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1. INTRODUCTION 

In the title of the historical article by Lord Rayleigh: “On the resultant of 
a large number of vibrations of the same pitch and arbitrary phase” [1], 
the emphasis falls on the word “arbitrary”, for it is always tempting for 
a scientist to find a model, an equation describing the widest range of 
phenomena. Unfortunately, the larger the range of phenomena the 
model covers, the heavier it looks mathematically, while a compact, 
ready-for-use expression is often derived for a particular case. The 
Rayleigh distribution we know is valid only when the phase spans 
equiprobably the whole range of the possible values from zero to 2. 
The generalization, which Lord Rayleigh makes in the last part of his 
paper, comprises only certain class of phase distributions possessing 
the /2 periodicity. In spite of this limitation, the neat result he has 
obtained (in his turn being inspired by the book of Émile Verdet [2]) 
has become the mold for the theory of light statistics for over one 
century since [3]. 

The model considered by Lord Rayleigh refers to so called strong 
diffuser. There is another group of random media and reflecting 
smooth surfaces combined in a model of weak diffuser [4]. In this 
model the phase is confined within a range smaller than 2 and the 
distribution is assumed to be normal (Gaussian). For volume scattering 
this assumption can be justified: multiple phase shifts along a 
propagation path permit implementation of the central limit theorem. 
More generally, ubiquitous use of normal distribution is rather due to 
mathematical convenience than to some physical fundamentals: any 
deviation from the normal distribution brings about extensive 
mathematical difficulties related to complicated expressions involving 
special functions [5]. Application requires a simplified mathematics; for 
example, determination of surface roughness by optical methods relies 
on the Gaussian model of phase randomness [6]. However, it does not 
mean that non-Gaussian statistics did not bring an attention. 
Beckmann [7] first drew attention to non-Gaussian distribution of 

surface height and many other authors followed his theoretical study. 
Extensive experimental evidence shows that different materials and 

different polishing processes produce various types of surface height 
distribution. It can be either symmetrical or non-symmetrical, skewed 
positively or negatively [8, 9]. Some artificially generated biological 
surfaces have negative skewed height distribution with one or two 
peaks [10]. In spite of availability of various theoretical distributions, 
the good old Gaussian model remains the favorite when it comes to 
analysis of experimental data. 

Probably one of the reasons why mathematical results of speckle 
theory are not used in practice is the tendency of many authors to 
obtain the result for intensity distribution in closed form omitting 
intermediate demonstrative explanations. Such a descriptive tool is 
probability cloud: graphical representation of a two dimensional 
probability density function (2D-PDF) for complex amplitude. This 
representation is implicitly utilized by Lord Rayleigh in his paper. The 
plots of the 2D-PDF are presented in many canonical books on light 
statistics [3], but little attention has been payed to the geometrical 
properties of the cloud: its position, extension, elongation and 
orientation. The exception is the study by Uozumi and Asakura [11], 
where this tool is employed to describe on- and off-axis statistics of 
light in the near-field. The tool of probability cloud provides a cognitive 
link between stochastic events in pupil and image planes. On the one 
side, the geometry of the cloud is related to the distribution of phase 
and, on the other side, it allows the quantitative prediction of the first 
order statistics of intensity. 

The present paper follows this geometrical approach to evaluate 
statistical behavior of scattered light using the representation of the 
probability density cloud. From arbitrary phase distribution we derive 
expressions for the geometrical parameters of the cloud: its position, 
extension, elongation and orientation. The focus of our study is the 
relation of these parameters to the phase statistics. Section 2 describes 
this relation in the most general way by first setting the task into a 
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physical context and then by introducing a mathematical formalism. 
Section 3 gives an illustration on example of exponentially modified 
normal phase distribution. This is only an example, not a restriction of 
our approach. This model analogically to the Gamma-distribution can 
be parametrized between the normal and the exponential distribution 
laws. In Section 4 we return to the general description and work with 
the statistics of intensity. We give an expression for the moment 
generating function in closed form through the geometrical 
parameters of the 2D-PDF. As our main subject is the cloud itself, the 
material of Section 4 is condensed. 

