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Abstract. This review presents the state of the art of strain and ripple-induced
effects on electronic and optical properties of graphene. We start by providing the
crystallographic description of mechanical deformations, as well as the diffraction
pattern for different kinds of representative deformations fields. Then we review
the unique elastic properties of graphene and how strain can be produced.
Thereafter, we examine various theoretical approaches used to study the electronic
properties of strained graphene and discuss the advantages of each. Also we show
how such approaches provide a platform for describing exotic properties such as a
fractal spectrum related with quasicrystals, a mixed Dirac-Schrödinger behavior,
emergent gravity, topological insulator states, among others. Moreover, we review
the physical consequences of strain on the optical properties, with particular focus
on the Raman spectrum. At the same time, we present recent advances to tune
the optical conductivity of graphene by strain engineering, which has opened
up new paths in device applications. Finally, we present a brief review of strain
effects in multilayered graphene and other promising 2D materials like silicene and
other group-IV elements, phosphorene, dichalcogenide- and monochalcogenide-
monolayers, with a slight emphasis on the occurrence and effects of novel two-
dimensional structural phase transitions occurring at finite temperature.
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1. Introduction

Graphene was the first truly two dimensional (2D)
crystal ever discovered [1, 2]. The key ingredient for its
discovery was the observation that it becomes visible
in an optical microscope if placed on a Si wafer with
a carefully chosen thickness [3]. Eventually, this one-
atom thick carbon membrane turned out to have the
highest known electrical and thermal conductivity [4],
as well as the highest stiffness and strength; it supports
very high strain prior to mechanical failure [5]. It can
be strained well beyond the linear regime, and bent
and wrinkled [5].

There has been an ever increasing interest in using
strain and the soft-properties of graphene to control
the physical properties of this wonderful material
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Even a new word
has been coined describing this aim: straintronics [16].
In most applications, graphene lays or grows on a
substrate. Due to the mismatch between the graphene
and substrate lattice parameters, atoms move to reduce
its energy producing a certain amount of strain too.

Thus, understanding how strain affects graphene’s
electronic and optical properties is of paramount
importance. However, the interest is not only
technological. This system is a playground to
produce new physics, from exotic topological quantum
phases, to analogies with other fields (from quantum
electrodynamics to quantum gravity), and even
connects with traditional arts like origami and
kirigami. Furthermore, strain in graphene created
an appetite for doing similar things with other 2D
materials like BN , NbSe2, TaS2, MoS2 and many
others [7, 9]. The natural next step is the design at
will of multi-layered materials and superlattices [7].

Just to cite a few examples of how to exploit
these ideas, we mention the experimental observation
of Dirac cone replicas on substrates [17, 18] with
halved group velocity [19] and sometimes accompanied
by a reversal of the Hall effect [18, 20]. Also, we
can cite the first atomic observation of the Quantum
Hall effect fractal spectrum [21, 20], first predicted
in 1976 and known as the Hofstadter butterfly [22].
Other advances are the building of in-plane graphene
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heterostructures on hexagonal boron nitride with
controlled domain sizes [23] (which is a useful way to
build electronic devices [24]). There are interesting
proposals for building spin-polarization switches via
strain [25], piezoelectricity by Li doping [26], giant
pseudomagnetic fields [27] or a giant two-dimensional
band-piezoelectric effect by biaxial-strain [28]. Other
2D materials also show potential for piezoelectricity
[29, 30, 31, 32] and display interesting connections with
glass network formers [33, 34], and glass constraint
(rigidity) theory [35].

The amount of bibliography in the field is huge
and growing each year. Fortunately, there are other
excellent reviews that serve as a guide through this
information forest [6, 8, 9, 10, 11, 12, 13, 14, 15].
Each of these reviews has its own focus and thus we
recommend the reader to look at such papers for a
more complete view of the field. The focus of this one
is to provide a basic platform and guide to understand
in simple terms representative models and results, with
enough physical significance, to get a grasp of the main
effects of strain, the emerging consensus on the field,
and its new directions.

To give an example, we show that many of the
effects of strain are already present in the most simple
case, the isotropic expansion. From this realization,
one is able to understand well documented more
complex situations like the appearance of a mixed
Dirac-Schrödinger behavior [16, 36, 37, 38, 39, 40] and
pseudomagnetic fields in the Dirac equation [6].

Also, there are several theoretical approaches to
treat strain in graphene. Here we will consider the
tight-binding approach, the Dirac equation with pseu-
doelectromagnetic fields, a perspective from discrete
differential geometry, and results from density func-
tional calculations (DFT). Each of such approaches
leads to comparisons with experimental results and
has its own virtues. For example, the pseudomagnetic
field approach is excellent to provide a link with quan-
tum electrodynamics but is better suited for studying
smooth spatially varying strain. If short-wavelength
strain is present, like is the case of graphene grown on
a substrate, the tight-binding approach is better suited.
The approach based on discrete differential geometry
has the advantage of laying out the theory directly onto
the atomic lattice. DFT helps to design and improve
theories. It also discerns important experimental ques-
tions.

With previous considerations in mind, each
section of this review was written with the idea of being
as independent as possible from the others. At the
same time, we have aimed to offer an integrated body
of knowledge, with a logical and pedagogical structure.

The layout of this work is as follows. We start
by making a review of the deformations in graphene,

in particular, we focus our attention in section 2 on
how they are described using a mix of crystallography
and elastic theory. Section 3 is devoted to study
the mechanical properties of graphene and how to
produce different kinds of deformations. In section 4 we
discuss the electronic properties of strained graphene,
providing different theoretical approaches as well as
numerical and experimental results. Then in section 5
we review the optical properties, while sections 6 and 7
provide an overview of multilayered graphene and other
2D materials different from graphene. Conclusions and
an outlook of the field are presented afterwards.

2. Description of pristine and deformed
Graphene

In this section we will discuss some basic properties
of the lattice structure of unstrained or strained
graphene. The main idea here is to provide a
framework to develop the properties of strained
graphene later on. The section is divided into two
subsections, one deals with unstrained graphene while
the other provides the tools for the description of
strain.

2.1. Unstrained graphene: crystal structure, reciprocal
lattice and diffraction

The starting point for understanding the properties of
graphene is to consider the honeycomb lattice structure
shown in Figure 1(a). The honeycomb lattice is
not a Bravais lattice since there are two kinds of
environments for Carbon atoms, denoted as A and B
sublattices in Figure 1(a). Notice that atoms in the
A sublattice only have first neighbors belonging in the
B lattice and viceversa. Such subdivision means that
the lattice is bipartite, and many of the electronic and
optical properties depend on this general observation
[41]. Even non-periodic but bipartite lattices like the
quasiperiodic Penrose lattice [42], the random binary
alloy in a square lattice [43] or vacancies in graphene
[44, 45, 46] share some electronic features with pristine
graphene, like zero-energy confined state modes or
pseudomobility edges [42].

If we take one of the sublattices, say A, it turns
out to be a 2D Bravais triangular lattice with basis
vectors:

a1 =
a

2
(
√

3, 3), a2 =
a

2
(−
√

3, 3), (1)

where a = 1.42Å is the distance between carbon atoms
[41] (Figure 1(a)). Notice that the x axis has been
chosen in the zigzag direction here. The B sublattice
is obtained by a shift of atoms belonging to the A
sublattice by δ1.
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However, it is customary to define a triad of
vectors:

δ1 =
a

2
(
√

3, 1), δ2 =
a

2
(−
√

3, 1), δ3 = a(0,−1), (2)

that point out to the first neighbours of A, and which
are the first images of δ1 under the symmetry group
of the Bravais lattice, equivalent to the firsts images of
δ1 in a trigonal kaleidoscope. Such images are easy to
obtain from the Bravais lattice and δ1 as follows:

δ2 = δ1 + a2 − a1, δ3 = δ1 − a1. (3)

The corresponding reciprocal lattice, seen in
Figure 1(b), has the following basis vectors:

G1 =
2π

3a
(
√

3, 1), G2 =
2π

3a
(−
√

3, 1). (4)

As shown in Figure 1(b), the first Brillouin zone
(1BZ) is built from the Wigner-Seitz construction,
resulting in an hexagon with two inequivalent high-
symmetry points [41] K± = (±4π/(3

√
3a), 0). Notice

that the form of the 1BZ is a property of the Bravais
lattice.

An important feature that has a crucial impact
on the optical and electronic properties of graphene
is the fact that points K+ and K− correspond to the
intersection of diffraction Bragg lines (instead of Bragg
planes, as it is the case for 3D, bulk materials). A
Bragg (Voronoi) line bisects a reciprocal lattice vector
G at right angles [47] (see Figure 1(b)). In graphene, if
k is a wavevector in the reciprocal space, the diffraction
lines closer to the Γ point have as equations (known as
Laue conditions [47]):

2k ·G1 = ±|G1|2, (5)

2k ·G2 = ±|G2|2, (6)

and

2k · (G1 +G2) = ±|G1 +G2|2, (7)

where K+ and K− are the intersections of Equations
(5), (6) and (7).

Diffraction impacts the electronic properties
through the generation of stationary waves and Van
Hove singularities in the density of electronic states
[47] (both related through an integral over isoenergetic
level curves). Thus, it is worthwhile to calculate the
diffraction properties of the lattice. The diffraction
pattern is given by the norm of the Fourier transform
of the lattice positions multiplied by the atomic form
factor [47]. In crystallography, this norm is known as
the structure factor.

To obtain the diffraction pattern, we assume
that the mass or electronic density results in an
scattering potential V (r) which can be described as
delta functions centered at the graphene lattice with a
weight V0:

V (r) = V0

∑
l

δ(r − rl), (8)

Figure 1. (a) Graphene lattice showing the unit cell (shaded),
the lattice vectors a1 and a2, and first-neighbor vectors δ1, δ2
and δ3. The bipartite sublattices A and B are also shown, as
well as the definition of the reference system used in this work.
(b) First Billouin zone (shaded) of unstrained graphene showing
the high symmetry points. The Fermi level and the Dirac points
coincide with the inequivalent high symmetry points K+ and
K−. This is no longer true for strained graphene.

where rl are the positions of the atoms in graphene.
The Fourier transform of this potential, denoted by
Ṽ (k), is obtained by integrating over the entire area
S:

Ṽ (k) =

∫
S

V (r)eikrdS. (9)

For the case of graphene, and for further reference, we
will label this transform as Ṽgp(k). It can be written
as:

Ṽgp(k) = V0[1 + eikδ1 ]
∑
G

δ(k −G), (10)

with G = lG1 + hG2 and l, h integers. The norm of
this transform is:

|Ṽgp(k)|2 = 4V 2
0 cos

2(k · δ1/2)
∑
G

δ(k −G). (11)

The first term in brackets in previous Equation is the
structure factor (that we denote F (l, h)) while the
second is the reciprocal lattice, i.e., where diffraction
spots are localized (see Figure 2). For graphene, the
diffraction spots form a triangular lattice, and therein,
the amplitudes are determined by the structure factor:

Fgp(l, h) = 4V 2
0 cos

2([lδ1 ·G1 + hδ1 ·G2]/2), (12)

or

Fgp(l, h) = 4V 2
0 cos

2
(π

3
(2l − h)

)
. (13)

Previous Equation predicts two intensities, 4V 2
0

or V 2
0 for the diffraction peaks. Notice however that

a real diffraction pattern is taken in 3D, and thus
the diffraction spots are replaced by rods. Once
this fact is taken into account, Equation 13 is in
good agreement with electron diffraction results [48].
However, the experimental shape and widths of the
peaks show deviations from the standard diffraction
behavior presented here since graphene is not flat.
This means that there is a superposition of diffraction
rods with slightly different orientations [48]. In bilayer
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G12G

(l,h)

(1,1)

(-1,-1)

(1,0)

(-1,0)(0,-1)

(0,1)

(0,0)

(2,1)(1,2)

(-1,1)

(-2,-1) (-1,-2)

(1,-1)

k x

yk

Figure 2. Theoretical computation of graphene’s diffraction
pattern. The position of each diffraction spot was computed
from Equation (11) while the intensity is obtained from Equation
(13) for the Miller indexes l and m that label each spot.

graphene, the rods present variations as the crystal is
tilted, thus providing a good technique to distinguish
between monolayer and multilayered graphene [48].

2.2. Description of deformed graphene

When mechanical deformations are applied to
graphene, the atoms are in general displaced (see Fig-
ure 3). Within Cauchy-Born assumption, the new po-
sitions are usually described by a displacement field
u(r) where r represents a material point of unstrained
graphene [13]. After being deformed, the new position
of the atom is:

r′ = r + u(r). (14)

Two kinds of problems arise in elasticity [49, 50]. One
is to find u(r) given some prescribed forces, usually
at the boundaries. The other is to find the forces
once u(r) is given. The forces produce stress, and
are related to u(r) by means of the-so called elasticity
(or constitutive) equations. For small strain fields, the
equations are a generalization of Hooke’s law [49, 51].

A further complication is the need to distinguish
fields u(r) that imply deformations to those which are
rigid-body movements corresponding to rotations or
translations. This is done by a symmetric strain tensor,
that measures deformations and has the following
components [51]:

ε̄(r)ij = (∂jui(r) + ∂iuj(r))/2, (15)

and by the antisymmetric strain tensor, that measures
rigid-body displacements [51]:

ω̄(r)ij = (∂jui(r)− ∂iuj(r))/2. (16)

Stresses acting on the system are described by
a tensor [49] s̄(r). The components of this tensor

x y

z

r

r'
u r( )

Figure 3. Displacement field. An atomic site at position r is
displaced to r′ by a position-dependent displacement field u(r).

s̄(r)ij = Fi/Aj are the forces in the direction i
applied over a surface normal to the direction j. In
linear elasticity, strain and stress are related via the
constitutive equation [51]:

s̄(r)ij = C̄ijlsε̄(r)ls, (17)

where C̄ijls is a rank 4 tensor which contains the elastic
constants of the material (that is sometimes written
as a rank-2 tensor when employing Voigt notation).
In Section 3, a full discussion is provided concerning
the elastic properties of graphene and how to produce
different kinds of deformations.

