radio emission been detected fromMS
stars other than the Sun (Villadsen et al. 2014). Unlike coronal
MS stars, little is known about the radio atmospheres of coro-
nal giants. Drake & Linsky (1986) observed a number of nearby
coronal giants at 5 GHz (i.e., 6 cm) with the Very Large Array.
They failed to detect any single coronal giants but did detect the
binary Capella (α Aur; G5 III + F9 III), which is a long period
RS CVn type system. The radio emission from this system was
spatially unresolved and was interpreted to be thermal free-free
emission from one or both of their chromospheres and coronae.

In this paper we report radio observations of the closest coro-
nal giant, Pollux (β Gem; K0 III), whose basic properties are
summarized in Table 1. According to Aurière et al. (2009), Pol-
lux is probably a descendent of an early-A spectral type MS
star and now lies either at the base of the red giant branch or
is a clump giant. Pollux is a weakly-active magnetic giant and
a sub-Gauss value has been obtained for its surface averaged
longitudinal magnetic field (Aurière et al. 2009). It has an X-ray
luminosity that is 3 orders of magnitude lower than Capella’s
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Table 1. Basic stellar properties of Pollux (β Gem)

Parameter Value Reference

HD number . . . . . . . . . . . . . 62509 -
Spectral type . . . . . . . . . . . K0 III 1
Effective temperatureTeff 4904± 50 K 2
Distanced . . . . . . . . . . . . . 10.36± 0.03 pc 3
Angular diameterφ⋆ . . . . 7.95± 0.09 mas 4
MassM⋆ . . . . . . . . . . . . . . 1.91± 0.09M⊙ 5
RadiusR⋆ . . . . . . . . . . . . . 8.85± 0.10R⊙ c
[Fe/H] . . . . . . . . . . . . . . . . . 0.08 1
Escape velocityvesc

⋆ . . . . . 287 km s−1 c
Age . . . . . . . . . . . . . . . . . . . 1.2± 0.3 Gyr 5
Soft X-ray luminosityLx 1027.13 erg s−1 7

Notes. (1) Gray et al. (2003); (2) Takeda et al. (2008); (3) van Leeuwen
(2007); (4) Nordgren et al. (2001); (5) Hatzes et al. (2012);(6) Gray
(2014); (7) Sanz-Forcada et al. (2011). ‘c’ indicates values calculated
in this work.

(Huensch et al. 1996), despite its similar size to both of thestars
in the Capella binary. Extensive studies of Pollux’s radialve-
locity variations have revealed it to have a planetary compan-
ion with a period of 560 days and a minimum mass of 2.9MJup
(Reffert et al. 2006; Hatzes et al. 2006). Understanding the radio
properties of the stellar host of an exoplanet not only provides in-
sight on the host itself but also provides insight on the feasibility
of detecing radio emission from the exoplanet itself.

2. Observations and data reduction

Pollux was observed with the Karl G. Jansky Very Large Array
(VLA) in A configuration (Program code: 12B-108, PI: Laurent
Chemin) during 2012 October at K band (18.0− 26.5 GHz) and
again during 2013 January at both X band (8.0− 12.0 GHz) and
S band (2.0 − 4.0 GHz). The original goal of this project was
to test whether the signature of Pollux’s exoplanet could bede-
tected in its orbital reflex motion with a future astrometricVery
Long Baseline Array (VLBA) program. The low levels of radio
flux density that we report in this paper would appear to rule
out such a possibility with current facilities. A brief overview of
these observations is provided in Table 2. The receivers recorded
continuum emission with 8-bit samplers in 2 GHz wide windows
centered at 21.2 (K band), 9.0 (X band), and 3.0 GHz (S band).
For all frequency setups, 3C286 was used as the absolute flux
density and bandpass calibrator, while J0741+3112 was used as
the complex gain calibrator. Pollux was observed offset∼ 8′′ due
west of the phase reference center and so any potential interfer-
ometric artefacts at phase center could not be mistaken for the
source.