Our study challenges to obtain the result for indeed arbitrary phase 
distribution. The only “Gaussian” limitation we preserve is an 
assumption on a large number of contributors, which means that we 
deal with a Gaussian complex random variable and its elliptical 2D-
PDF. The non-Gaussian speckles we have discussed in our previous 
work [12]. The difference between Gaussian speckles and Gaussian 
phases is explained in Section 2B. 

2. PROBABILITY CLOUD 

A. From diffraction integral to a random phasor sum 

We start by setting our task in a context of diffractive optics. Consider a 
monochromatic optical wave with a randomly distorted wavefront 

(r). Its complex amplitude in the pupil plane of an imaging system is 
given by 
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where r is a position in the pupil plane and P(r) is a pupil function. The 
amplitude of the wave is assumed undistorted. Phase randomness 
might be caused by a turbulent media through which the wave has 
propagated or by a surface from which the light has reflected. In the 
second case Eq. (1) describes the complex field directly after the 
surface and P(r) is the shape of an illumination spot. It can also be the 
case when the pupil of the imaging system introduces the phase 
distortions of its own, like a multi-segmented primary mirror of a giant 
optical telescope [13]. 

The complex amplitude in the focal plane of the imaging system 

(coordinate w) is given by the Fourier transform: 
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The same expression is valid for the complex amplitude in the far-field 
if the wave reflects from a surface and freely propagates in assumption 
that scattering angles are small, i.e. in the paraxial approximation. Then 
the focal distance f is replaced by a propagation distance z. 

Intensity in the image plane |U(w)|
2
 is a random field. Statistical 

properties of this field are determined by the following factors: 

1. First-order statistics of the wavefront distortion (r) , including 
its spatial stationarity or non-stationarity; 

2. A ratio between the size of the pupil (or of the illumination spot) 

and the correlation radius of the complex field e
j(r)

; 

3. Observation point (coordinate w). 
Further conditions must be set. First, the observation point is chosen 

to be on-axis, so the diffraction integral becomes 
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Second, it is assumed that the correlation radius of the complex field 

e
j(r)

 is smaller than the size of the pupil and the pupil includes many 

coherent cells. Third, it is assumed that the random field (r)  is 
isotropic and spatially stationary, so that its statistical properties 
depend neither on direction nor on coordinate on the pupil. Forth, the 
illumination is regarded to be uniform. These assumptions allow 
splitting the pupil into n identical zones and the diffraction integral 

after some normalization turns into a random phasor sum with n 
phasors: 
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The random values  i  are identically distributed which results from 
the assumption on spatial stationarity. They are also mutually 
uncorrelated which is ensured by the size of the zone. The size of the 
zone defines also the number of phasors – an important parameter in 
the study. Definition of the zone and therefore determination of the 
number of phasors involves a second-order statistics on phase: its 
autocorrelation function. Some authors prefer to work directly with 
the autocorrelation function, assuming a Gaussian-correlated phase 
[11, 14]. Nevertheless, this approach does not remove a mathematical 
heaviness of expressions involved. We prefer to work with the random 
phasor sum, keeping the number of phasors n as a free parameter. If 
the source of randomness is telescope segmentation, this issue does 
not arise. 

B. Statistics of phase and statistics of complex amplitude 

In theory of diffused light many different things are said to be Gaussian. 
We have: Gaussian speckles, Gaussian distribution of phase, Gaussian 
autocorrelation function of phase and even Gaussian beam. We can 
avoid questions about the autocorrelation function and the beam by 
introducing the notion of phasors. Although we have assume a uniform 
illumination, Eq.(4) can be modified taking into account a  non-uniform 
beam shape. However, we must clarify the difference between 
Gaussian speckles and Gaussian phases. The former concerns the 
number of phasors n: if it is large enough that the central limit theorem 
can be applied to the complex random variable A, speckles are called 
Gaussian. The later refers to the shape of the probability density 

function of phases  i  (P-PDF). Although in many studies both 
assumptions are often made together, they are two different issues. 
The number of phasors is defined by the pupil size and the correlation 
radius of the complex field, i.e. by the second order statistics. The P-
PDF is the first order statistics. Here we adopt the first assumption on a 
large number of phasors, but allow the P-PDF to be arbitrary. 