An important feature to keep in mind is that first-
neighbour vectors δn become space-dependent. Within
Cauchy-Born approximation, they are given by [52]:

δ′n(r) ≈ δn + (δn · ∇)u(r) = (Ī +∇u(r)) · δn, (18)

where Ī is the 2 × 2 identity matrix, and ∇u(r)
is the Jacobian of the displacement field, known as
the displacement gradient tensor, whose components
i, j = x, y given by:

[∇u(r)]ij = ε̄(r)ij + ω̄(r)ij . (19)

If the deformation does not involve rotations, i.e.,
ω̄(r) = 0, from Equation (18) and Equation (19) the
nearest-neighbor vectors become [52]:

δ′n = (Ī + ε̄(r)) · δn (n = 1, 2, 3). (20)

In the rest of this section, we will discuss
some particular cases of strain, to illustrate their
consequences on the lattice and on diffraction. This
material will be useful when discussing electronic and
optical properties.

One of the most illustrative cases of strain is the
uniform case, for which the positions of carbon atoms
at r are transformed by:

u(r) = ε̄ · r, (21)

where ε̄ is a uniform strain tensor, i.e., the components
of ε̄ do not change with the position. The tensor is
thus:

ε̄ =

(
εZ γS
γS εA

)
, (22)
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where εA and εZ denote, respectively, the uniaxial
strain applied along the armchair and zigzag directions,
and γS is the shear strain.

Using this field, the new positions of the atoms are
given by:

r′ = (Ī + ε̄) · r, (23)

where Ī is the 2 × 2 identity matrix. According
to Figure 4, the new lattice unit vectors under this
transformation are:

a′i = (Ī + ε̄) · ai (i = 1, 2), (24)

and using Equation (25), the set of transformed space-
independent first-neighbour vectors turn into:

δ′n = (Ī + ε̄) · δn (n = 1, 2, 3). (25)

We dropped the functional dependence of δ′n
on r in Equation (25). The reason is that for
uniform strain, all deformed first-neighbour vectors are
deformed the same. From this, it is evident that strain
not only changes the Bravais lattice through a′i, but
the graphene space group as well, due to the new
decoration vectors δ′n.

It is important to emphasize that Equation
(25) is a consequence of assuming that Cauchy-Born
rule applies on graphene, which will be the case
for uniform biaxial strain. However, for crystals
characterized by a lattice with a basis, the strained
nearest-neighbor vectors are transformed following a
sublattice-dependent rule due to the additional degrees
of freedom introduced by the basis atoms. According
to Midtvedt et al. [53], Equation (25) should be
generalized into δ′n = (Ī+ ε̄) ·δn+∆, where the vector
∆ is sublattice-dependent.

The reciprocal space lattice is deformed by
strain. Using the deformed cell unit vectors given
by Equation (24), the corresponding new reciprocal-
lattice vectors are given by:

G′i = (Ī + ε̄)−1 ·Gi (i = 1, 2). (26)

Figure 5 shows reciprocal lattice vectors for some
representative cases of uniform strain.

Following Equations (5, 6, 7), the new high
symmetry points in the corners of the first BZ of the
strained reciprocal lattice are also obtained by the
Wigner-Seitz construction of the primitive cell (Figure
13(b)), resulting in the following positions [54]:

K ′+ = M̄1
−1 ·C+ K ′− = M̄2

−1 ·C−, (27)

with:

M̄i =

(
(G′i)x (G′i)y

(G′1)x + (G′2)x (G′2)y + (G′2)y

)
, (28)

and

C± =
1

2

(
±|G′i|2

∓|G′1 +G′2|2
)
. (29)

(a)

(b)

2

3

1δ δ
δ

δ δδ2 3 1

a 12 a

a 12 a

'

'

'

'''

' '

' '

Figure 4. Two examples of deformed lattices in which the
deformed unit vectors a′1, a′2 and the first-neighbour vectors
δ′1, δ

′
2, δ
′
3 are indicated. The corresponding unit cell is indicated

by the shadowed area. In panel (a), the graphene lattice is
slightly distorted, while panel (b) shows the limiting case of a
brick-wall lattice. Networks (a) and (b) share the same topology.

Figure 5. First-Brillouin zone and reciprocal lattice vectors
for some representative cases of uniform strain: (a) unstrained
graphene, (b) uniaxial strain along the zigzag-direction (zigzag
strain) with {ε̄xx = 0.2, ε̄yy = −νε̄xx, ε̄xy = 0}; (c) uniaxial
armchair strain with {ε̄yy = 0.2, ε̄xx = −νε̄yy , ε̄xy = 0}, and (c)
shear strain with {ε̄xx = ε̄yy = 0, ε̄xy = 0.2}.



CONTENTS 7

Here, (G′i)x and (G′i)y are the x and y components of
the deformed reciprocal vectors G′i for i = 1, 2.

Figure 5 presents different cases of strain, showing
the first BZ (white lines) and the corresponding high-
symmetry points. To first order in strain tensor, it can
be demonstrated that high symmetry point positions
are given by [16]:

K ′+ = ± 4π

3
√

3a
(1− ε̄xx/2− ε̄yy/2,−2ε̄xy). (30)

Finally, the diffraction pattern of the uniform
deformed lattice is given by a simple scaling of
Equation (10):

|Ṽgpu(k)|2 = 4V 2
0 cos

2

(
k · δ′1

2

)∑
G′

δ(k −G′), (31)

where G′ is a reciprocal lattice vector modified by
strain. This results on the presence of diffraction peaks
at:

G′ = lG′1 + hG′2, (32)

with the same amplitudes as in graphene sinceG′i ·δ
′
1 =

Gi · δ1, as it could be expected.
Another important case that will be discussed

next is that of a periodic strain field that arises when
graphene lays over a substrate, like Ir, Fe or hBN .
In this case, the resulting structure is modulated and
it forms a superlattice that is usually described as
a modulated crystal. However, if the periodicity of
the substrate cannot be conmmensurate with that
of graphene, the resulting structure resembles that
of quasicrystals (which are crystals with classical
forbidden symmetries, and described using more
reciprocal basis vectors than the dimensionality of the
physical space [55]). Such features are easily described
as follows.

The periodic nature of the strain field allows to
express it using a Fourier series:

u(r) =
∑
∆g

ũ(∆g)ei∆g·r, (33)

where ∆g are the reciprocal lattice vectors of the
supercell, and ũ(∆g) is the contribution of each
harmonic. Choosing the right set of ∆g vectors from
experimental data can be a quite complex task, due
to the presence of beatings in the superlattice unit cell
[56]. From a theoretical point of view, periodicity hold
if two vectors T 1 and T 2 exist such that:

u(r) = u(r + T 1) = u(r + T 2). (34)

then the vectors ∆g are found by finding integer linear
combinations of the two vectors that satisfy ∆gj ·T i =
2πδi,j .

The resulting modulated crystal is said to be
conmmensurate when the vectors T 1 and T 2 fall into
the graphene lattice:

T 1 = n1a1 + n2a2

T 2 = m1a1 +m2a2 (35)

for some integers n1, n2,m1 and m2. Commensurabil-
ity (35) implies that a supercell can be defined, which
comprises the smallest integer numbers of unit cells of
both graphene and the support [56]. The system be-
haves as a quasicrystal when no integer solutions for
Equation (35) exist, since in that case it has at least
two incommensurate lengths [55].

The reciprocal lattice and the diffraction pattern
can be found as follows. Starting with the expression
for the charge or mass distribution with a periodic
deformation:

Ṽ (r) = V0

∑
l

δ(r − rl − u(rl)), (36)

the Fourier transform is:

Ṽ (r) = V0

∑
rl

eik·(rl+u(rl)). (37)

Now, we use the periodicity of the strain field by
expanding one of the exponentials in a Fourier series:

eik·u(rl) =
∑
∆g

Ũk(∆g)e−i∆g·rl , (38)

where ∆g are the wavectors determined from the
periodicity of u(rl), while Ũ(g) are the coefficients of
the expansion, found from projecting eik·u(rl) into the
kernel of the transformation:

Ũk(∆g) =
∑
rl

eik·u(rl)ei∆g·rl . (39)

Using Equation (38), the Fourier transform is written
as:

Ṽ (k) = V0

∑
∆g,rl

Ũk(∆g)ei(k−∆g)·rl . (40)

One can also use Equation (10) to rewrite previous
Equation as:

Ṽ (k) =
∑
∆g

Ũk(∆g)Ṽgp(k −∆g), (41)

which is a convolution of two functions, the Fourier
transform of the graphene structure and the modula-
tion Fourier transform, a result well known for modu-
lated crystals or quasicrystals [55, 57, 58, 59]. In fact,
the structure can also be dealt with by using projec-
tions of a higher dimensional lattice [55, 60, 61] within
the cut and projection method [55, 62].

Using Equations (11) and (41), the diffraction
pattern turns out to be:

|Ṽ (k)|2 = 4V 2
0 cos2

(
k · δ1

2

)
×
∑
G,∆g

|Ũk(∆g)|2δ (k − [G+ ∆g]) , (42)
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Figure 6. Scheme of the diffraction pattern for periodic
strained graphene as obtained from Equation (42). On each
graphene’s diffraction spot (indicated in blue), phason satellites
indicated in red appear due to the periodic modulation. The
original reciprocal lattice vectors of graphene, and the new set
of reciprocal superlattice vectors are indicated in capital (red)
and lowercase (green) letters. This interference effect is akin
to the beats appearing in acoustics when two waves of nearly
similar frequencies are superposed.

i.e., is made from the diffraction pattern of graphene
(for ∆g = 0) plus extra spots at positions G +
∆g. Figure 6 presents such a diffraction pattern,
as obtained from Equation (42). Its generic features
coincide with X-ray or LEEDS diffraction experiments
made with graphene over different sustrates [63, 64].
Since the period of the superlattice is much bigger
that the graphene’s lattice parameter, |∆g| << |G|
the new diffraction spots appear as satellites of the
original graphene lattice (see Figure 6). The relative
peak size is obtained by squaring the amplitudes given
in Equations (13) and (42):

|Ṽ (G+ ∆g)|2 = 4V 2
0 |ŨG+∆g(∆g)|2

× cos2

(
π

3
(2l − h) +

(l + h)

2
δ1 ·∆g

)
. (43)

If the modulation and the graphene periods are
commensurate in the sense of Equation (35), the
satellites will eventually coincide with points of the
reciprocal lattice of graphene. When this condition
does not hold, the diffraction pattern is densely filled
with spots in a self-similar way [55]. Satellites are
associated with new degrees of freedom known as
phasons [65, 55, 58, 59]. These phasons are Goldstone
modes associated with the extra broken-symmetries
provided by the modulation, that have a very different
dynamics when contrasted with more usual Goldstone
modes like phonons [65, 61].

Finally, let us briefly discuss random strain fields.
In this case, u(r) is a random quantity with a given

distribution, for example, a Gaussian. The description
is similar to a crystalline lattice with noise due to
thermal fluctuations. For example, the diffraction
pattern has peaks at the same position as in unstrained
graphene, but with a certain width resulting from the
convolution of the dispersion distribution. The width
is determined by the mean square value of u(r), as it
happens with the Debye-Waller factor [47].

3. Deformations in graphene

Here, the mechanical properties of graphene are briefly
reviewed. For a more exhaustive presentation on
this topic, we address the reader to other recent
review articles [11, 66, 67, 68]. Once a description
of graphene’s elastic properties is made, we turn
our attention onto how to produce deformations in
graphene.

3.1. Elastic coefficients: Experimental and theoretical
characterization

Graphene is the thinnest elastic membrane in nature,
with an exceptional stress-strain behaviour. It is
the material with the highest stiffness and strength
ever measured [5, 69]. At the same time, it can be
easily bent to get complex folded structures [70, 71]
and can withstand elastic deformations up to 25 %
[5], much more than in any other crystal. Owing to
these outstanding mechanical properties, graphene is
an ideal candidate for applications in nanomechanical
systems [72, 73, 74] and flexible electronic devices
[75, 76].

Many of the mechanical properties of graphene
can be understood by continuum mechanics models
[77, 78, 79, 80, 81]. Within the theory of linear
elasticity for two-dimensional (2D) membranes [82, 83],
the elastic energy density U (energy per unit area) of
a strained graphene membrane is given by:

2U =
E

1 + ν
Tr(ε̄2) +

Eν
1− ν2

(Tr ε̄)2, (44)

where ε̄ is the rank-two strain tensor, E is the Young’s
modulus and ν is the Poisson’s ratio. In general,
the strain tensor ε̄(r) depends on position. From
equation (44), the stress-strain constitutive relation
(Hooke’s law) for in-plane deformations is obtained by
s̄ = ∂U/∂ε̄, where s̄ is the stress tensor.

From an experimental point of view, the charac-
terization of the elastic coefficients (E ,ν) has been chal-
lenging owing to difficulties related to imposing a mea-
surable uniform stress and to problems related with
the handling of a membrane of monoatomic thickness.
In a pioneer work, Lee et al. [5] reported the value of
Young’s modulus of graphene by performing nanoin-
dentation measurements. Graphene was suspended



CONTENTS 9

Figure 7. Schematics of an AFM nanoindentation experiments
of suspended graphene membranes: (a) indentation circle and
(b) indentation ribbon. (c) Typical force-displacement curve of
an indented graphene membrane.

over a substrate with circular cavities and indented by
the tip of an atomic force microscope (Figure 7). The
experimental force-displacement relation was approxi-
mated by the Schwering-type equation [84, 85]

F = πs0δ +
E
r2
δ3, (45)

where F is the applied force, δ is the indentation at
the central point, r is the radius of the drum and
s0 is the pre-tension accumulated in the membrane
during the preparation procedure. Typically, the
pre-tension values are small: 0.07 − 1 N/m. Using
a least-square fitting of equation (45) to the force-
displacement curves, Young’s modulus was determined
to be E = 340 ± 50 N/m [5]. If the thickness of
graphene is assumed to be d = 0.335 nm, the derived
E corresponds to an ultrahigh 3D Young’s modulus of
E3D = E/d = 1.0± 0.1 TPa, very close to the in-plane
Young’s modulus of bulk graphite (1.02 ± 0.03 TPa).
They also estimated the breaking strength of graphene
as 42± 4 N/m and discovered that the elastic response
is highly nonlinear for strains above 10 %.

Subsequently, these experiments were interpreted
by Cadelano et al [86] within a generalized nonlinear
stress-strain relation for graphene, by incorporating
to equation (44) cubic terms in strains. In addition
to the Young’s modulus and the Possion’s ratio,
this approach introduced three nonlinear independent
elastic coefficients (C11, C12, C22 in Voigt’s notation),
which were estimated from tight-binding atomistic
simulations. These three additional high-order
moduli uncover the anisotropic character of graphene
when nonlinear features are taken into account and,
moreover, play a crucial role in determining its failure
properties.