Flagging and calibration were performed with the Com-
mon Astronomy Software Applications (CASA) package
(McMullin et al. 2007) version 4.2.2 using the VLA calibra-
tion pipeline version 1.3.1 and some manual flagging. Images
were created using the CLEAN algorithm (Högbom 1974) in
full Stokes, with Briggs weighting and a robust parameter of
0.5. At S band, we were required to image a number of bright
nearby (i.e., a few arcminutes) serendipitous sources to suppress
their sidelobe contamination throughout the image. In the fi-
nal primary beam-corrected images, the rms noise per synthe-
sized beam close to the source was 14µJy beam−1 at K band
(21.2 GHz), 6µJy beam−1 at X band (9.0 GHz), and 7.5µJy
beam−1 at S band (3.0 GHz). The source flux density and po-

sition were determined by fitting a point source to the calibrated
visibilities using the CASA taskuvmodelfit. To mitigate the pos-
sibility of decorrelation of the visibilities at 21.2 GHz, which
could result in flux scale errors, we limited the point sourcefit
to baselines less than 500 kλ at this frequency. The flux density
uncertainty for standard VLA observations is∼ 3% at S and X
band, and∼ 10% at K band. The error bars throughout this pa-
per do not include this uncertainty in the absolute flux calibration
but reflect both the statistical root-mean-square (rms) error val-
ues,σs, obtained from the final primary beam corrected images,
and the formal fitting uncertainty,σf . The total error in the flux
density is then assumed to be ,σt = (σ2

s + σ
2
f )0.5.

3. Results

Pollux was detected (i.e., at> 3σrms significance) at 21.2 and
9 GHz in StokesI (total intensity) in both the point source fits to
the calibrated visibilities and in the corresponding radioimages,
which are shown in Figure 1. The detections had signal-to-noise
(S/N) ratios of 7 at 21.2 GHz and 5 at 9.0 GHz. The star was not
detected at 3 GHz or in any other Stokes parameter. The derived
flux densities along with the 3 GHz 3σrms upper limit are listed
in Table 2 and are consistent with the previous non-detection of
Pollux by Drake & Linsky (1986) who reported a 3σrms upper
limit of 340µJy at 5 GHz. We fitted an elliptical Gaussian to the
source using CASA’simfit task to confirm that the star was un-
resolved at both 21.2 and 9.0 GHz.

The expected positions of Pollux at the two observational
epochs were calculated using theHipparcoscoordinates, proper
motion, and parallax (van Leeuwen 2007). The positional off-
set of the source could then be determined from the difference
between the expected position and the actual measured posi-
tion. At both 21.2 and 9 GHz, we find that the positional off-
set is smaller than the noise-based uncertainty, which we de-
fine as the synthesized beam HPBW divided by 2× S/N of the
source (Condon et al. 1998). This good agreement confirms that
we have detected Pollux at 21.2 and 9 GHz. In Figure 1 it can
be seen that a 3σrms peak lies close to the expected position of
Pollux at 3 GHz. However, considering that this peak lies at a
distance of almost two times the noise-based uncertainty away
from the expected position, along with the fact that there are
other peaks of comparable statistical significance close by, we
do not attempt to consider this peak as a detection.

4. Discussion

4.1. Spectral indices and brightness temperatures

Figure 2 shows the radio spectral energy distribution for Pol-
lux. We find that the spectral indexα (whereSν ∝ να) has a
value ofα = 1.5± 0.4 between 9 and 21.2 GHz, and has a value
of α > 0.6 ± 0.5 between 3 and 9 GHz. These spectral index
values are in broad agreement with the spectral indices of the
disk-averaged quiet Sun over the same frequency ranges, i.e.,
α⊙ = 1.75 between 6 and 400 GHz, andα⊙ = 0.56 between 0.35
and 6 GHz (Benz 2009). It can be seen that the flux densities at
9 and 21.2 GHz are significantly above the values expected from
a blackbody with a photospheric angular diameter and a temper-
ature equal to the effective temperature. The derived brightness
temperatures are listed in Table 2 and are consistent with the so-
lar minimum values.
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Table 2. VLA observations of Pollux.