The principal input is the characteristic function of phase – statistical 

average of the complex value e
jk

 related to the P-PDF by the Fourier 
transform: 
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We use only two values of the characteristics function: 

 
     .12,1 2

ΦΦWΦV      
  (6) 

In general, V and W are complex. We represent them through the 
moduli and the angles: 
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Suppose the phase is symmetrically distributed around 0 . In this 

case V0  and W20+. Symmetric phase distribution with zero 

mean gives V0  and W. 
Assumption on a large number of phasor allows employing the 



central limit theorem. The 2D-PDF is a mutual distribution law for the 
real x=ReA and the imaginary y=ImA parts of A [3]: 
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The last expression includes the following statistics moments (we use 
< . > to symbolize statistical averaging): 
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We relate these moments to the moduli and angles of V and W: 
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Equations (10), although they do not seem to bring any simplification, 
are very helpful when later on we connect geometry of the 2D-PDF 
with the properties of the P-PDF. Note, that the structure of Eq.(10) is 
not particular to the model of random phasor sum. Expressions for ER, 

EI, R, I and CRI derived directly from the diffraction integrals, 
including also the near-field diffraction, have the same structure, 

although V and W might have a physical meaning other than phase 
characteristic function [11, 15]. In this sense, result of the next sub-
section is not limited by the framework of random phasor sum model. 

C. Geometry of the cloud 

Consider the 2D-PDF given by Eq. (8). The numerator of the exponent 
is a second-order polynomial 
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and the contours of constant probability density answering condition 
Q(x,y)=const are conic sections. The determinant of the quadratic part 
of the polynomial is 
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The sign of the determinant defines the type of conic section, i.e. 
geometry of the contours of constant probability density. Due to the 

Schwarz’s inequality 
222

IRRIC   the determinant is non-positive. 

The contours of constant probability density are circles or ellipses 
when D<0 and line or point when D=0. Circle, line and point are 
forms of ellipse, so we speak about elliptical complex random variable. 

One-sigma boundary analog in two dimensions is a contour on which 
pA(x,y)=pmaxe

-1/2
. This contour is an ellipse satisfying equation

 
Fig. 1. Two-dimensional probability density cloud and its geometrical 
parameters: distance to the center, halve-axes and the angles. The 

major axis is the largest one and its half-length is always x  regardless 
the orientation. 
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and the 2D-PDF is therefore written as 
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Geometry of the 2D-PDF can be formulated through the geometry of 
the ellipse from Eq.(13) and is characterized by: position of center 

(,), halves of the major and minor axis (x,y) and either by the 
orientation or by the inclination (Figure 1). Orientation angle is the 

angle between the major axis and the Ox (ReA - axis). It equals W/2. 
Inclination angle is the angle between the major axes and the line 
passing through the center of the ellipse and the center of coordinates 

(T). 

Note that the halve-axis (xy) differ from the variances (RI), 
but the sum of squares is preserved: 
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This parameter is the total size of the ellipse: extension of the 2D-PDF. 
Together with the total size, the eccentricity is important: 
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It gives the degree of elongation. The 2D-PDF is fully described if the 

following five parameters are known:   , , , e, and  T. 
Now we relay these five geometrical parameters to the two values of 

characteristic function using Eq. (10). The total size is related to the 

modulus of V: 

 ,1 2V     (17) 

while the eccentricity – to the total size and the modulus of   W: 
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The only parameter containing the number of phasors is the modulus 
of distance to the center which also depends on the total size: 
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The angular position of the center equals V, while the inclination angle 

is a sum of the orientation angle and V : 
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The calculations leading to these results are not difficult and we do not 
present them here. 

From Eq. (15) and (17) it follows that the total size varies between 
zero and one. Eq. (19) relates the size of the cloud to its location: if the 
number of phasors is preserved, the cloud shrinks while moving away 

from the center of coordinates. At the farthest distance equal to n

the total size is zero and the cloud shrinks into a point. When the center 
of the cloud coincides with the center of coordinates, the total size 
equals one and the cloud is at its maximal spread. 