Other nanoindentation works [87, 88, 89] have
found values of the Young’s modulus very close to
that reported in [5]. In particular, Huang et al [87]

performed nanoindentation experiments on graphene
ribbons, which were indented with a wedge-shaped
tip. On the basis of the device geometry, the
force-displacement relation F (δ) was approximated
according to a suspended bridge model developed to
describe the deflection of suspended metallic films, as
follows [90]:

F =
8ws0

l
δ +

8wE
l3

δ3, (46)

where w and l are the width and the length of
the graphene ribbon. In this case, the extrapolated
Young’s modulus from the fit of the experimental data,
based on equation (46), was E = 335 ± 20 N/m. Even
though atomic force microscope nanoindentation is
the most employed method to characterize the elastic
properties of graphene, other different techniques have
been employed, yielding similar results [69, 91, 92].

In contrast, the Poisson’s ratio of graphene ν
has not been obtained by means of the experiments
described above. The typically quoted value is
ν = 0.16, which corresponds to the Poisson’s
ratio for graphite in the basal plane. However, a
wide distribution of theoretical values exists in the
literature, ranging from 0.1 to 0.4. Atomistic Monte
Carlo simulations show Poisson’s ratio to be small
(≈ 0.1) in a broad temperature interval, being ν =
0.12 at T = 300 K [93]. At higher temperature
(T ≥ 1700 K), ν can be negative, so that graphene
becomes an auxetic material. On the other hand,
an ab initio calculation reveals an isotropic in-plane
elastic response of graphene at small strains with
a Poisson’s ratio of 0.186, which, at large strains,
becomes anisotropic and strongly dependent on strain
[94]. Additionally, molecular dynamic simulations
show a Poisson’s ratio of 0.21 for graphene, and the
ratio significantly depends on the size and chirality in
the case of graphene nanoribbons, with a larger value in
the armchair direction than in the zigzag direction. On
the experimental side, the Poisson’s ratio of graphene
has not been reported from a direct measurement. On
this point, it is worth mentioning that Politano et al
[92] recently estimated a Poisson’s ratio of 0.19 for
graphene grown on various metal substrates.

The bending rigidity κ is another important elastic
parameter of graphene that is used, for example,
to predict the performance of nanoelectromechanical
devices. Within the theory of elasticity for thin
plates, the bending rigidity is determined to be κ =
E3Dd3/12(1 − ν2). Evaluating this expression with
the parameters of graphene (E3D ≈ 1 TPa, d ≈
0.34 nm, ν ≈ 0.16) yields κ ≈ 20 eV, which is an
order of magnitude larger than the estimated value
for graphene. The often quoted experimental value
for graphene is κ ≈ 1.2 eV, which was extracted from
graphite’s phonon spectrum. Ab initio calculations
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predict κ ≈ 1.46 eV, and an analytical estimation based
on empirical potentials gives κ ≈ 1.4 eV. By using
a bond orbital model, Zhang et al [95] demonstrated
that the breakdown of the plate phenomenology for a
graphene monolayer is due to the decoupling of bending
and tensional deformations. At the same time, they
reported a precise expression for the bending rigidity
κ of n-layered graphene, for (n > 2), which probe the
plate treatment can be applied to multilayer graphene
in experiments involving out-of-plane deformations
without layer-sliding.

3.2. Strain patterns and methods to produce them

Strains arise naturally or are produced in a controlled
way in graphene. For example, the bonds between
Carbon atoms are almost incompressible. Then, less
than 0.1 percent of compressive strain creates out-
of-plane corrugations, resulting in the formation of
ripples and wrinkles [14]. Strain can be produced using
different techniques, like bending or elongating the
graphene/substrate system or by exploiting the lattice
mismatch and/or the thermal expansion mismatch
between graphene and its supporting substrate.
Several reviews are available where these topics are
covered [9, 14, 96]. Here we only review two topics
that are recent and important for other sections.

3.2.1. Graphene on substrates: moiré superlattices
When on a substrate, graphene experiences strain due
to surface corrugations or to the lattice mismatch to
the substrate. Experimentally, this is achieved by
growing graphene on top of substrate with different
lattice parameter [56], or by rotation of the graphene
sheet over a substrate [20]. Using these techniques,
uniaxial periodic strain can be produced [97] as well
as interference patterns known as moirè patterns [56].
The structural mismatch between graphene and its
support results in a superlattice over a distance know
as moirè periodicity, which usually ranges from 1 to
20 nm [97, 56]. A new length scale is thus introduced
by the superlattice.

Let us explain briefly why this happens. In Figure
8 (a), we present a superposition of two lattices with
a small lattice mismatch. This leads to an interference
pattern, analogous to the beating phenomena observed
when two sounds of slightly different frequencies are
superposed. Such beating is observed in Figure 8 (a)
as a striped diagonal pattern with a larger periodicity.
This resulting superlattice is an example of a Moiré
pattern. As shown in Figure 8(b), the wavevector
associated with this lattice, denoted by km, is given
by km = k2−k1, where k1 and k2 are the wavevectors
corresponding to each of the superposing lattices [63].
These wavevectors are perpendicular to the stripes seen
in Figure 8 (a) and the magnitudes are proportional to

k =k-k

k 1k2

12m

a) b)

Figure 8. (a) Two superposed patterns with a small lattice
parameter difference lead to a moiré superlattice, seen here
as a striped diagonal pattern with a larger periodicity than
the original lattices. (b) Wave vectors associated with the
superposed lattices of (a). The wavevector of the resulting
moiré is given by the difference between the original wavevectors.
Adapted from Ref. [63] with permission.

the inverse of the lattice parameter. In graphene over
sustrates, the description of the moiré pattern can be
quite complex, since there are many practical issues to
take into account [56].

Consider for example the case of graphene on top
of Ir(1, 1, 1) [98], as it has been experimentally done
via the pyrolytic cleavage of ethylene [63]. Figure 9
presents the resulting superstructure, which has been
examined with scanning tunneling microscopy (STM)
and low energy electron diffraction (LEEDS) [63].
There is slight lattice mismatch between the graphene
and Ir(1, 1, 1) lattices, resulting in a (9.32 × 9.32)
moiré with a repeat distance [63] of 2.53 nm. A
further refinement indicates that this was an excellent
approximation since the actual structure comprises
three beatings [56]. Figure 9 b) shows the unitary
cell indicated over the superlattice. As explained in
subection 2.2, the diffraction pattern of a superlattice
is given by a decoration of graphene’s diffraction
pattern with phason satellites. Figure 9 c) presents
such a diffraction pattern of graphene on top of
Ir(1, 1, 1), obtained from the LEEDS experiment. The
satellites due to the periodic modulation are clearly
seen and provide invaluable information about the
superlattice periods, since they are spaced according to
the wavevectors km, which have a much more smaller
norm than the substrate and graphene reciprocal
lattices. A similar situation arises when graphene is
rotated over the substrate, providing a way to tailor
the periodicity of the superlattice [20].

Moiré superlattices provide a powerful strategy to
engineer electronic and optical properties. Although
most of the ideas behind the moiré construction are
clear, the exact crystallographic structure on which
their electronic structure depends remains debated
[56]. In spite of this, for some weak interaction cases
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Figure 9. (a) Graphene on Ir(1, 1, 1) as seen on an electronic
microscope. (b) A moiré pattern with a periodicity of 25.3 Å can
be seen on a graphene flake attached to a Ir step: the unit cell of
the superlattice is represented by a rhombus. (c) Low energy
electron diffraction pattern (LEED) showing two main spots
corresponding to graphene and Ir(1, 1, 1) as indicated. Smaller
satellites reflect the moiré periodicity. These spots arise from
reciprocal lattice vectors of the supercell, which depend upon the
difference between the graphene and Ir(1, 1, 1) reciprocal lattice
vectors. (d) A strip of the superstructure, where a Carbon row
is shown in white. Reproduced from Ref. [63] with permission.

between graphene and the substrate the details are
basically understood [56, 63, 99].

As graphene is twisted, strained and sheared with
respect to its substrate, it suffers four geometrical
transformations: an isotropic rescaling, a directional
rescaling in two directions, and a rotation. In
mechanical terms, the isotropic rescaling produces
biaxial strain, while the directional rescaling leads to
uniaxial strain in two directions[56]. For Ir(1, 1, 1), the
biaxial compression is estimated as ε ≈ −0.29 % and
the uniaxial compression in ε ≈ −0.41 % [56].

3.2.2. Ripples and bending Ripples and bending of
the graphene membrane are vertical displacements of
the atoms from a plane. The are usually described by
the height z(r) from the unrippled case as a function
of the atom position. Although ripples and bending
are usually treated as different from strain, in reality
both are coupled. Graphene is a soft-material in the
sense that it wrinkles, it can be folded, and it is even
possible to do origami with it [100, 101, 102, 103, 104].
In fact, it is difficult to grow perfectly flat graphene [48,
105, 106, 107]. Graphene exhibits a high asymmetry
in tensile versus compressive strain, i.e., while the
Carbon-Carbon bond length can be increased up to
25 %, it is almost incompressible, and compressive

stress rather induces out-of-plane deformations. For
example, it has been observed that growing graphene
on an anisotropic substrate produces one-dimensional
periodic ripples [97]. Molecular dynamics simulations
(MD) are helpful to clarify how ripples and strain are
interlaced in suspended graphene sheets [108, 109, 110].

Two types of ripples form to relax external strain
in suspended graphene. The first is a wavefront ripple
orthogonal to the strain front, if external strain is
applied along a single direction. The second is a
sinusoidal shape, which emerges if the external strain is
applied simultaneously along two orthogonal directions
[110].

The typical height of the ripples is between 5 Å
and 10 Å [108, 109, 110, 111], with a wave-length of
around 10 nm. However, the dynamics of relaxation
is more complex than expected. A recent experiment
with a scanning tunneling microscopy measured the
vertical motion of graphene [111]. The set-up of
the experiment as well as the reported measurements
of height z(r), the tunnel current and the mean
quadratic displacement of the membrane are shown
in Figure 10. The dynamics exhibits rare long-scale
excursions reflected in the anomalous mean-squared
displacements and Cauchy-Lorentz power law jump
distributions [111]. This random quivering of graphene
membranes has been proposed to generate electricity
for nanomachines.

4. Electronic properties

Much of the information concerning the electronic
quality of a material is given by its charge carrier
mobility µ. This information is complemented in
graphene by the charge concentration n, since charge
carriers can be tuned continuously between electrons
and holes by using an external electrical field [3].

For typical carrier concentrations of n ≈
1011 cm−2, a µ exceeding 1.0 × 105 cm2V−1s−1 (at
room temperature) and 1.0×106 cm2V−1s−1 (at liquid-
helium temperatures) has been observed for suspended
graphene [112, 113]. These suspended devices
are extremely fragile and difficult to anneal [114].
Flexural modes, which are out-of-plane membrane
vibrations, produce most of the electronic scattering
once extrinsic defects are removed [113]. In suspended
graphene, a significant amount of strain is needed
to suppress flexural mode scattering [113]. A very
good compromise between n, µ and the ease of
building the experimental set-up is achieved by using
an hexagonal boron-nitride substrate [114] (hBN), in
which n ≈ 1011 cm−2 with a reported µ of 1.0 ×
105 cm2V−1s−1. As a comparison, some undoped
(intrinsic) semiconductors like InSb exhibit a µ as
high as 7.7× 104 cm2V−1s−1 at room-temperature [3].



CONTENTS 12

Figure 10. Measurement of free-standing graphene membrane
height dynamics. (a) Experimental setup using a scanning
tunnel microscope with an inset showing a zoom of the
microscope tip and the graphene membrane vibrations (b) Time
trace of membrane height (above) and from a rigid sample
(below). The inset shows a zoom of the same trace height.
(c) Tunneling current as a function of time. (d) Mean-
squared displacement of membrane height as a function of time.
Dashed lines are fits with the result of a simulation using
exponential wait times and Cauchy jump lengths. Reproduced
from Ref. [111] with permission. Copyrighted by the American
Physical Society.

Typical doped semiconductors like n-Ge can reach 5.0×
103 cm2V−1s−1. When high quality graphene obtained
by mechanical cleavage on top of an oxidized Si wafer
is used, this extreme electronic quality translates into
a mean free path l = (h/e)µ(n/π)1/2 of order 100 nm
for n ≈ 1012 cm−2, where h is Planck’s constant and e
the electron charge [114]. The same extreme electronic
quality is behind the observation of a ballistic behavior
and a quantum Hall effect at room temperature [3].

Notice that the earlier different values of µ were
attributed to different sample qualities, substrates and
experimental setups [113]. In other words, imperfec-
tions due to wrinkles, edges, flexural scattering and
strain affect the electronic properties. Therefore, it
is important to keep in mind that even suspended
graphene has a certain amount of strain and thus this
is a fundamental feature to be taken into account. In
spite of this, it is now accepted that most of the elec-
tronic and optical properties of pristine graphene are
well described by a one band tight-binding Hamilto-
nian defined in a honeycomb lattice [41, 115]. For low-
energy excitations, this approach leads to an effective
Dirac Hamiltonian in reciprocal space. DFT calcula-
tions are always a good alternative, although a well-
tuned tight-binding can cover the entire Brillouin zone

[116, 117].
There are several paths to calculate and under-

stand the effects of strain on the electronic properties.
Most of them are based in methods used for studying
pristine graphene [115, 116]. One approach is to use
Density Functional theory (DFT). The second com-
mon approach is the use of a modified tight-binding
Hamiltonian (TBH), solved by using numerical diago-
nalization or analytical calculations. The third path is
to approximate the TBH near the Dirac points. This
leads to an effective Dirac equation where pseudomag-
netic fields appear. The last approach is used whenever
the strain field varies smoothly in space. Here we will
review all approaches starting with the TBH method.
In particular, we will present some analytical solvable
strain fields that provide useful tools to understand the
main consequences of strain. Eventually, a comparison
can be made between the different methods for such
solvable cases. Under this perspective, one of the most
important and instructive cases is the uniform strain.
It served to quantify gaps as a function of strain [16]
and to clarify some early issues in the derivation of the
effective Dirac Hamiltonian for strain [118].

As it will become clear in forthcoming subsections,
strain has important consequences that we resume
below. The effects for slowly-spatially varying strain
[119, 120] are:

• A shift of the Dirac point. The shift is given by a
pseudomagnetic vector potential.

• A change in the metric of the lattice, i.e., the
structure of reciprocal space is modified.

• The energy scale is changed due to the modifica-
tion of bond lengths.

• The Fermi velocity becomes anisotropic.

• A pseudoelectric field appears.

For fast-spatially varying strain the Dirac approx-
imation is strongly modified leading to:

• Shift, merging and reproduction of Dirac points.