Date Band Center Bandwidth Time on Restoring Flux Brightness
Frequency Source Beam HPBW Density Temperature

(GHz) (GHz) (min) (′′ × ′′) (µJy) (K)

2012 Oct 14 K 21.2 2.0 32 0.092× 0.085 150± 21 9300± 1300
2013 Jan 01 X 9.0 2.0 17 0.381× 0.218 43± 8 14800± 2800
2013 Jan 01 S 3.0 2.0 17 1.194× 0.534 <23 < 71000

Notes. The brightness temperatures are calculated from Equation 1, where we have assumed that the stellar diameter is equal to the optical diameter
and that the star is a uniform disk.
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Fig. 1. Radio images of Pollux at 21.2 GHz (left), 9 GHz (middle), and3 GHz (right). Contours are set to (−3,3,4, ...11)× σrms whereσrms is the
rms noise in each image. The red cross marks the expected position of the photosphere at the epoch of each observation. Therestoring beam is
shown in the bottom left of each image. Note the scales on the axes in each panel double in size from left to right.

4.2. Radio emission mechanisms

In the following sections we discuss the possible radio emis-
sion mechanisms responsible for the observed radio flux from
Pollux. We note that our discussion naturally follows the dis-
cussions outlines already presented in Drake et al. (1993) and
Villadsen et al. (2014). In Drake et al. (1993), the possibleradio
emission mechanisms responsible for their 8.3 GHz detections
of the subgiant star Procyon are discussed. A similar layoutis
applied in Villadsen et al. (2014) to discuss their 34.5 GHz de-
tections of three solar-type MS stars (i.e.,τ Cet,η Cas A, and 40
Eri A).

4.2.1. Free-free emission from a chromosphere and
transition region

If Pollux were a perfect blackbody with angular diameterφ = φ⋆
and brightness temperatureTb = Teff at any radio frequencyν,
then the observed flux density would be

Sν = 0.18µJy
( Tb

4904 K

) (

ν

GHz

)2 (

φ

7.95 mas

)2

. (1)

This blackbody radio spectrum is plotted in Figure 2 along with
our flux density measurements which are clearly all in excessof
this spectrum. This is because Pollux, like the Sun, has a chro-
mosphere and a transition region. At radio frequencies, electrons
and ions from these regions are a source of free-free opacity
which increases as frequency decreases. This means that at lower
radio frequencies an optical depth of unity is reached higher in
the atmosphere where the gas/electron temperatureTe > Teff

andφ > φ⋆, and so the flux density will be greater than that
expected from a blackbody alone1 (e.g., Cassinelli & Hartmann
1977). In Figure 2 we also include the predicted radio spectral
energy distribution from the atmospheric model of Pollux by
Sim (2001). This model contains a turbulently extended chromo-
sphere, a transition region and corona and is in reasonably agree-
ment with our measurements. We note that the semi-empirical
model is not a close match to the observed Hi Lyman profiles,
and therefore the model itself has intrinsic uncertainties. The ra-
dio emission from this model atmosphere is expected to be in
excess of the blackbody emission and this excess is expectedto
be greater at lower frequencies, in agreement with our measure-
ments.