Three other parameters, the halve-axes and the determinant, are 
algebraic expressions of the total size and the eccentricity: 
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The eccentricity changes between zero and one. It equals zero when 

the halve-axes are identical: x
2
=y

2
=/2. The cloud is then circular, 

but it does not necessary mean that it is centered at the center of 
coordinates. In general, position and extension of the cloud are not 
related to the degree of its elongation quantified by eccentricity. For the 
circular cloud shape, the determinant of the corresponding quadratic 

form is minimal:  D=- 2 /4. In the opposite situation, when the 

eccentricity equals one, y=0  and  x
2= . Two shapes of the cloud 

are possible: line (0) and point (=0). The determinant of the 
corresponding quadratic form is zero. 

To conclude this section we present equation of the ellipse in 

parameters n,, e, and T. Instead of substituting Eq. (10) into Eq. 
(13) we find it from consideration of geometry. We know that the 
curve we are looking for is an ellipse with the halve axes from Eq.(21): 
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rotated by the angle W/2: 
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and shifted by the vector  (cos, sin): 
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Combining the last three equations and introducing the polar 

coordinates (x=AcosA, y=AsinA) after some trigonometric 
manipulations we obtain that the curve of one-sigma boundary for the 
2D-PDF is given by: 
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where   TAWA 2  and    1n . It is 

the same curve as the one given by Eq. (13), but written in the polar 
coordinates through the geometrical parameters of the cloud. We will 
come back to this result in Section 4. 

3. EXAMPLE 

A. Exponentially modified normal P-PDF 

Suppose that phase distortions are governed by two independent 
random processes: the first process is normally distributed with zero 
mean and standard deviation 0  and the second process is 

exponentially distributed with 0 : 
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=±1. The resultant phase is a sum of these two processes and follows 
exponentially modified normal distribution law. From the basic theory 
of random process, we know that the residual probability density 
function is a convolution of two initial probability density functions. 
Although for our purpose it is not necessary to know the P-PDF itself, 
for the completeness we write it down. The exponentially modified 
normal P-PDF has the following shape: 
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where erfc(.) is a complementary error function and parameter 

determines the direction of the modification. When =1 the P-PDF 

is positively skewed, when =– 1 the P-PDF is negatively skewed. The 
first three central moments of the phase are 
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Zero mean of the initial normal distribution is shifted by the 

exponential process to the direction defined by . The variance is a sum 
of the two variances as we have assumed that the two processes are 
independent. The third central moment included in skewness depends 

only on  and its sign is determined by . 
To describe the geometrical properties of the cloud we need to 

know only two values of the characteristic function. Expression for a 
characteristic function is often much easier to obtain than expressions 
for a PDF because the characteristic function of a sum of independent 
random processes is a product of the characteristic functions. For the 
exponentially modified normal distribution the characteristic function 
is: 
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The complex values we need to calculate are 
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In order to extract the parameters of the cloud some algebraic 
manipulations with complex variables must be performed. It does not 
represent any difficulty and can be done using any symbolic 
manipulation software. We omit the details of this step and present 
only the result. 

B. Parameters of the 2D-PDF 

The cloud, geometry of which we are describing here, is a two-
dimensional distribution of a complex Gaussian variable. Therefore, 
there is no surprise that its geometrical parameters are some functions 

of means and variances of two initial random processes, i.e. of , 2  and 

2 . To present these functions in a readable compact form we 

introduce four simple expressions of 2: 
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Notice that all fi equal one when =0, i.e. when the exponentially 
distributed second process is absent and phase is a Gaussian variable 
with zero mean. 

For the position of cloud center, we have: 
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When =0  the angular position of the center is zero. It means that the 

cloud is centered on the real axis at the distance 
2

0

2  en  from 

 

Fig. 2. Family of ellipses showing the geometry of the 2D-PDF for 
exponentially modified normal phase distribution. Each ellipse 

corresponds to certain combination (,) . Rays are the lines of 

constant =0, 0.12, 0.3, 0.5, 0.7, 1, 1.5. Circles are the lines of constant 

=0, 0.4, 0.6, 0.8, 1, 1.2, 1.5 (from the outer circle inwards). Upper half-

plane: positively skewed P-PDF (=1), lower half-plane: negatively 

skewed P-PDF (=– 1). Arrows indicate orientation of ellipse. The 

angle between an arrow and a ray is inclination angle T. Scaling 

parameter n=500. 

the center of coordinates. For small , when the contribution of the 
second process is weak, the angular position equals to the phase mean 

value:   . 