• The creation of energy gaps.

• The reciprocal lattice can even loose its meaning.
In some cases it can be replaced by a superlattice,
like the moiré superlattice. A procedure akin to
the magnetic lattice concept can be introduced.

• Electronic spatial localization can be greatly
affected.

In both slow and fast spatially varying strain,
the Dirac points will not coincide with the high
symmetry points of the distorted reciprocal lattice
[118] (whenever is it possible to define it).

The previous list does not include the effects of
uncorrelated, local random strain, which are better
described and understood by local impurity fields that
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will be discussed later. In other words, strain effects
do not only depend in the spatial variation of the
Fermi velocity. Strain can be local or have a long-
range nature, as well as being random or correlated.
For example, local strain can be produced by the
tip of a scanning microscope [121, 111], while long-
range correlated strain occurs over periodic substrates.
Since, strain breaks the symmetry of the honeycomb
lattice it is possible in some cases to classify the specific
broken symmetries [122] and include to terms in the
Hamiltonians with the specific symmetry consideration
[13]. In order to avoid overlap with other reviews,
here we do not follow this path. Instead, we look for
models that represent interesting cases of strains and
ripples. These simple models cover many interesting
measurable effects, like a gap phase diagram [123,
16], a fractal spectrum [124, 40, 125], anisotropic
Fermi velocity [126, 118, 120], mixed Dirac-Schrödinger
behavior [16, 36, 37, 38, 39, 40], pseudomagnetic
and pseudoelectric fields [6, 127, 120], Landau levels
[128, 129], non-trivial topological modes and optical
dicroism [130, 131].

Before entering the discussion of the strained case,
in the next subsection we review how to understand the
electronic properties of unstrained graphene and some
of the general effects of disorder. In the remaining
subsections, we will discuss the different approaches to
treat strained graphene.

4.1. Electronic properties of pristine and disordered
graphene

To study the electronic properties of graphene, one
of the most fruitful approaches is the tight-binding
approximation based on π-electrons [15]. Within
this method, the contributions from the three valence
electrons in the σ Carbon orbitals are neglected. This
leads to the following Hamiltonian matrix model in
which only π−orbitals are considered [41]:

H0 = −t0
∑
r

3∑
n=1

a†rbr+δn +H.c., (47)

where r runs over all A sites of the trigonal Bravais
lattice, and the hopping integral (also known as the
transfer integral) t0 ≈ 2.7eV is obtained by fitting to
experimental or numerical data [41]. a†r and br+δn

are creation and annihilation electron operators on
the A sublattice (at position r) and B sublattice (at
position r + δn). This model describes two electrons
in a honeycomb lattice, and only first-neighbours are
considered.

The bipartite nature of the lattice has many
important consequences for the electronic properties,
and as explained before, other bipartite lattices
with quasiperiodic order [42] or disorder [43, 44,
45, 46] share some features with graphene, like a

symmetric spectrum, zero-energy confined state modes
or pseudomobility edges [42, 43].

Second nearest-neighbours can be included by
using a second transfer integral tsn0 ≈ 0.68eV which
adds extra terms to Equation (47). It is possible to
reproduce the energy dispersion in the whole Brillouin
zone using a TB Hamiltonian up to third neighbours
[132, 133]. Such corrections play an important role for
disordered [45, 46, 134] and strained graphene [54], and
for excitations that are no longer considered low-energy
in pristine graphene.

Returning to the first-neighbour model with a
single π−orbital per site, Equation (47), one can reduce
the Hamiltonian to a 2× 2 matrix (because the lattice
only contains two-non equivalent sites) by a Fourier
transform:

a†r =
1√
N

∑
k

eikra†k, (48)

where we introduced a wave-vector k. Using a similar
transformation for br+δn leads to the Hamiltonian:

H0 = −t0
∑
k

3∑
n=1

e−ik·δna†kbk +H.c. (49)

The corresponding Schrödinger equation is an effective
2×2 Hamiltonian matrix H(k), acting on a wavevector
with components (ak, bk) and eigenvalues E(k):(

0 HAB(k)
H∗AB(k) 0

)(
ak
bk

)
= E(k)

(
ak
bk

)
, (50)

where:

HAB(k) = −t0f(k), (51)

and f(k) is the following complex function:

HAB(k) =

3∑
n=1

e−ik·δn . (52)

We obtain the well known graphene energy dispersion
from this linear system:

E(k) = ±t0|
3∑

n=1

e−ik·δn |. (53)

We present the resulting surface E(k) obtained
from Equation (53) in Figure 11, as well as a
transversal cut using a path in reciprocal space. A
comparison with a full DFT calculation is also shown
in the Figure. The agreement is excellent near the
Fermi energy, as it has been confirmed in numerous
experiments [15]. Without charge pumping by external
fields, the orbitals are half-filled and thus the Fermi
energy (EF ) falls at E = 0. Equation (53) leads to
an effective Dirac equation (see subsection 4.8) and a
conical dispersion near E = 0, called the Dirac cone.
The condition E = 0 leads to a pair of special k points
labeled by KD for which E(KD) = 0.
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KD happens to coincide with K± for pristine
graphene. Although there is some confusion in the
literature about this point [118, 120], this is no longer
the case for strained graphene [135, 118, 15]. The
existence of two inequivalent Dirac points with the
same energy leads to the concept of a valley [41].
That is important for several properties. In particular,
effects arising from structural disorder depend upon
their feasibility of producing intra- or inter-valley
scattering [136].

It is important to remark that Equation (53) can
be written without reference to the vectors δn. Using
Equation (3), Equation (53) transforms into:

E(k) = ±t0|
∑

(1 + eik·a1 + eik·(a1−a2))|. (54)

In other words, as long as the transfer integral is the
same for all bonds, the energy dispersion depends only
on the structure of the Bravais lattice. Furthermore,
the condition E(KD) = 0 indicates the existence of a
peculiar phase-difference at the Dirac point. This is
because:

E(KD) = ±t0
3∑
j=1

Zj = 0, (55)

where Zj = 2πj/3 for j = 0, 1, 2 are the three complex
roots of the equation Z3 = 1. Previous Equation can
only be satisfied when there is a phase difference of
2π/3 in the wavefunction for one of the sublattices.
Since each bipartite sublattice is made from triangles,
this implies that states near the tip of the Dirac cone
have a certain amount of frustration, in the sense that
phases can not be π between consecutive sites.

Equation (53) yields the Dirac cone: for crystal
momentum q near the Dirac point such that k =
KD + q (Figure 11) we have:

E(k) = E(q) = ±~vF |q|, (56)

where vF is the Fermi velocity:

vF =
3t0a

2~
. (57)

This leads to a linear density of states (DOS):

ρ0(E) =
2|E|
π~2v2

F

, (58)

and to the following carrier density:

n0(E) = sgn(E)
2|E|2

π~2v2
F

. (59)

In fact, Dirac cones are topologically protected
and thus robust to second nearest neighbour interac-
tion [137]. For small graphene sheets, the linear be-
havior of the dispersion can change due to edge-related
effects. For example, a gap can be opened in graphene
nanoribbons depending on the edge type as well as on
the number of hexagons along the nanoribbon width

Figure 11. A comparison between a tight-binding and a
full DFT theory calculation for pristine graphene. (a) Energy
dispersion obtained from Equation (53). A zoom-in at the Fermi
energy showing a cone is displayed as well. The vertices of the
cones touch at the Dirac point at K±. (b) Band structure along
a high-symmetry path in the Brillouin zone. The dotted line
is obtained from Equation (53) and the other is from DFT a
calculation that includes σ and π orbitals.

[116], making this effect a useful property to design
electronic devices [24].

We now show that in fact, the Dirac cone and
the nearby Van Hove singularity are consequences of
this frustration. Less known, although important for
the introduction of disorder and spin, is the physical
reason behind the cone appearance. It is related with
a wavefunction frustration in the underlying triangular
lattice [44, 134]. Consider the squared Hamiltonian of
Equation (49). Using Equation (50) we obtain that
such squared H2 is diagonal:(

H2
AB(k) 0

0 H2
AB(k)

)(
ak
bk

)
= E2(k)

(
ak
bk

)
, (60)

implying that the components of the wavefunction on
the A and B sublattices are decoupled. Thus H2

describes a triangular lattice, i.e., the squaring of H
renormalizes one of the bipartite sublattices [44, 134]
with an spectrum folded around E = 0, as indicated in
Figure 12.

States near E = 0 need to be close to an
antibonding nature in a triangular lattice. This
produces frustration since wavefunctions can not have
a phase difference of π between all neighboring sites
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in a triangular lattice. In the absence of disorder,
and as explained in Equation (55), some states lower
their energy by having phase differences close to 2π/3
as E → 0. Frustration implies that many states
are pushed away to higher energies, thus producing a
Van Hove singularity at energy E2 = t20. This leads
to a simple picture of graphene’s spectrum from the
underlying triangular sublattice.

We now summarize this picture:

• Band edges in graphene are obtained from the
maximum of E2(k), associated with the diffraction
spots at Γ points, i.e., for k = lG1 + hG2 with l
and h integers. Here ∇kE2(k) = 0.

• The Dirac points in graphene correspond to
the minimums of the function E2(k). Here
also ∇kE2(k) = 0 (in graphene, the operator
∇kE is not defined at the Dirac cone tip).
Dirac points coincide with the high-symmetry
points K±, a result expected from the diffraction
properties because two Bragg lines intersect
therein. Diffraction leads to stationary waves, i.e.,
to a vanishing group velocity in the triangular
lattice.

• Since E2(k) is a periodic bounded function,there
must be a third singularity [138], which in this
case corresponds to the Van Hove singularity at
E2(k) = t20. The singularity is a saddle point of
E2(k).

When very strong impurities or vacancies are
added, the wavefunction tends to be localized in
regions of lower frustration which have a decreasing
exponential probability with size, leading to a kind of
Lifshitz tail [44, 139]. As a result, a pseudomobility
edge appears [44, 139], as confirmed in ARPES
experiments of graphene doped with H impurities [140].
The corresponding wavefunctions have an interesting
multifractal behavior [134]. In a similar way, resonant
states appear near the Fermi energy when uncorrelated
impurities are added [139, 141, 142]. Its correct
location in energy requires the introduction of the
second neighbor interaction [141].

It is important to remark that zero energy modes
appear due to disorder or to the presence of boundary
modes (associated with topological properties). These
modes decouple from the renormalization and are
related with highly degenerate modes with the
property that the sum of wavefunction amplitudes
must add to zero for the neighbors of any site in the
lattice [43, 46].

In other bipartite lattices such as random binary
alloys, these modes are strictly localized and confined
[143, 43]. In quasiperiodic lattices, zero energy
modes form beautiful fractal nodal lines carrying up
to 10% of the spectral weight [144]. For doped

+
+
+
+

+
-

+

-

Figure 12. Sketch of the Hamiltonian eigenvalue
renormalization from a graphene hexagonal lattice into a
triangular one by applying the transformation H2: the
graphene’s density of states ρ(E) is transformed into ρ(E2),
resulting in a folding around E = 0 that is indicated by arrows.
Band edges, central states, and phase differences among sites
are represented by ± signs. Central states at E = 0 have a zero
amplitude in one sublattice [46]. When one of the sublattices
is renormalized, states near E = 0 result in edge band states
with an antibonding nature in a triangular lattice [44, 134], as
indicated in the triangle that appears inside the hexagon. Due
to frustration, states are pushed to higher energies leading to
Van Hove degeneracies seen as a peaks in the DOS.

graphene, the number of states was obtained by using
a sum over moments and disordered configurations
[46]. Such modes are especially important for magnetic
properties.

The effects of disorder can be classified by
the kind of symmetry they break [122]. Different
types of randomness realize all possible ten symmetry
classes of Dirac Hamiltonians [145], while symmetry
considerations lead to different kinds of extra terms [13]
to the unperturbed Hamiltonian, Equation (47). As a
rule of thumb, the range of the potential determines if
intra- or inter-valley scattering is allowed [136, 146,
139]. Inter-valley scattering, associated with long
range potentials, allows access to the chirality degree
of freedom allowing localization [136, 139], which is
otherwise evaded for short-range potentials. Here,
chirality is given as the phase of the wave-function
projections onto the A and B sublattices [44]. More
often is interpreted in terms of the Dirac equation
as the projection of a sublattice pseudospin in the
momentum direction [133].

The main reason for antilocalization is the absence
of backscattering, i.e., to reverse the trajectory of an
electron, one must change its momentum from p to
−p, implying a change of valley. But p is coupled
with chirality, which is not changed by short-range
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potentials [133]. However, backscattering, as is the
case of group-I impurities [140] or vacancies [44], also
depends upon the energetic range of the disorder [133].
Further details are given in the excellent books by Foa-
Torres, Roche and Charlier [133] or Katnelson [147].

4.2. Tight-binding approach to strain

As indicated in section 2.2, in strained graphene
the positions of atoms change from r to r′ = r +
u(r). As a result, distances between atoms change,
modifying the hopping parameter along the way. The
TB Hamiltonian for strained graphene is obtained by
replacing the original lattice positions and hopping
parameter in Equation (49), with those resulting from
the structural distortion [41]:

H = −
∑
r′,n

tr′,δ′n(r)a
†
r′br′+δ′n(r) +H.c., (61)

where r′ runs over all sites of the deformed honeycomb
lattice and the hopping integral tr′,δ′n(r) varies due
to the modification of Carbon-Carbon distances. The
operators a†r′ and br′+δ′n(r) correspond to creating and
annihilating electrons on the A sublattice (at position
r′) and B sublattice (at position r′ + δ′n(r)).

An important feature of Equation (61) is the
modification of the first-neighbour vectors δn onto a
space-dependent set of first-neighbour vectors δ′n(r).
Its value depends upon∇u(r) as indicated in Equation
(18). This observation is fundamental to obtain
the right strained TB Hamiltonian. The lack of
this lattice correction in earlier versions of the TB
Hamiltonian produced some controversies concerning
the contribution of this term to local pseudomagnetic
fields in the Dirac approach. Eventually, it has been
found that lattice corrections do not contribute to the
pseudomagnetic field [52, 108, 109, 148], although they
are important for the TB in circumstances where the
mean-field Dirac approach is not valid (see subsections
4.8 and 4.9).

In fact, the lack of lattice corrections imply
displacements that keep constant distances between
neighbours. Under this approximation, the elastic
energy is not changed. Such kind of deformation is
known as a floppy-mode [149, 150] and it provides a
link to the study of electronic properties and network
topological constraints [35] known in glasses as the
Phillips-Thorpe rigidity theory [151, 149, 150].