In Figure 3 we compare the disk-averaged brightness tem-
peratures of Pollux against the solar minimum and maximum
values taken from White (2004). The brightness temperatureof
the Sun changes between solar minimum and maximum mainly
because of gyroresonance emission above active regions which
will be discussed further in Section 4.2.3. At solar minimum, ra-
dio emission between 3 and 21 GHz is dominated by optically
thick thermal emission from from the upper chromosphere and
lower transition region. The relationship between the radio opti-
cal depths in the quiet Sun and Pollux can be estimated from the
chromospheric scaling relations of Ayres (1979). The chromo-
spheric free-free optical depth scales asτ ∝ n2

eH, wherene is the
electron density andH is the density scale-height.H scales as

1 At very high frequencies (i.e.,ν & 1 THz) the temperature minimum
will be probed, in which caseTb < Teff and the flux density will beless
than that expected from a blackbody (e.g., Liseau et al. 2013).
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Fig. 2. Radio spectral energy distribution for Pollux between 1 and
300 GHz. The red dash-dotted line is the expected blackbody emission
assuming a uniform intensity disk with angular diameterφ = φ⋆ and
brightness temperatureTb = Teff . The black filled circles are the VLA
detections at 21.2 and 9 GHz. The blue dotted line is the expected spec-
tral energy distribution of Pollux using the model atmosphere from Sim
(2001). Our 3 GHz upper limit is also shown along with previous upper
limits taken from Wendker (1995). The black dashed line represents a
least-square fit to our detections assuming thatSν ∝ να.
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Fig. 3. The derived disk averaged brightness temperature of Polluxat
21.2 and 9 GHz, along with the upper limit value at 3 GHz. The dashed
line is the solar minimum disk averaged brightness temperature while
the dash dotted line is the solar maximum disk averaged brightness tem-
perature (White 2004).

∝ Teff/g∗, whereg∗ is the surface gravity, while〈ne〉 ∝
√

g∗T
5/2
eff ,

so that the surface gravity terms cancel (Harper et al. 2013). The
remainingT6

eff term givesτPollux/τ⊙ ∼ 0.4 which suggests that
Pollux will have a slightly lower opacity chromosphere, andfor
a given frequency, deeper and cooler plasma is probed. Given
the similarities between the solar brightness temperatures and
the values we find for Pollux, it seems likely that Pollux’s radio
emission also originates mainly from an upper chromospheric
and lower transition region at our observing frequencies.

4.2.2. Free-free thermal emission from a bound corona

We now examine the possibility that some of the radio emission
results from free-free thermal emission from a bound (i.e.,static)
optically thin corona. We can immediately rule out an optically
thick corona on the basis that the expected brightness tempera-
tures would be much larger than those we find. Since the solar
corona is optically thin above a few GHz, the rising spectrum(or
positive spectral indices) we deduce for Pollux immediately sug-
gests emission at 9 and 21.2 GHz is not dominated by optically
thin coronal emission, because in this case the spectrum would
be almost flat (i.e.,Sν ∝ ν−0.1).

Pollux is a weak soft X-ray source (Maggio et al. 1990)
and its X-ray (5 − 100 Å) luminosity of 1027.13 erg s−1

(Sanz-Forcada et al. 2011) is similar to the solar minimum value
defined in Judge et al. (2003). Thus, Pollux - with a surface area
78 times that of the Sun - has an X-ray surface flux that is about
1% of the solar value. This soft X-ray flux originates as ther-
mal emission from an optically thin corona and is the sum of
many different thermal processes such as free-free, bound-free,
and bound-bound. Knowledge of the coronal emission measure
(EM, measured in cm−3) allows the expected radio luminosity to
be calculated using

Lν = ǫν(Te)EM (2)

whereǫν(Te) is the radiative loss rate of the plasma (in erg s−1

cm3 Hz−1) and is assumed to be entirely from free-free inter-
actions. This is calculated using Equations 3.54 and 3.55 from
Spitzer (1978) and assuming helium to be fully ionized. Us-
ing the largerEM value and the corresponding coronal tem-
perature ofTe = 106.23 K from the two temperatureEM fit
given in Sanz-Forcada et al. (2011), we find the expected flux
density contribution from Pollux’s optically thin corona to be
Sν ∼ 0.5µJy at 3 GHz and even smaller at higher frequencies.
We conclude that the free-free thermal emission from a bound
corona has only a very small contribution to our radio detections.