When phase mean value () changes but   remains constant, the 
center of the cloud moves along a circular line, connecting the point 

(0,0) and the center of coordinates: in the positive angular direction if 

the P-PDF is positively skewed (=1) or in the negative angular 

direction if the P-PDF is negatively skewed (=-1). The circular shape 

of the line can be deduced from Eq.(32): 0cos or x
2
+y

2
-x0=0. 

When, on the contrary,   increases but  remains constant, the center 

of the cloud moves along a ray making angle  with Ox inwards 
(Figure 2). 

While moving along a ray or a circle towards the center of 

coordinates the cloud expands, because increasing  or  means that 
the P-PDF widens approaching a uniform distribution. The spread of 
the cloud is characterized by the total size which in this example is 
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The last approximation is given for small . 
Now we study orientation of the ellipse. First, consider the real and 

the imaginary parts of W: 
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When =0  the imaginary part is zero, but the real part is negative and 

therefore the angle W  is . If  =1 and  is sufficiently small both, ReW 

and ImW , are small negative values. In order to be consistent with the 
definition of angles presented in Figure 1 and to avoid uncertainty of   
arctan(.) we define a piecewise function: 
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where 
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and 0 is a point when ReW=0, i.e. a positive root of quadratic with 

respect to 
2
 equation: 0321

2

 ffef  . 

In Figure 2 an arrow indicated the orientation of an ellipse. There exists 

certain combination (,)  for which the cloud is oriented horizontally. 

This combination answers to the condition W=0 (T=V) for the 

upper half-plane and W=2 (T=V) for the lower half-plane. The 

combination answers condition ImW=0, and can be found as  a 

positive root of quadratic with respect to 
2
 equation: 

021

2

 fef 
.



Fig. 3. Inclination angle (a) and eccentricity (b) as functions of ellipse 

center: (,) – mapping. Scaling parameter n=500. 

The inclination angle T is calculated according to Eq. (20). When 

the contribution of the second process is weak ( is small) the 
inclination angle can be estimated by the following approximation: 
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The deviation of the inclination angle from 2  is proportional to 3 . 

In this term we recognize the third moment of   (Eq. (28)). Although 
the equation above cannot serve as a mathematical proof of connection 

between the deviation of the inclination angle from 2 and an 
asymmetry of the P-PDF, it gives a feeling of this existing connection. In 

Figure 2 T  is the angle between an arrow and a ray. 

The eccentricity from Eq.(18) after some algebraic manipulations 
becomes: 
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In absence of the second process, i.e. when =0  and  =0  the 

eccentricity equals   1
2

e : the vertical cloud has maximal 

elongation with minimal spread. For small  the following 

approximation is valid: 
22 2     eee , and the relation 

1e  is preserved. With increase of it is not anymore the case.  

Figure 2 shows the set of 2D-PDFs plotted with use of Eq.(25) on a 

grid of constant   (rays)  versus constant   (circles). Crossing point of 
a ray and a circle is a center of an ellipse. The center can be located only 

within the largest circle with diameter n (boundary circle, =0). 

Every point on the (ReA , ImA)-plane within the boundary circle is a 
center of an ellipse with certain value of a given geometrical parameter 
(eccentricity, for example), which allows plotting this parameter on the 
(ReA , ImA)-plane as a two-dimensional function. Mathematically it is 

done substituting ne x

22

  , xy   and 

 ysignum    into expressions for ellipse parameters  (x and y 

being Cartesian coordinates of ellipse center). So we speak about 

(,)-mapping when present parameter of ellipse as function of 

position of its center: two-dimensional function e(x, y) maps the 

(,)-space. Figure 3 shows the inclinations angle and the eccentricity 
in this representation. 

Not only the geometrical parameters of ellipse but also all values 

derived from them can be presented on (ReA , ImA)-plane as (,)- 
mapping. Figure 5 in section 4 illustrates it on example of intensity 
standard deviation. 