To complete the model, modifications of the TB
parameters are needed. Usually, this is given by
an estimation of overlap changes for π-orbitals as a
function of the Carbon-Carbon distance [152, 153, 154]:

tr′,δ′n(r) = t0 exp[−β(|δ′n(r)|/a− 1)], (62)

where β is the electron Grüneisen parameter [147]:

β = − ∂ ln t

∂ ln a
, (63)

estimated for graphene to lie in the interval β ≈ 2− 3.
This parameter is usually found by analyzing the G-
mode Raman scattering peak of strained graphene
[155, 156], or by using ab initio calculations [157].
The Grüneisen parameter is a measure of the phonon
mode softening rate or hardening. It is a fundamental
quantity to understand strain effects as well as
thermomechanical properties.

Once the Hamiltonian is written, it can be
diagonalized either by numerical calculations or (in
some cases) analytically. In the following section we
provide some important examples of these procedures.
These examples are the following:

(i) Uniform strain field. Here the strain field is
independent of the position (but it can depend on
sublattice).

(ii) Isotropic expansion. This is a particular case of
the uniform strain field.

(iii) Uniaxial non-uniform strain field. There is
a direction in which strain is either zero or
constant, while its magnitude is arbitrary in the
perpendicular direction.

(iv) Arbitrary periodic strain fields. They are usually
due to substrates or ripples.

Finally, a note of warning is necessary when
using Equation (61). This Hamiltonian does not take
into account that hopping terms to second and third
neighbours can be incremented with respect to the
first-neighbour hopping for strong strain, a feature
that has not been completely investigated in the TB
approach.

4.3. Uniformly strained graphene

In this case, the strain displacement field and the strain
tensor ε̄ are space-independent, as explained in Section
2.2. A uniformly strained lattice preserves periodicity,
and thus a reciprocal space can be used to solve the
tight-binding equations.

It was demonstrated in section 2.2 that the
deformed cell unit vectors are given by Equation (24),
leading to the new set of first-neighbour vectors δn

′

indicated in Figure 13(a), and corresponding new
reciprocal-lattice vectors are given by Equation 26,
which are compared with the unstrained ones in Figure
13(b).

The uniformly-strained lattice is still periodic,
so we use a Fourier representation using k-space
wavevectors for the operators a†r′ and br′+δ′n . Using
the Hamiltonian (61), the Hamiltonian for the strained
lattice is [118]:

H = −
∑
k

3∑
n=1

tne
−ik·(Ī+ε̄)·δna†kbk +H.c., (64)
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Figure 13. (a) Uniformly-strained graphene lattice showing the strained vectors δ′i –that point to the neighbors of A−sites– and
their unstrained counterparts δi. (b) Corresponding strained reciprocal lattice, showing the strained and unstrained reciprocal
vectors G′ and G, as well as the strained and unstrained high-symmetry points K′± and K±. (c) Energy dispersion, showing how
the distortion of the reciprocal lattice transforms the original Dirac cone into a distorted one with a directional dependent Fermi
velocity. The cone vertex is also translated to a new point KD which does not coincide with K′±. The vector displacement from
the original position is directly given by the pseudomagnetic vector potential. Adapted from Ref. [120] with permission.

where tn (n = 1, 2, 3) is the hopping integral between
each of the three nearest neighbors of a site:

tn = t0 exp[−β(|(Ī + ε̄)δn|/a− 1)]. (65)

Equation (64) can be written as a 2 × 2 matrix,
whose eigenvalues provide the energy-momentum
dispersion for graphene under uniform strain:

E(k) = ±|
3∑

n=1

tne
−ik·(Ī+ε̄)·δn |, (66)

and which can be simplified to give:

E(k) = ±
√
γ + g(k), (67)

where:

g(k) =

3∑
n=1

3∑
s>n

2tnts cos
[
k · (Ī + ε̄) · (δn − δs)

]
, (68)

and:

γ = t1
2 + t2

2 + t3
2. (69)

This expression is also valid for any anisotropic
honeycomb lattice [158].

Typical contour plots resulting from the energy
dispersion given by Equation (67) are shown in
Figure 14(a) for unstrained graphene, and in Figures
14(b), 14(c) and 14(d) for other representative strains.
The high symmetry points of the strained reciprocal
lattice and the first Brillouin zone obtained from
Equation (27) are shown as white lines in Figure 14
as well. The Dirac points KD in reciprocal space are
given by E(KD) = EF = 0 and shown by red dots
in Figure 14: the Dirac points do not coincide with
the high symmetry points K ′− and K ′+ of the strained
reciprocal lattice. One can prove that in general, the
condition E(KD) = 0 is different from the position of
the high-symmetry points of the reciprocal space given
by Equation (27). Only for pure graphene the Dirac
points coincide with the high symmetry pointsK ′− and
K ′+.

Figure 14. Contour plots of the energy dispersion obtained
from Equation (67). The first Brillouin zone is indicated by
white lines. The Dirac points, where the Fermi energy lies in, are
indicated by red dots. (a) corresponds to unstrained graphene,
(b) to uniaxial zigzag strain with {εxx = 0.2, εyy = −νεxx,
εxy = 0}, (c) to uniaxial armchair strain with {εyy = 0.2, εxx =
−νεyy , εxy = 0}, and (d) to shear strain with {εxx = εyy = 0,
εxy = 0.2}. Notice how two Dirac cones merge into one in this
latter case as the reciprocal lattice turns into a square. For all
strains (even case (c)), the Dirac points KD do not have the
same position as K′+ and K′−, which are the vertices of the
polygons.

Thus, Dirac point positions are shifted by strain
and their actual location needs to be found explicitly
from the dispersion relation. This crucial point has
not been taken into account in several papers available
on the literature, although it has been observed in
DFT calculations [159, 160], in relativistic field theory
approaches [119, 161] and in tight-binding calculations
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Figure 15. Energy dispersion E±(kx, ky) for ky = 0 and (a) t2/t3 = 1, (b) t2/t3 = 1.5, (c) t2/t3 = 2, and (d) t2/t3 = 2.5. The
colored area in panel (e) is the region of a gapless electronic spectra. The four symbols marked in (e) signal the coordinates in
parameter space corresponding to conditions (a), (b), (c) and (d).

[118, 120] (see Ref. [162] too). This aspect is analyzed
with more detail in the corresponding effective Dirac
Hamiltonian; subsection 4.8.

Up to first order in the displacement field, the new
Dirac point location is given by [120]:

K±D ≈ (I − ε̄) ·K± + ζA, (70)

where ζ = ±1 is the index for each Dirac valley and
the components of A are:

Ax =
β

2a
(ε̄xx − ε̄yy), Ay = − β

2a
(2ε̄xy). (71)

A turns out to be a vector potential whose rotational
induces a pseudomagnetic field (subsection 4.8).

The relationship between high-symmetry points
and Dirac points is also shown in Figure 13(c), which
depicts the deformation of the Dirac cone [118]. As
shown in subsection 4.8, this produces an angle-
dependent Fermi velocity as the energy dispersion
becomes elliptical.

This deformation has two contributions [118], one
is the change of reciprocal space and the other is
due to energetic overlap changes. Both effects are
easy to separate if we set the Grüneisen parameter to
β = 0. This last case corresponds to a lattice with the
same transfer integrals and connectivity as in pristine
graphene. However, the direct lattices are different, so
the reciprocal lattices must also be different.

As an example of this phenomenon, one can strain
the honeycomb lattice and turn it into a brick wall
lattice. Since the lattice connectivity is the same and
β = 0, both Hamiltonian matrices are the same. It
follows that the energy eigenvalues are the same for
the brick wall and honeycomb. However, the reciprocal
lattice of the brick wall is different from the honeycomb
one. Thus, if we plot the energy as a function of

the momentum we will get a deformed cone. In the
hypothetic situation that β = 0, we already have that
KD 6= K ′+.

A puzzling point is yet to be addressed in the
literature. According to the previous developments,
energetic effects –which depend on the parameter β–
and geometric effects –which depend on the position of
K±– predict a separation of KD from K±. However,
geometrical effects are captured in diffraction and, as
explained in Section 2, diffraction leads to singularities
in the DOS. Therefore, it is difficult to imagine a
situation in which nothing happens to the electron
dispersion at the intersection of Bragg lines at K±,
while a singularity is displaced to K±.

This suggest that there is a missing interplay
between energetic and geometric effects, and several
paths are available to solve this dilemma. One such
path requires to assume an electronic stabilization of
the structure, like in the Humme-Rothery phases or
in the Peierls instability. Another path invokes the
breakdown of Cauchy-Born on lattices with a basis, to
modify the parameter β [53]. In any case, the shift of
Dirac points has dramatic consequences displayed in
Figures 14 and 15.

In Figure 15, energy-momentum dispersions
E(kx,ky) of special significance are shown for ky = 0,
by setting t1/t2 = t0 and using four values of t2/t3.

First, the undistorted lattice are displayed in
Figure 15(a) when t2/t3 = 1. The Dirac points
separate from the high symmetry points when t2/t3 =
2 in Figure 15(c). As the deformation increases up
to 20%, the Dirac points merge, as seen in Figure
14 and 15(b). For this magnitude of critical stress,
the dispersion relation is linear along the y−direction
(relativistic Dirac behavior) and quadratic along the
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x−direction [16, 36, 37, 38, 39, 40] (non-relativistic
Schrödinger behavior). As seen in 15(d), a gap ∆g

appears when the hopping anisotropy increases.
In general, the spectrum remains gapless as long as

the Hasegawa triangular inequalities are satisfied [123]:∣∣∣∣ |t1||t3| − 1

∣∣∣∣ ≤ |t2||t3| ≤
∣∣∣∣ |t1||t3| + 1

∣∣∣∣ , (72)

which correspond to the colored area in Figure 15(e).
Each of the four representative key points in the
evolution of E(kx,ky) seen in Figures 15(a), 15(b),
15(c), and 15(d) are represented in Figure 15(e), which
shows that a gap opens past a critical strain when
t2/t3 ≥ 2.

The Hasegawa inequalities have important predic-
tive power. For example, one sees in Figure 15(e) that
the point ( t1t3 ,

t2
t3

) = (1, 1) –corresponding to the dis-
persion seen in Figure 15(a)– is surrounded by an ap-
preciable shaded area. This means that the gap needs
a certain threshold strain to open, depending upon the
direction of the applied deformation.

To understand previous point, we observe that
deformations in the armchair direction keep the ratio
between t1 and t2 fixed while t3 changes. Thus,
armchair strain changes hoppings along the diagonal
line t1/t3 = t2/t3 in Figure 15(e), and one learns that
tensile strain along the armchair direction (armchair
strain) will never lead to a gap opening from this figure.

For strain in the zig-zag direction, the argument
is reverted, and the system moves in the direction
t1/t3 = −t2/t3. In this direction, the shaded ribbon-
like area has its narrowest width and a gap opens.

Pereira and Castro-Neto used the Hasegawa
inequalities to show that a uniform uniaxial strain in
the zigzag direction opens a gap once the elongation
reaches 23%. In contrast, a uniform uniaxial strain in
the armchair direction is not able to open a gap [15, 16].

Figure 16 presents polar plots of isostrain curves
for different angles of the applied strain indicated
by arrows [16]. The corresponding values of t1/t3
and t2/t3 are also indicated and compared with the
Hasewaga region. The red isostrain curve indicates
the minimal strain (23%) needed to open an electronic
band gap.

This Physics is re-emphasized in Figure 17(a),
which presents a plot of the energy dispersion for
ky = 0 and different values of kx using a zigzag strain,
leading to a parabolic band dispersion once the gap
opens. Figure 17(b) presents the evolution of the
energy bandgap for strain applied along the zigzag
direction. The gap opens linearly once the critical
strain of 23% is attained.

The gap opening has been confirmed by ab
initio simulations [163]. Ni et. al. confirmed the
possibility of a gap opening [164], although the first
reported minimal tensile strain for a gap opening

Figure 16. Isostrain curves (ε = 0.1, 0.2, 0.23, 0.3) for the
direction of the applied strain indicated by arrows. The angles
are measured from the zig-zag direction. The corresponding
values of t1/t3 and t2/t3 are also indicated and compared with
the Hasewaga region. The critical (red) isostrain curve indicates
the minimal strain (23%) necessary to open a gap. No gap
is open for tensile strain applied along the armchair direction.
Inspired in a plot presented in Reference [16]

was about 0.8%. Later on, the same group revised
to 26% their estimate of the minimal tensile strain
for gap opening [165], in good agreement with the
tight-binding calculation. The problem in the first
estimation by Ni et al. [165] was, precisely, the
overlooking of the displacement of Dirac points from
the high-symmetry points.

It is worthwhile to see see Figure 18 to understand
in basic terms why zigzag and armchair strain have
such a different effect upon gap opening. Apply a huge
tensile strain in the zigzag direction and note that,
while t3 keeps its value due to the invariance δ′3 = δ3,
both t1 and t2 go to zero. As seen in Figure 18 b),
the system is nearly dimerized in this limit, keeping
only bonds in the y direction. In that case, there are
only two eigenvalues of the Hamiltonian E = ±t0, each
with degeneracy N/2 with N the number of sites. The
location of these states is precisely the same of the Van
Hove singularity seen on the DOS for pure graphene
(Figure 12). A gap opens, given the finite spacing
among these Van Hove singularities.

But as illustrated in Figure 18(c), the situation
is different for armchair strain. Here, bonds along
the zigzag direction are almost preserved while the
interaction between zigzag chains goes to zero with
increasing strain, becoming isolated chains at the limit
[166]. The DOS of these linear conducting chains
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Figure 17. (a) Energy dispersion for ky = 0 and different values of kx using a zigzag strain. Observe the gap opening indicated by
an arrow, as well as the parabolic band shape. (b) Gap size as a function of strain in the zigzag direction. The gap opens linearly
once the critical strain of 23% is attained. Inspired on a plot presented in Reference [16]

appears in Figure 18(c), and a semiconducting gap
never opens. This limit brings the system close to a
quasi-1D system known as a Luttinger liquid [167].
Several systems share this behavior as for example
chalcogenide compounds, stripe phases of the copper
oxide high-Tc superconductors, carbon nanotubes,
two-dimensional gases in large magnetic fields, etc., in
which several exotic properties appear [167].