4.2.3. Gyroresonance emission from active regions

The non-flaring Sun displays a clear cycle in its radio flux den-
sity. This is due to coronal material above active regions be-
coming optically thick from the presence of hot dense plasma
and strong magnetic fields and results in bright spots of coro-
nal temperatures (∼ 106 K) appearing on a cooler chromospheric
temperature (∼ 104 K) disk. As the number of active regions
changes over a solar cycle, so too does the radio flux density
contribution from these bright spots. The dominant source of
opacity in these bright spots is free-free thermal electrons in
the corona at low frequencies (i.e.,< 2 GHz) and gyroreso-
nance absorption by thermal electrons in the corona between
3 and∼ 15 GHz (White & Kundu 1997; Lee et al. 1998). The
gyroresonance mechanism is the non-relativistic limit of the gy-
rosynchrotron mechanism and typically operates at low harmon-
ics (s= 2− 4) of the electron gyrofrequencyνB, such that

ν = sνB = 2.8sBMHz (3)

for a given magnetic field strengthB (in Gauss).
We can use our VLA data to constrain the covering fraction

of these coronal bright spots on Pollux, following the arguments
outlined in Drake et al. (1993) and Villadsen et al. (2014). We
assume that at any given frequency the disk averaged brightness
temperatureTb can be modelled as a uniform disk having either
a chromospheric or transition region temperatureTdisk, that is
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obscured by coronal bright spots of temperatureTcor having a
covering fractionfν such that

Tb = (1− fν)Tdisk+ fνTcor. (4)

The covering fraction will decrease as frequency increases
since higher frequencies correspond to stronger magnetic field
strengths. For example, coronal magnetic field strengths of360,
1070 and 2520 G would be required if gyroresonance emission
in the third harmonic contributes to the radio flux densitiesat
3, 9, and 21.2 GHz, respectively. We again useTcor = 106.23 K,
while for Tdisk, we assume the disk integrated brightness tem-
perature values of the quiet Sun (White 2004), since these mea-
surements will have the least contribution from gyroresonance
emission. We find that the brightness temperatures for Pollux
at 9 and 21.2 GHz are similar to solar minimum values which
could imply little or no contribution from gyroresonance emis-
sion at these frequencies. Our upper limit for the the disk inte-
grated brightness temperature of Pollux at 3 GHz is well above
the solar minimum value of∼ 3.5 × 104 K. We can thus derive
a maximum covering fraction of 2% for coronal bright spots at
3 GHz using Equation 4. For this calculation we have assumed
that like the Sun, Pollux contains localized active regions, an
assumption which is supported by the discovery of a large scale
magnetic field in the photosphere of Pollux (Aurière et al. 2009).

4.2.4. Free-free emission from an ionized stellar wind

The unbound solar corona escapes to the interstellar medium
through open magnetic field lines at a mean rate of 2.5 ×
10−14 M⊙ yr−1 (Athay 1976), forming the solar wind. In general,
the mass-loss rates from giant stars are many orders of magni-
tude greater than the solar value. However, these mass-lossrates
are extremely poorly constrained for coronal giants like Pollux.
Drake & Linsky (1986) were able to place 3σrms upper limits of
∼ 5× 10−10 M⊙ yr−1 using their best constrained non-detections
of coronal giants.

We can use the multi-frequency VLA detections to estimate
the flux density contribution from Pollux’s wind and thereby
constrain its mass loss rate. To do so we need an approximation
of the stellar wind velocity,vw. Pollux does not show any wind
scattered Mg II or Lyman alpha features in itsHST/STIS spectra
while the C III 977 Å and O IV lines inFUSEspectra presented
in Dupree et al. (2005) are consistent with no wind scattering.
Therefore Pollux does not have either a cool slow velocity wind
(i.e., vw = 10− 50 km s−1) typical from cool giants or a warm
intermediate velocity wind (i.e.,vw = 70− 150 km s−1) typical
from hybrid bright giants. Given the paucity of empirical con-
straints onvw, we follow Drake & Linsky (1986) and assume
vw = 0.75vesc

⋆ , wherevesc
⋆ is the photospheric escape velocity.