C. Numerical simulation 

We simulate the random phasor sum with the MATLAB R2014. A 
phase value is generated as a sum of two random numbers: the first 

one with the normal distribution N(0,) and the second one with the 

exponential distribution E(). The phase is used to generate a complex 

phasor with the unit length, and the random phasor sum sums 500 

independent phasors. The case (=-1) is simulated by taking the 

phase value as a difference between N(0,)-distributed number and 

E()-distributed number. Every outcome is plotted as a point on the 

complex plane (ReA , ImA). For every combination (,)  up to 600 
points are generated to create a cloud. The smaller clouds are created 
with the smaller number of points. We have chosen this simple way to 
generate the complex amplitude and not the full Fourier optics 
propagation to avoid addition complications related to generation of 
rough surface with a given statistics. In other words, we deal here only 
with the second part of the optical task exposed in Section 2A. 

Figure 4 shows the simulated clouds when is fixed to 0.2 (the 

statistics of the first random value does not change), while  increases 
from 0 to 10. To compare with the theory we plotted an analytical 

ellipse given by Eq.(25) for every  and the circle =21.9cos. The 

behavior is as it is described above: when   increases the ellipse moves 
along the circle towards zero, widens, rounds and rotates. It starts from 
the vertical orientation and rotates slower than the tangential to the 

arch, therefore it assumes the horizontal orientation not at =1, but 

later at h  =1.48. 



Fig. 4. Two-dimensional PDF of complex amplitude for exponentially 
modified normal phase distribution. The number of phasors equals 

500;  equals 0.2 rad. Solid ellipses show the theoretical one-sigma 
contours and the points – the simulated distribution for the same set of 
parameters. 

4. STATISTICS OF INTENSITY 
The main subject of this paper is joint distribution of the real and the 
imaginary parts of the complex amplitude, which we refer to as 
probability cloud or 2D-PDF. Although we wish to keep the focus on 
the geometry of the cloud itself, it is important to show how the 
knowledge of geometry helps to predict the statistical behavior of the 
measurable quantity, i.e. intensity. The standard procedure is as 
following. First step is finding the joint distribution of modulus and 
angle of the complex amplitude by moving to the polar coordinates 

(A,A)  from the mutual distribution of the real and the imaginary 

parts. Second step is passing to a marginal statistics pA(A)  by 

integrating over A. The final step is obtaining a distribution of 

intensity by substituting IA  . Except for a small number of cases, 

the integration over A is either insolvable analytically or the result is 
complicated and inapplicable. For example, Equation 9 from [4] gives 
the probability of intensity through an infinite sum of a product of 
modified Bessel functions; and the sum in its turn is multiplied by an 
exponential function. It is a very neat formula, but, unfortunately, no 
mathematical software can digest it properly. 

The representation of the cloud through its geometrical parameters 
allows obtaining the statistics of intensity without passing through the 
painful integration over the angle. To avoid overcharging this paper, 
we give only some clues of the procedure leading to the result. We plan 
to present more details in the next paper.   

The key is Eq.(25) giving the one-sigma curve of the 2D-PDF. The 
remarkable feature of this equation is that the left part of it is a sum of 
squares of two values. On the other hand, this left part is the double 
argument of the exponential in the 2D-PDF through Eq.(14). Passing 

from the distribution pA(x,y )  to the distribution p(A,   )  (Jacobian 

of the transformation equals A) and then to the distribution p(I ,   )  

(Jacobian of the transformation equals   1
2


I ) we obtain: 
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The expression is factorized into a product of two normal distributions. 
That prompts us to introduce two normally distributed random 

variables:   cos21 Ix  and   sin22 Ix  with the means 

and the variances T cos21  ,  e 12

1   and 

T sin22  ,  e 12

2   correspondingly. Afterwards, 

passing from the distribution p(I ,   )  to the distribution p(x1, x2) 

(Jacobian of the transformation equals one) we conclude that x1 and x2 

are independent because p(x1, x2)=p(x1)p(x2) . The intensity is 
therefore the half of a sum of squares of two independent normally 
distributed random variables with known means and variances: 

  22

2

2

1 xxI  . We do not need to integrate over   . 

Now we can follow the standard methods of statistics to obtain a 
moment generating function of intensity. We postpone the details of 
this calculation for the next paper and present only the result: 
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Naturally, the angular position of ellipse  is not present in this 
equation. The moments of intensity are the partial derivatives of this 
function: 
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and yield in polynomial expressions of ,, e and cos2T. These values, 
as we have studied in the paper, are linked to statistics of phase.  