We next analize how the mean electron velocity
evolves with strain. It is given by the group velocity of
the wave packet:

v(k) = ∇kE(k), (73)

where ∇k is the gradient operator in k-space.
For electrons in graphene under uniform strain, we

introduce Equation (67) into Equation (73) to obtain,

v(k) = ± 1

2E(k)
∇kg(k). (74)

The components x and y of v(k) are given by [54]:

vl(k) = ±
3∑

n=1

3∑
s>n

[(1 + εll)(δ
l
n − δls) + εlm(δmn − δms )]

×tnts
sin[k · (Ī + ε̄) · (δn − δs)]√

γ + g(k)
, (75)

where l,m = {x, y} and l 6= m. Here δls denotes the l
component of the vector δs.

It is possible to calculate the electronic and optical
conductivity using these expressions. Some groups
have studied the electronic conductivity using uniform
uniaxial strain for graphene nanoribbons coupled to
metallic leads in heterojunctions using the TB method
and the Landauer formalism [168]. It becomes easier
to apply the effective Dirac equation formalism in some
cases (see section 5).

4.3.1. Simplest form of strain: the isotropic expansion.
The value of an isotropic expansion resides in being a
limiting case that can be solved in a straightforward
manner to check the consistency of any strain theory.
Such test leads to the discovery of problems in some
formulations [118, 119, 120], as it will later be discussed
within the effective Dirac Hamiltonian approach in
section 4.8.

For isotropic strain, the lattice parameter a is just
rescaled to a′:

a→ a′ = (1 + ε)a (76)

given that the strain tensor is diagonal and ε̄ = εĪ.
The transformation depends upon the single parameter
ε = (a′ − a)/a. As a result of this rescaled lattice
parameter, all hopping parameters from Equation (65)
scale to the same value t′0:

t0 → t′0 = t1 = t2 = t3 ≈ (1− βε)t0, (77)

which rescales the energy units, but leaves the
symmetries of the Hamiltonian unchainged.

The reciprocal lattice is preserved for an isotropic
expansion, but their basis vectors change to G′i =
Gi/(1 + ε): the expansion in real space leads to a
contraction of the reciprocal lattice.

The Fermi velocity is rescaled in the following way:

v′F = 3t′0a
′/2~ ≈ (1− βε+ ε)vF , (78)

while eigenvalues are related with the original ones
(E0) by:

E =
t′0
t0
E0 ≈ (1− βε)E0, (79)

and the dispersion relation has a rescaling of the energy
and of reciprocal space as follows:

E(k) = ±(1− βε)t0
√

3 + g(k), (80)
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Figure 18. A comparison of uniform strain in two limits. Panel (a) represents unstrained graphene. Panel (b) represents a large
strain applied along the zig-zag direction, while in (c) the strain is in the armchair direction. For all cases, the corresponding DOS is
indicated below. In (b), the lattice turns into weak perturbed dimers that are indicated in red. The DOS corresponds to a perturbed
system of dimers, and the model becomes a degenerate two-level Hamiltonian with energy levels at E = ±t0, i.e., the states collapses
to the Van-Hove singularity observed in unstrained graphene at the same energies. A gap is clearly opened in this case. In (c),
the strain preserves chains of bonds indicated in red, and the interaction between chains goes to zero. As a result, the spectrum is
made from weakly perturbed degenerate linear chains, with a DOS determined from a linear chain. No gap can be generated in this
extreme limiting case. These linear chains resemble a quasi-1D system known as a Luttinger liquid [167].

with:

g(k) =

4 cos

(
3

2
kxa
′
)

cos

(√
3

2
kya
′

)
+ 2 cos

(√
3kya

′
)
. (81)

Given that the form of the energy dispersion is
preserved, the DOS can be calculated from Equation
(58) by replacing vF with v′F :

ρ(E) ≈ [1 + 2ε(β − 1)]ρ0(E), (82)

where ρ0(E) is the DOS from unstrained graphene. We
obtain the carrier concentration using Equation (59) in
terms of the unstrained carrier concentration n0(E) to
be:

n(E) ≈ [1 + 2ε(β − 1)]n0(E). (83)

We can conclude from previous paragraphs that
isotropic strain rescales the DOS, and that n(E) scales
linearly on ε multiplied by the positive factor 2(β− 1).
This explains in a simple fashion several important
features of strain in graphene without a strong spatial
gradient, as such strain can be locally replaced by
an average strain, Equations (82) and (83). The
important point is that group velocities, currents and
conductivities are scaled following a similar procedure.
The phenomena described in this subsection leads to
effects such as strain-charge coupling, enhanced or

decreased chemical reactivity, modulation of optical
properties, etc.

4.4. Non-uniform uniaxial strain

The first objective of this section is to introduce
the effects due to non-uniform strain as viewed from
a tight-binding perspective. Although in principle
one can use numerical diagonalization to solve the
Hamiltonian given by Equation (49), it is instructive
to enhance our understanding by seeking analytical
solutions. This allows to map the system to well-
known one-dimensional equations which can be solved
easily and enhance our physical insight. Furthermore,
this type of strain can be produced experimentally
[97], and it can also be considered an approximation
for the case of graphene on a crystalline substrate
with a relative rotational fault. The approach lends
itself to an interesting comparison with the effective
Dirac equation, and points the way towards using
the supercell formalism for other types of strain. As
sketched out in Figure 19, one can take advantage of
uniaxial strain by noting that its Hamiltonian maps
into one-dimensional effective chains [40, 116, 124, 125].

Consider a nanoribbon in which a general uniaxial
strain field u(r) = (0, uy(y)) is applied. The
symmetry along the unstrained direction– chosen as
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Figure 19. Mapping of a Hamiltonian with uniaxial strain
applied along the armchair direction into a modulated chain
described by the Hamiltonian in Equation (84). Strain is applied
along the armchair, y-direction, as represented by the wavy line
to the left. The vertical dotted line represents the unit cell
boundary along the x direction. Inequivalent positions of Carbon
atom inside the unit cell are indicated by Aj and Bj , where A
and B denotes the corresponding bipartite lattice and j labels
the position along the y−direction. The resulting map is a chain
joined by effective bonds. An effective dimerization occurs when
c(kx) = 0. (The five-period wavy pattern to the left and the
modulated chain do not possess an identical period in the figure,
as only two periods of the modulated chain are shown.)

the x direction– is not broken, so that the following
solution to the Schrödinger equation can be proposed:
Ψ(r′) = exp(ikxx)ψ(y). The resulting Hamiltonian
thus depends upon kx and is labeled H(kx). As seen
in Figure 19, the non-strained case can be thought in
terms of a cell with orthogonal lattice vectors and four
sites [116].

Focusing our attention to the right of Figure 19,
one notes that all sites within the periodic supercell
become inequivalent in the y direction. One can label
them as Aj and Bj where j is an index for the position
in the path, and A or B labels the original bipartite
lattice in the absence of strain.

For a system periodically strained along the arm-
chair direction, the resulting Hamiltonian describes a
one-dimensional modulated chain [124]:

H(kx) =

N−1∑
j=1

[
tj+1a

†
j+1bj + c(kx)tja

†
jbj

]
+ h.c. (84)

where aj , a†j and aj , b†j are the annihilation and
creation operators in the A and B sublattices
,respectively, and N is the number of sites in the A
sublattice along the periodic path. The effective bonds
for odd j are defined through:

tj = t0exp
[
−β(u(yBj )− u(yAj ))

]
, (85)

and for even j as:

tj = t0exp
[
−β(u(yAj+1

)− u(yBj )/2)
]
. (86)

The factor c(kx) contains the phase in the
x−direction:

c(kx) = 2 cos(
√

3kxa/2). (87)

Figure 20. Mapping of the TB Hamiltonian for uniaxial strain
applied along the zigzag direction, into a ladder described by
the Hamiltonian in Equation (88). The strain is applied in the
y-direction as represented by the wavy-line to the left. The
vertical dotted line represents the cell boundary along the x
direction, while the horizontal dotted lines are projections of
atomic positions in the y direction. The inequivalent positions
of Carbon atoms are indicated by colors; they map onto the two
parallel chains (an effective ladder) shown to the right. Each
atom is labeled Aj or Bj according to their bipartite lattice,
and j is the position in the ladder.

An interesting situation arises for kx = 2/
√

3a,
where c(kx) = 0 and the chain decouples into dimers
[124]. For unstrained graphene, the dimers produce a
massive degeneracy leading to Van Hove singularities
at E = ±3t. They are saddle points of the energy
dispersion. For strained graphene, the degeneracy can
be completely or partially removed [124]. This has
interesting consequences for electronic localization as
well as for the topological properties of edge modes, as
we will discuss for the case of periodic strain.

The process becomes slightly different when
dealing with periodic strain applied along the zigzag
direction [40]. As sketched out in Figure 20, the
resulting map describes two modulated chains coupled
by bonds of strength t0 and t0d(kx), where tj are the
values of the transfer integrals along the chains in the
y direction. The sites are best labeled Aj or Bj , where
j is the position along the chains.

The resulting Hamiltonian is [40]:

H(kx) =

N∑
j=1

t0

[
d(kx)a†2jb2j + a†2j+1b2j+1

]
+
∑
j

tja
†
jbj+1 + h.c. (88)

The values of tj are:

tj = t0 exp [−β (lj − 1)]. (89)

lj are bond lengths:

lj =((
δxs+2

)2
+
[
δys+2 + uy

(
yBj+1

)
− uy

(
yAj
)]2)1/2

, (90)
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where s = 0,−1. δxs+2 and δys+2 denote the x and
y components of each of the vectors δ1 and δ2. For
armchair nanoribbons, the phase d(kx) is given by:

d(kx) = eikxa. (91)

Using these effective mappings, the spectrum can
be found from several methods. Since an effective
potential appears, one can expect different effects
depending on the form of the potential. For example,
if the effective potential is periodic, as it is the case for
graphene on a substrate, a result akin to the Harper
equation is found. This equation arises in the problem
of a constant magnetic field on a lattice. However, the
effective equation for periodic strained graphene is not
equal to the Harper equation. This result and others
concerning the spectrum and localization are analyzed
in subsection 4.6.

4.5. Ripples and bending

As explained in detail in Section 2.2, when strain is
applied, ripples can appear or disappear depending
on the applied stress. From a theoretical point
of view, a suitable procedure is to relax strain via
molecula dynamics (MD) simulations to obtain ripples.
Following this procedure, Monteverde et. al. found
that two kinds of ripples appear [110]. As seen in
Figure 21(c), the first kind is a wave front ripple
orthogonal to the strain front if external strain is
applied along a single direction. The second is a
sinusoidal shape which emerges if the external strain is
applied simultaneously along two orthogonal directions
[110].

Adapting the techniques discussed in previous
sections, TB calculations can be done with ripples
once strain is relaxed. For example, we present
in Figure 21(a) the spectrum resulting form a TB
calculation using compressive strain in the zigzag
direction and tensile along the armchair direction, with
periodic ripples obtained via strain-relaxation using
MD [110]. A gap of 0.11 eV opens around one of
the Dirac valleys, while the gap is twice as large
in the other valley: the Dirac points are no longer
equivalent because, as discussed in previous sections,
the symmetry of the lattice has changed due to strain.
The phonon spectrum of Figure 21(b) further reveals
the inequivalence between the K and K ′ points.

The most important ingredient to perform a
TB calculation for ripples is that the π-orbitals
change their overlapping since the local normal to the
graphene plane (Nr) is now a function of position (see
Figure 22). Let θr′ denote the angle which determines
the relative orientation of a carbon atom in the new
strained position r′. This angle depends on the local
curvature of the layer. The effect of the relative

(a) (b)

(c)

Figure 21. (a) TB calculation of the spectrum for unstrained
(black curves) and strained graphene (red curves). The strain is
3.5% compressive in the zigzag direction, and 3.5% tensile along
the armchair direction. Notice how the Dirac valleys become
inequivalent, with different gap widths. (b) A calculation of
the phonon spectra with the same stress, showing important
changes. (c) Pattern of the resulting ripples. Red bonds are
extended while blue are compressed following the color code
that appears at the bottom. High-symmetry points of the
Brillouin zone are indicated in the right corner of the panel.
Reproduced from Ref. [110] under the terms of the Creative
Commons Attribution License.

change of orientation for π−orbitals and the inter-
atomic distances changes has been described in classic
works in the field [153, 41, 128]. The transfer integral
becomes in this case [153, 41]:

tr′,r′+δ′n(r) = t0
[
1 + α

(
1−Nr′ ·Nr′+δ′n(r)

)]
× exp

[
−β(lr′,r′+δ′n(r)/a− 1)

]
, (92)

where Nr′ is the unit vector normal to the surface in
the site r′ (see Figure 22):

Nr′ =
ẑ −∇z√
1 + (∇z)2

, (93)

here, ∇ = (∂x, ∂y) is the 2D gradient operator, and
ẑ is the unit vector in the perpendicular direction
to the plane. lr′,r′+δ′n(r) is the interatomic distance
between two neighboring sites after a ripple or bent
is applied. Here, α ≈ 0.4 is a constant which couples
the hopping term to a relative change of orientation
between neighboring π-orbitals. This is the simplest
approach, as other orbitals can be hybridized for sharp
ripples, thus resulting in a more complex Hamiltonian
[169, 170].

To understand general features it is useful to
study uniaxial ripples [110]. To give an example,
consider zigzag terminated graphene where ripples are
independent of the x−coordinate. In such scenario, the
Hamiltonian given by Equation (84) can be used with
tj replaced by:

tj = t0 [1 + α (1−N j+1 ·N j)] exp [−β(lj − 1)], (94)
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z(r')

r'

θr'
Nr' Nr' δ+ '(r)

Figure 22. Overlap of π−orbitals in rippled graphene. The
red curve indicates a cut thorough the graphene membrane.
Local normal vectors to the surface and the corresponding angle
between normals are indicated for a pair of first-neighbour atoms.

where N j = N(yj) is defined in Equation (93), and:

lj =

√
1 + [z (yj+1)− z (yj)]

2
. (95)

Here

yj =
1

4

{
3j +

1

2

[
1− (−1)j

]}
, (96)

is the position of carbon atoms in unrippled graphene
and j = 1, 2, ..., N labels the sites, as displayed
in Figure 19. Similar expressions are available
for armchair-terminated graphene [125]. For small
amplitude and long wavelength ripples, the model
resembles graphene under planar strain. Due to
the breakdown of sublattice symmetry, gaps open
for wavelengths of the order of the lattice parameter
[125]. Strained folded graphene nanoribbons have
been recently proposed to assist and enhance electronic
transport [171].