This relation is representative of the mean solar wind velocity
and givesvw = 215 km s−1 for Pollux.

Drake & Linsky (1986) showed that all the winds in their
sample of coronal giants will be optically thin at 5 GHz. Fol-
lowing their arguments, we expect Pollux’s wind to be optically
thin at our 3 observed radio frequencies. We can derive an up-
per limit to the mass-loss rate by assuming the emission at 9 and
21.2 GHz is entirely from other sources and not from the wind.
Then, by extrapolating the power law fit to the flux densities at
these frequencies (i.e., usingSν ∝ ν1.5), we can obtain aneffec-
tive flux density value at 3.0 GHz. The difference between our
3 GHz upper limit for the flux density and this effective flux den-
sity is the upper limit to the flux density contribution from the
wind and equates to∼ 8µJy. We calculate the mass loss rate

from a spherically symmetric, isothermal optically thin wind to
be

Ṁion = 1.3× 10−11 M⊙ yr−1
( vw

215 kms−1

)

(

d
10.36 pc

)

. . .

( Te

106.23K

)0.22 (

ν

3 GHz

)0.03
(

R⋆
8.85R⊙

)0.5 (

Sν
µJy

)0.5

(5)

where Ṁion is the ionized mass loss rate andSν is the maxi-
mum excess flux density at 3 GHz. For coronal giants, the ion-
ized mass loss rate will be equal to the total mass loss rate,
since hydrogen and helium are fully ionized. In deriving Equa-
tion 5 we have computed the free-free Gaunt factor,gff, assuming
an effective power-law approximation to the appropriate hydro-
gen helium mix [A(He)=0.1] for coronal ionization conditions
between 5× 105 < Te(K) < 107 and VLA frequencies, i.e.,
gff = 24.1ν−0.06T0.06

e . In addition, we have replaced the constant
vw with the beta power-law formvr = vw(1 − R⋆/r)β, wherer
is radial distance. We adoptr = 1.2R⋆ as a limit to the integral
calculation to be consistent with the chromospheric extensions
inferred in Berio et al. (2011) and assumeβ = 1 (Carpenter et al.
1995, 1999).

From Equation 5 we can constrain the mass loss rate of
Pollux to beṀion ≤ 3.7 × 10−11 M⊙, which is about an order
of magnitude smaller than previous constraints at radio wave-
lengths (Drake & Linsky 1986). The semi-empirical mass loss
relation from Schröder & Cuntz (2005) predicts a mass-loss rate
for Pollux that is almost identical to the the value of our up-
per limit, while the scaling law from Holzer et al. (1983), which
scales the solar mass loss rate by (R⋆/R⊙)2(vesc

⋆ /v
esc
⊙ )−3, predicts

a value that is a factor of two smaller. The theoretical model
for mass-loss rates of cool stars by Cranmer & Saar (2011) pre-
dicts 2.3 × 10−12 ≤ Ṁion ≤ 9.2 × 10−12 M⊙, assumingvsini =
1.7 kms−1 (S. R. Cranmer, 2016, private communication). Our
upper limit is therefore in agreement with existing predictions
for the mass-loss rate of Pollux. The mass loss presumably oc-
curs in magnetically open coronal regions, which account for
only a portion of the total coronal free-free radio emission- the
other portion coming from magnetically closed coronal regions.
Since we have shown in Section 4.2.2 that the expected coronal
free-free emission is about 0.5µJy, then it is probable that the
actual mass-loss rate is considerably less than our derivedupper
limit.