The central moments  nn

I IIM  are therefore also some 

polynomials of the same values. We present here the expressions for 
the first three: 
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Figure 5 shows the (,)-mapping of intensity standard deviation 
2

IM  for exponentially modified normal P-PDF from the previous 

section. This map has two local minima: the first one at the center of 

coordinates (x=0 , y=0)  and the second one at the opposite extreme 

of the boundary circle (x= n , y=0) . The first minimum 

corresponds to the case studied by Lord Rayleigh of well-developed 
speckles. The intensity standard deviation equals one. The second 
minimum corresponds to the situation (also discussed in his paper) 
when there is no randomness whatsoever, all phasors are identical and 
the standard deviation of intensity equals zero. Between these two 
minima there is a ridge of maximal intensity standard deviation 

varying between 12.2 (=0 , =1.05) and 14.4 (=1.16, =0). The 

values depend on the number of phasors and are given for n=500.  



Fig. 5. (,)-mapping of intensity standard deviation. Scaling 

parameter n=500. 

5. CONCLUSION 
Mutual distribution of the real and the imaginary parts of complex 
amplitude – the resultant of a large number of vibrations, is the best to 
visualize as probability cloud. The cloud is a powerful tool to describe 
statistics of light with phase fluctuation. The geometrical parameters of 
the cloud: its position, extension, elongation and orientation, – are 
directly related to statistics of phase and involve only two values of 
phase characteristic function (which in general are complex values). 
There are common rules applied to the behavior of these parameters 
independently on particular phase distribution: the cloud always 
widens when its center approaches the center of coordinates; 

deviation of the inclination angle from 2 indicates certain asymmetry 
in initial phase distribution; eccentricity tends to one when the cloud 
shrinks into a point. The demonstration of the last rule (not done in the 

paper) involves expanding V in series at 0 . 

We illustrate the method of geometrical description on example of 
exponentially modified normal distribution and introduce the principle 

of (,)-mapping. This principle takes advantage of the fact that there 

is one to one correspondence between a vector (,) and a position on 
a complex plane marking ellipse center. If for another phase 
distribution there is no unique relation between parameters of the P-
PDF and a point on the complex plane, it nevertheless can be found by 
combining the parameters. In the considered example of exponentially 
modified normal distribution we assumed that the mean of normally 

distributed component is zero. If it is not zero but equals to certain , 

the mapping is still possible through a combined parameter ’  = 

 . 
The  geometrical representation of two dimensional probability 

density function of complex amplitude allows obtaining the moment 
generating function of intensity in closed form and hence expressions 
for all statistical moments of intensity through the parameters of 
ellipse. All central moments of intensity are positive regardless 
statistics of phase. Nevertheless, simulations and experimental data 
[16] give negative values for some odd moments of intensity or the 
values based on these moments (skewness, for example). This 

discrepancy is not due to an error in our calculation, but to limitations 
of the postulate lying in its base: assuming a large number of phasor, 
applying the central limit theorem and writing the 2D-PDF as two-
dimensional Gaussian function we enforce an elliptical shape of the 
cloud. The odd moments of intensity are sensitive to cloud non-
ellipticity, i.e. to the number of phasors, and therefore cannot be 
estimated within the frame of the central limit theorem. 

Continuation of this work has three directions. First task is to relate 
the number of phasors (n) to the second-order statistics 
(autocorrelation function) of phase. Our preliminary calculations show 
that assigning diameter of a zone to a coherence length yields in 
unrealistically small n. However, this result requires a more thorough 
investigation. Second task is to unfold Section 4 of the present paper: 
having obtained the general expression for moment generating 
function we must study this expression in details. In particular, we shall 
see if it gives the correct result for the known intensity statistics 
included in it: exponential decay, Rician and modified Rayleigh 
distribution. Third task is to intrude into domain of non-Gaussian 
complex random variables and try to find not only expressions for 
intensity moments by means of combinatorics (these expressions have 
been obtained in [17]), but the shape of the 2D-PDF. A heavy but 
mathematically correct way to do it is to regard n to be large but not 
infinite and retain the second term in Euler’s theorem. 
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