4.6. Graphene on substrates: superlattices

As it was explained in Section 2.2, an interesting
development in the field is the possibility of producing
strain via a substrate which leads to the creation
of superlattices. Bloch’s theorem can thus be
applied using the Fourier components of the resulting
potential, as it was done for the diffraction pattern
in section 2.2. However, quasi-periodic behavior
is to be expected when the lattice parameters are
incommensurate.

The nature of the electronic properties depends
upon the interaction strenght between graphene and
the substrate. In cases when the interaction is weak,
mainly of a van der Waals type, the surfaces do not
modify the graphene properties substantially. This is

the case for hexagonal boron nitride [172, 173, 174],
or the carbon face of SiC [175]. These systems share
similarities with electrons in lattices with magnetic
fields. Thus small gaps appear, as well as Dirac
cone replicas and different kinds of localization. Such
systems are very interesting for the study of exotic
topological quantum phases.

Other surfaces, like metals as Fe, Pt and Re, can
form partially covalent bonds with graphene leading
to a strong interaction. As a consequence, graphene
is rippled with amplitudes between 0.03 Å and 1.6 Å.
Many of these properties are easy to understand from
the perspective of a periodic uniaxial strain, in which
defining one new lattice parameter is required. We
review this important case in the following subsection.

4.6.1. Periodic uniaxial strain and ripples: the
simplest superlattice. As it was mentioned in the
introduction to subsection 3.6, some surfaces lead to
strain while others, in which strong forces are present,
lead to ripples. Let us review the consequences
of both for the simplest cases, periodic uniaxial
strain and a periodic uniaxial ripple. For strain, we
particularize the results of section 4.4, while the
effective Hamiltonian developed in section 4.5 can be
used for ripples.

Consider armchair terminated nanoribbons with
an oscillating uniaxial strain of the type:

u(y) =
λ√
3β

cos

[
4πσ√

3

(
y −
√

3/4
)]
, (97)

where λ is a parameter that controls the amplitude of
the strain and σ is the spatial frequency, proportional
to the inverse of the strain wavelength (the constants
for this strain field have been chosen in such a way that
the final Schrödinger equation looks simple). Using a
linear approximation for tr′,n, Equation (89) becomes:

tj = t0 [1 + λ sin (πσ) sin (2πσj)] . (98)

Previous values of tj are identical with those
appearing in the Harper chain, which is the one-
dimensional effective equation resulting from the
problem of an electron in a constant magnetic field
[22]. For the Harper equation, σ is the ratio between
the magnetic flux and the flux quantum. The energy
spectrum for that problem is the Hofstadter butterfly,
which turns out to be a complex fractal [22] with
interesting topological quantum phases [138].

Although the uniaxial strain hopping parameter
given by Equation (88) follows the same sequence as
the one seen in the Harper equation, the Hamiltonian
differs from the Harper case by the coupling between
left and right chains displayed in Figure 20. In other
words, the graphene system is actually made from two
coupled Harper chains. As in the Harper equation,
the most important observation is that for irrational σ,
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Figure 23. Spectrum for uniaxial periodically strained
armchair-terminated graphene. Colours represent the different
localization degrees of electron wavefunctions defined in terms
of α(E), Equation (99). Blue-colored points are extended states
while red-colored points indicate states that tend to be localized.
The spectrum contains features akin to the Hoftsadter butterfly
fractal. The inset shows a zoom-in around σ = 1/2. Notice
the gap opening for σ = 1/2, when the strain wavelength is of
the order of the lattice parameter. Such gap opens due to the
bipartite symmetry breaking. In contrast, the long wavelength
limit, i.e., σ → 0 and σ → 1, the spectrum is gapless with
extended states. DOS cuts along constant σ lines are presented
in Figure 24. Reproduced from Ref. [40] with permission.
Copyrighted by the American Physical Society.

i.e., whenever σ 6= P/Q where P and Q are integers,
the resulting Hamiltonian is no longer periodic, being
instead quasiperiodic. Quasiperiodic Hamiltonians
appear when there are two incommensurate parameters
[55], in this case the wavelength of the strain and the
lattice parameter.

Such Hamiltonians lead to wavefunction localiza-
tion, fractal properties, etc. [62]. Furthermore, pertur-
bation theory can not be used to solve them due to the
small divisor problem [62]. In spite of this, for rational
σ (such that σ = P/Q with P and Q integers), the
system is periodic with period Q for Q even (or 2Q for
Q odd). The Bloch theorem can thus be applied, re-
sulting in a reduced Hamiltonian matrix of size Q×Q
for Q even (otherwise 2Q× 2Q).

The relation among applied strain and system
size can be understood from the perspective of
superlattices. For commensurate σ, the strain
modulation generates a new lattice involving Q sites
in the strained direction, creating in turn a reciprocal
lattice vector ∆g that defines a new Brillouin zone.
The effective potential can thus be written as a Fourier
series, from where the spectrum is found using the
Bloch theorem, as it was explained in section 2.2.
Although for irrational σ this procedure is no longer
valid, it is still possible to study a sequence of rational
approximants [62].

The energy spectrum depends upon the numeric
properties of σ, as it happens with Harper Equation.
As an example, we plot in Figure (23) the spectrum as
a function of σ for a typical λ for zigzag nanoribbon

under periodical uniaxial strain. The spectrum has
a complex nature, with gaps at the Fermi level for
some values of σ. The localization of states is also
very complex. To show this, colours in Figure (23)
represent the localization of eigenfunctions, evaluated
through the parameter α(E) that is defined as:

α(E) =
ln
∑N
j=1 |ψj(E)|4

lnN
, (99)

where ψj(E) is the wavefunction at site j having an
energy E.

Blue-colored states in Figure (23) represent
extended states. States are extended at σ → 0 and
σ → 1. In this limit, the strain wavelength is much
bigger than graphene’s lattice parameter. As σ → 1/2,
the situation is more complicated, since states are
extended for some rational values of σ, but they can
be surrounded by localized states, seen in red in the
figure.

There are interesting localization properties for
σ irrational [22, 55, 176]. A powerful way to study
these properties in our effective 1D system is the
trace map defined as a product of transfer matrices
[177]. As seen in Figure 24 the bands present several
interesting features as a function of kx. Within the
same figure, several peaks are observed in the DOS,
especially for irrational values of σ. These peaks have
a counterpart in carbon nanotubes [178], and many of
these results are also obtained for periodic ripples in
graphene nanoribbons [125].

A fundamental observation from Figures (23)
and (24) is that no gap opens for long-wavelength
strain. When the strain modulation has a wavelength
comparable to the lattice parameters, an asymmetry
between A and B sites arises and a gap opens. In
this case a tagged field, or in approximate way a
reduction from the group C6v to the C3v takes place.
As it will be discussed later, the breaking of the
sublattice symmetry creates an effective mass as well
[109, 125, 170, 179].

4.6.2. More general types of superlattices. The
features discussed for periodic uniaxial strain are
observed in more general cases. An isotropic expansion
basically produces a renormalization of the Fermi
velocity, while biaxial strain has several consequences
in the band structure, including narrow gap openings
that can be obfuscated due to the metallic nature of
the substrate.

Superlattices induce a superperiod, and one can
use such periodicity to solve a tight-binding equation
in the first Brillouin zone of the reciprocal space
superlattice, as it was done before for uniaxial periodic
strain. In the general case, the TB parameters
will depend on strain and ripples produced by the
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Figure 24. Energy bands as a function of kx for strained
armchair terminated graphene with values of σ as indicated. The
resulting DOS appearing at the left shows Van Hove singularities
and band gaps.

substrate, and on the particular interaction with the
substrate [180].

Details about interactions and effective Hamilto-
nians are still work in progress. For example, there
are several theoretical models to understand graphene
on hBN [19, 180]. The electronic dispersion depends
strongly on the chosen parameters and on whether
the perturbation is inversion-symmetric or inversion-
asymmetric. Also, electronic many-body exchange in-
teractions seem to play a role [180]. Thus, the open-
ing of a gap in graphene/h-BN is a highly debated is-
sue, since some studies affirm the existence of a gap
opening [180] while others rule it out [19, 20]. Re-
cently, careful ARPES measurements have shown gaps
of 100meV and 160meV depend on the valley degree of
freedom, indicating the existence of a strong inversion-
symmetry-breaking potential [181]. Local defects in
the substrate can induce exotic phases too, like a bro-
ken chiral symmetry due to Kekulé ordering [182].

In spite of this, three general features could be
argue to occur for graphene on a substrate: the creaion
of new Dirac cones around the original ones (known as
second or third generation Dirac cones), the opening of
minigaps, and Landau levels. The generation of second
and third generation Dirac cones is not surprising if
we recall the results deduced in subsection 2.2 for
diffraction on modulated structures. Therein, phason
satellites spots were found around pristine graphene

diffraction spots. Each of these satellites produces new
Bragg lines resulting in a singularity on the electronic
dispersion. Following such ideas, the aim of this
section is to provide a basic framework to understand
the mechanisms behind gap opening and Dirac cone
replicas, and to review some relevant experimental
results.

To do so, we feel that a lot can be learned
from the generic properties of periodic modulations
assuming that the interaction between the substrate
and graphene is weak. This is the case for graphene
over h-BN, in which van der Waals forces are present.
Strain and ripples modify the creation/annihilation
operators and the TB parameters of the Hamiltonian
defined in Equation (61). In addition, the substrate
lattice produces local shifts of the energy (i.e., it
creates a space-dependent on-site potential) that must
be included into Equation (61) and leads to a more
general Hamiltonian denoted by HSl:

HSl =

H +
∑
r′∈A

VA(r′)a†r′ar′ +
∑
r′∈B

VB(r′)b†r′br′ , (100)

where VA(r′) and VB(r′) are the local on-site potential
energy at A and B sublattices created by the substrate.
For hBN, the B and N sites have different interactions
with graphenes so that VA(r′) and VB(r′) are different,
even under the assumption that hBN matches the
graphene lattice exactly. In that approximation
VA(r′) and VB(r′) are space independent, and the
Hamiltonian is reduced to:

HSl = H0 +
∑
r∈A

VAa
†
rar +

∑
r∈B

VBb
†
rbr. (101)

Previous expression is a tagged field akin to the
one obtained under uniaxial strain for small strain
wavelength (σ → 1/2). This way, Equation (50) for
pristine graphene is converted into:(

VA HAB(k)
H∗AB(k) VB

)(
ak
bk

)
= E(k)

(
ak
bk

)
, (102)

The new eigenvalues are,

E(k) = V̄ ±
√
V̄ 2 + E2

0(k)− VAVB (103)

where the average potential is defined as V̄ = (VA +
VB)/2 and E2

0(k) is the energy dispersion for pristine
graphene. Since E2

0(K±) = 0, a gap opens having the
following magnitude:

∆ = |VA − VB |. (104)

The diagonal terms in Equation (102) can be
expressed as an average potential plus a mass term
in the effective Dirac Hamiltonian, as can be readily
seen by expanding E2

0(k) around K±. This explains
in a rough way why short wavelength strain fields open
small gaps.
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In a more general case, VA(r′) and VB(r′) have
a period determined by the superlattice. Then, it is
possible to follow the procedure explained in subsection
2.2 for the diffraction pattern of modulated structures,
i.e., one makes use of a Fourier expansion of the
potentials, operators and tight-binding parameter in
supercell Hamiltonian (101). The Fourier components
can be treated using second-order perturbation theory
[19, 180]. However, as explained before, there is no
consensus about which terms to include. Therefore,
we will only discuss the basic mechanisms behind the
formation of Dirac cones replicas from a TB approach
here.

All operators are Fourier-decomposed first. For
example, the two sets of annihilation and creation
operators are written using two wavevectors k1 and
k1 + k:

a†r′ =
1√
N

∑
k1

ei[(k1+k)·(r+u(r))]a†k+q, (105)

and:

br′+δ′n(r) ≈
1√
N

∑
k

e−ik·(r+u(r))e−ik·δ
′
n(r)bk. (106)

The periodicity of u(r) is accounted for by
introducing a Fourier expansion in the reciprocal space
superlattice vectors ∆g:

e−ik1·u(r) =
∑
∆g

ei∆g·rṼk1(∆g), (107)

where Ṽk1
(∆g) are the expansion coefficients. In

Equation (106), the strained first-neighbour vectors
(lattice corrections) δ′n(r) are given by Equation (18),
i.e., they transform via the tensor operation (Ī +
∇u(r)). To gain a better understanding, assume
that u(r) has a longwave-length character. Then one
can neglect the gradient of the field, resulting in the
approximation δ′n(r) = δn. This is precisely the same
result as the one observed for uniform strain, and it
coincides with computations done before the inclusion
of lattice corrections [52]. It follows that locally, this
strain is nearly similar to a uniform strain, as expected
for a gentle strain gradient. Under this assumption,
bond length variations are negligible and tr′,r′+δ′n(r) ≈
t0. Also, we assumed that short-wavelength strain is
negligible for simplicity (VA(r′) = VB(r′) = 0).

By using all these assumptions in the Hamiltonian
given by Equation (61), one obtains:

HSl(k) =
∑
∆g,k

Ṽ−∆g(∆g)E0(k)a†k−∆gbk. (108)

Now we observe that for the first-generation high-
symmetry points, obtained from setting k = K±, we
have HSl(k) = 0 since E0(K±) = 0. This indicates
that K± are still tips of Dirac cones, and correspond
to the first-generation Dirac cones. Let us consider

momentums close to phason satellites of K±, i.e., we
consider k = K± + ∆g1 + q, where q is a small
wavevector. Equation (108) reads as follows in that
case:

HSl(k) =
∑
∆g,k

Ṽ−∆g(∆g)E(K± + ∆g1 + q) (109)

×a†K±+∆g1+q−∆gbK±+∆g1+q. (110)

By setting q = −∆g1, we observe that E(K±+∆g1 +
q) = 0 again, leading to a Dirac point at momentum
corresponding to the satellite at position K± + ∆g1.
Higher-order satellites will produce the same effect,
leading to higher-order Dirac replicas.

In fact, the transfer integrals in the TB
Hamiltonian are not severely affected in the absence of
strong strain gradients. As a result, the Hamiltonian
matrix for finite systems has the same eigenvalues
as in graphene, but the metric of reciprocal space is
changed by a folding of the original energy dispersion
into the second Brillouin zone (SBZ). This mechanism
is a generic effect of small periodic modulations in
the limits of the Brillouin zone [47]. Extra Fourier
components enter the convolution when the derivative
∇u(r) is not neglected.