4.2.5. Exoplanetary emission

The magnetized planets in our solar system produce electron
cyclotron maser emission at very low frequencies (i.e.,ν <
40 MHz) and it has long been suggested that this type of emis-
sion could potentially be detected from nearby magnetic exo-
planets. Predictions for the strength of the exoplanet radio emis-
sion have been made whereby simple scaling laws known to
operate in our solar system have been generalized for various
stellar systems (e.g., Farrell et al. 1999; Stevens 2005). Pollux is
known to have a planetary companion with a minimum mass of
2.9MJupiter and a semi-major axis of 1.6 AU (Reffert et al. 2006;
Hatzes et al. 2006). If we optimistically assume that Polluxhas a
mass loss rate of 3.7×10−11 M⊙ yr−1 (see Section 4.2.4), then fol-
lowing Ignace et al. (2010) we could expect a contribution from
exoplanetary radio emission of∼ 25µJy at 3 GHz, where we
have assumed Jupiter-like properties for the rotation rateand ra-
dius of the planet and the emission to be isotropically beamed.
However, since this type of radio emission is produced at the
electron cyclotron frequency which is defined in Equation 3 with
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s = 1, the planetary magnetic field strength would need to be
over 1000G in its polar region to be detectable at 3 GHz and
would need to be even larger to be observable at higher frequen-
cies. Such large values are highly unlikely considering Jupiter
has a value of only 14 G and is the most magnetized planet in our
solar system. We therefore do not expect to detect any exoplane-
tary emission in our data. Nevertheless, the larger mass loss rates
of evolved stars in comparison to solar type stars could make
them interesting candidates to search for exoplanetary emission
at lower radio frequencies. For example, repeating the above cal-
culation from Ignace et al. (2010) at 150 MHz (i.e., a more real-
istic exoplanet emission frequency) predicts an exoplanetary ra-
dio flux density of∼ 500µJy, which would be detectable with
the Low Frequency Array (LOFAR).

5. Conclusions

The single coronal giant Pollux has been detected at 9 and
21.2 GHz with the VLA and tight upper limits for its flux den-
sity have been found at 3 GHz. The emission is thermal in na-
ture and has disk-averaged brightness temperature values that
are consistent with those of the quiet Sun. The origin of the
emission is most likely from an optically thick upper chromo-
sphere at 21.2 and 9 GHz. There may also be a small contribution
from other mechanisms such as gyroresonance emission above
active regions, an optically thin static (i.e., bound) corona and
an optically thin stellar wind, particularly at the lower frequen-
cies. We constrain the total mass loss rate of Pollux to be less
than 3.7× 10−11 M⊙ yr−1, which is about an order of magnitude
smaller than previous constraints for coronal giants.

The frequency range covered in this paper is crucial for un-
derstanding stellar atmospheres because many different emis-
sion processes, like those discussed in this paper, occur over
this range. The next generation of radio observatories suchas
the Square Kilometre Array (SKA) will have the sensitivity to
better distinguish between theses competing processes. For ex-
ample, Villadsen et al. (2014) argued that a detection of circular
polarization would favour gyroresonance emission at thesefre-
quencies. This could be important for more active coronal giants
than Pollux which presumably have more active regions on their
observable disks. High S/N detections at 3 GHz and lower could
trace emission from ionized stellar winds for coronal giants sim-
ilar to Pollux. Indeed, detections of thermal continuum emis-
sion at 1.5 and 3 GHz from non-cornal giants have already been
used to constrain their partially ionized winds (O’Gorman et al.
2013). Furthermore, observations of nearby coronal giantsat
lower frequencies than those presented here could potentially be
also used to search for exoplanetary radio emission. The detec-
tions presented in this paper are the first detections of radio emis-
sion from a single (i.e., non-binary) coronal giant. Polluxhas the
largest angular diameter of all coronal giants, and so the quies-
cent stellar disk dominated emission from other nearby single
coronal giants will presumably be more difficult to detect us-
ing existing radio interferometers. The increased sensitivity of
the SKA will enable radio surveys of nearby coronal giants tobe
carried out and will help elucidate the properties of coronal giant
atmospheres as these stars evolve.
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