Dirac cone replicas appear as a result of graphene’s
phason satellites in the diffraction spots. If one
considers the squared Hamiltonian that was introduced
in subsection 4.1, the electronic dispersion has a
minimum at intersections of Bragg lines at the
boundaries of a SBZ. As a result, each new phason
satellite produces a new minima in ∇kE2((k)) due to a
vanishing group velocity. This minima has a parabolic
dependence in the squared triangular lattice since it
corresponds to the lower band edge (see subsection
4.1). The minima becomes a Dirac cone when the
square root is taken to recover graphene. In other
words, the extra diffraction spots produce singularities
in the electron dispersion that enter as standing waves
in the supercell structure. The effect of a non-trivial
atomic basis in monoatomic unit cells is well known
for hexagonal-close packed (hcp) structures, where one
talks about Jones zones due to the vanishing of the
structure factor associated with the hexagonal top and
bottom faces of the unitary cell prism [47].

The Dirac cone replicas have been observed in
many experiments. For example, for graphene on hBN
[183] the layers can be highly strained [173, 174, 184].
Several methods have been proposed to understand
the electronic properties of graphene on hBN by
including strain in a TB approximation [19, 180] or
as pseudomagnetic fields in the Dirac equation [185].

Figure 25 presents a recent ARPES measurement
of the graphene/hBN electron dispersion [181]. The
ARPES technique allows to extract the electron energy
(E − EF ) as a function of the component of electron
momentum in the plane of the sample, denoted by k||.
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Figure 25. Dirac cone replicas and band gap opening as seen in an ARPES spectrum of graphene on hBN. (a) Optical image of the
sample. The white bar scale is 100µm. (b) Atomic force microscope image of the moiré pattern. The white scale bar is 20 nm. (c)
Height-profile along the blue line shown in (b). The data is shown in blue, while the red curve is obtained by using a high-pass filter.
(d) Dispersion along a Γ −K path in the Brillouin zone, showing the σ and π bands of graphene and hBN. (e) Schematics of the
Brillouin zone of graphene (gray hexagon) and the phason satellites indicated in green, corresponding to the second-Brillouin zone
(SBZ) centers. The SBZs areas are shadowed with pink and indicated with pink-dotted lines. The Γ and Γ̄(K) points of graphene
are also indicated. (f) Constant energy map at EF . The green dots indicates the tips of the Dirac cones replicas observed at the six
nearest SBZ centers. The red dot is the original Dirac cone. The Brillouin zone of graphene is indicated by broken black lines, while
the Brillouin zone of the superlattice is indicated with red broken lines. (g), (h) and (i) are the dispersions obtained along the cuts
1, 2 and 3 that are indicated in panel (f) by white broken lines. The tips of the original Dirac cones are indicated with pink arrows,
while the Dirac cone replicas are indicated with green arrows. Reprinted by permission from Macmillan Publishers Ltd: Nature
Phys. [181], copyright (2016).

Second-generation Dirac cones (SDCs) are clearly
seen in Figure 25(f), 25(g), 25(h) and 25(i). The
experiment is quite challenging as the separation of
the original Dirac cone and the cloned Dirac cones
is extremely small, of the order of the reciprocal
superlattice vector ∆g ≈ 0.05A−1. This requires
samples of extremely high quality directly grown by
remote plasma-enhanced chemical vapor deposition
[181].

The ARPES study reveals unambiguously SDCs
at the corners of the superlattice Brillouin zone,
ocurring only at one of the two valleys [181]. Gaps of
approximately 100 meV and approximately 160 meV
are observed at the SDCs and the original graphene
Dirac cone [181], and seem to imply an important role
for a strong inversion-symmetry-breaking perturbation
potential in the physics behind graphene/hBN.

Another important feature of graphene on hBN
is the observation of Landau levels and a fractal
spectrum in ultraclean graphene on hBN subjected to
electrostatic and magnetic fields [20]. The measured
spectrum was a repeating butterfly-shaped motif,
known as Hofstadter’s butterfly [22]. This spectrum
has also been found in bilayer graphene [186], as it will
be discussed in detail in Section 6. The main reason
for the fractal spectrum is the non-commensurability
of graphene-sustrate lattices, as in the case of an

uniaxial strained lattice. Interestingly, there are
second- and third-generation Dirac points, leading to
pronounced peaks in resistivity [20]. Small lattice
incommensurability prevents the opening of gaps seen
in perfectly lattice-matched graphene on hBN, and
leads to a renormalized Dirac dispersion with a trigonal
warping [19, 173].

Graphene over Ir (111) represents another exam-
ple of the effects produced by interaction with a sub-
strate. Figure 26 shows the ARPES spectra at differ-
ent azimuthal angles around the Γ−K −M direction
[17]. For comparison, Figure 26(a) shows the spectrum
of Ir(1, 1, 1) without graphene, while Figures 26(b),
26(c) and 26(d) display the spectrum with graphene
included, along three different azimuthal angles. The
main effects observed are minigaps indicated by arrows,
and replica bands, including with a Dirac cone replica
[17]. The measured gap width is between 0.1 and 0.2
eV. The Dirac cone of graphene is not hybridized with
Ir, indicating a weak interaction with the substrate
[17].

These minibands and gaps can be reproduced
a tight-binding calculation that include up to three
nearest neighbours, as shown with dotted lines in
Figure 26 [17]. However, there is an important issue
here. In principle, the reciprocal vector of the moiré
supercell implies a long-wave superperiodic potential,
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Figure 26. ARPES spectrum of graphene on Ir(1, 1, 1). The
K points of iridium (KIr) and graphene (Kg) are indicated
for reference. (a) Clean Ir(1, 1, 1) on an azimuthal angle of
0.5◦ ± 0.1◦. Three surface states are indicated by S1, S2, S3.
(b) ARPES for Ir(1, 1, 1) covered by graphene using the same
angle. The horizontal arrows denote minigaps in the primary
Dirac cone. A replica band is indicated by the letter R. (c)
and (d): The same spectra as in (b) but for azimuthal angles of
1.4◦±0.1◦ and 3.0◦±0.1◦, respectively. Dotted lines are results
from tight-binding calculations on a superlattice. Reproduced
from Ref. [17] with permission. Copyrighted by the American
Physical Society.

since the moiré reciprocal lattice vector ∆gm = Ggr −
GIr is smaller than Ggr or GIr, which are the
original reciprocal vectors of graphene and Ir(1, 1, 1)
respectively. As stated in previous sections, and as
seen in Figure 23, a long-wave superperiodic potential
is not able to open a gap. This requires to break the
symmetry of the bipartite lattices within each unitary
cell of graphene [179], as discussed for the case of
uniaxial strain before. In terms of the low-energy Dirac
approximation, it requires an effective mass. This is
indeed the case for graphene on Ir(1, 1, 1), since atoms
in the two bipartite lattices are locally (and globally)
inequivalent [56]. From the above considerations, the
strain field must have contribution from short and long
wave-length periodic strain.

A band gap of 0.26 eV has been experimentally
determined for graphene on SiC [187], and also
attributed to the bipartite lattice symmetry breaking
[188]. This band gap, nevertheless, has also been
assigned to many body interactions [189]. A wider
band gap of 0.51 eV, has been observed for graphene
on MgO (1, 1, 1) and attributed to the bipartite lattice
symmetry breaking [190, 191]. Another interesting
feature of strained generated superlattices is the
possibility of angle-dependent bandgap engineering
[192], as well as spin-dependent transport and
polarization [193].

4.7. Topological phases

An emerging field is that of topological modes due to
strain [13]. These are quantized edge modes that are
robust against disorder because they are topologically
protected [194]. Topological effects on carrier transport
were first studied in magnetic fields applied on
semiconductors within the context of the quantum
Hall effect (QHE) [22]. Eventually, it was recognized
that topological modes were quantum phases with
the peculiarity of not breaking any symmetry, unlike
the common cases seen in all previously known phase
transitions [194]. Since the systems do not break
any symmetry, they are described using topological
invariants instead of order parameters. For unstrained
graphene, most of the QHE topological aspects are
now well understood [137]. Since strain can be
treated as a pseudomagnetic field, it is natural to
expect topologically protected properties in deformed
graphene.

One of the first tasks to observe the topological
QHE modes on graphene was to design a strain
field leading to a constant pseudomagnetic field
[128]. Such proposal was recently refined to program
extreme pseudomagnetic fields by uniaxial stretch of
nanoribbons designed with varying width [195] and also
on “artificial graphene” lattices [196, 197] (see more on
this in section 4.9). It is possible to generate Landau
states using this profile, which is one of the QHE
hallmarks. In fact, the first experimental observation
of the QHE fractal spectrum and topological modes
has been obtained using bilayered graphene over a
hBN sustrate, as explained in Section 6. Also,
the experimental tuning of Dirac states by strain
in the topological insulator Bi2Se3 is expected to
have an important impact in the field [198]. Several
proposals concerning this idea were published before
such achievement. As an example, a strain based
graphene electronic device was proposed to observe
a zero-field topological quantum phase transition
between the time-reversal-symmetry-broken quantum
spin Hall (QSH) and quantum anomalous Hall states.
The main feature of such device is the absence of an
actual magnetic field [199].

We use the case of uniaxial strain in nanoribbons
to show how topological properties arise. Consider
the Hamiltonian for uniaxial strain along the zigzag
direction given by Equation (84), with hopping
parameters calculated via Equations (85) and (86).
Furthermore, consider a strain field u(y) = cos(2πσy).
For a wavelength such that σ = 1/(2a), tj takes only
two values. By performing a Fourier transform of
Equation (84) to k-space using:

aj =
1√
N/2

∑
ky

e−iky(j)3/2aky , (111)
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and:

bj =
1√
N/2

∑
ky

e−iky(j)3/2bky , (112)

the resulting Hamiltonian becomes:

H(k) = hx(k)σx + hy(k)σy, (113)

where σx and σx are the x and y Pauli matrices,

hx(k) =

2(1− λ) cos(
√

3kx/2) + (1 + λ/2) cos(3ky/2), (114)

and

hy(k) = (1 + λ/2) sin(3ky/2). (115)

H(k) (Equation (113)) is the Su-Schrieffer-Heeger
model for polyethylene [200], in which non-trivial
topological phases appear once a gap is opened [200,
201], here obtained by choosing an amplitude λ >
1/2. For the gapless system (λ < 1/2) there are
topological modes still, corresponding to flat bands
that join Dirac points, that are known as Fermi arcs
[40, 202] that appear in Weyl semimetals [203, 204].
For such topological states, the invariants used for
the gapped spectra are ill-defined, and one needs
to use a new invariant [203, 204]. This simple
example shows how topological properties appear due
to strain. As Landau levels are known to appear in
monolayer and bilayer graphene due to the substrate
interaction [20], the topology associated with constant
magnetic fields is expected [167, 204], including the
fractal Chern-beating phenomena [176] and topological
collisions at Van-Hove singularities [138]. Finally,
time-dependent strain is able to generate interesting
topological properties as well [205, 206, 207, 208].

4.8. Continuum models: effective Dirac equation

As seen in Section 4.1, π-electrons in pristine graphene
have a linear dispersion relation in the low-energy
regime (|E| . 1eV) near the corners of the 1BZ [209].
This dispersion can be described in terms of a 2 × 2
Hamiltonian, obtained by expanding the tight-binding
Hamiltonian in momentum space around to K+ and
K− points (see Equations (5-7) and Figure 1) by means
of the replacement k = K+ + q and a subsequent
expansion up to first order in q [210, 211]:

Hps = ~vF
(

0 qx − iqy
qx − iqy 0

)
= ~vFσ · q, (116)

where σ = (σx, σy) is a vector whose components
are Pauli matrices. Analogous expansion around K−
gives H = ~vFσ∗ · q, with σ∗ = (−σx, σy). Making
the replacement q → −i~∇ in correspondence to the
k ·p or effective mass approximation, the Hamiltonian
in Equation (116) is a two-dimensional equivalent of
the Dirac Hamiltonian for massless fermions [212].
However, in contrast to the relativistic problem, the

role of the velocity of light c is played by the Fermi
velocity vF ≈ c/300. Also, the two-component
description given by Pauli matrices operates on the
sublattice degree of freedom instead of the real spin,
hence the term pseudospin that is highlighted as Hps.
Pseudospin up is another way to call sublattice A and
pseudospin down labels sublattice B.

The behaviour of the low-energy charge carries in
graphene, as massless relativistic fermions, yields in
a number of unprecedented phenomena in condensed
matter physics, such as an anomalous quantum Hall
effect, Klein tunneling, Zitterbewegung, “minimum”
conductivity of ∼ 4e2/h even when the carrier
concentration tends to zero, universal transmittance
expressed in terms of the fine-structure constant,
among others [213, 214].

4.8.1. Uniform strain. The procedure to obtain the
effective Dirac Hamiltonian for graphene under a
uniform strain is essentially the same as that used
for pristine, undeformed graphene. One starts with
a TB Hamiltonian in momentum space for strained
graphene:

H = −
3∑

n=1

tn

(
0 e−ik·(Ī+ε̄)·δn

eik·(Ī+ε̄)·δn 0

)
, (117)

and considers momenta close to the Dirac points to
capture appropriately the strain-induced anisotropy
[118, 127, 120]. Here, one needs to find the new Dirac
point positions explicitly from the dispersion relation
(66). As mentioned earlier in section 4.3, to first order
in strain tensor, the Dirac points K±D are given by
equations (70) and (71). Then, consistently expanding
(117) around the Dirac points by means of k = K±D+q,
one finds that [118, 127, 120]:

Hps = ~vFσ · (Ī + ε̄− βε̄) · q, (118)

is the effective Dirac Hamiltonian for uniformly
strained graphene. It can be immediately verified
that, for ε̄ = 0, the Hamiltonian (118) reduces to
the Hamiltonian (116) of unstrained graphene. At
the same time, The Hamiltonian in Equation (118)
can be seen as a particular case of the generalized
effective Dirac Hamiltonian reported in [158] for a
honeycomb lattice with weak anisotropy in the hopping
parameters.

Some remarks about the effective Hamiltonian
(118) follow. First, it is independent of the choice
of reference system. Second, it has two contributions
due to strain: a β-independent term, ~vFσ · ε̄ · q,
which is purely geometric; and a β-dependent term
−~vFβσ ·ε̄·qarising from strain-induced changes in the
hopping parameters. For graphene, both contributions
have the same order of magnitude. Third, from
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equation (118) one can identify a Fermi velocity tensor
given by [118, 120]:

v̄ = vF (Ī + ε̄− βε̄), (119)

whose tensorial character is due to the elliptic shape of
the isoenergetic contours around KD. The principal
axes of v̄ are collinear with the principal axes of ε̄. For
a uniaxial strain, for example, the eigenvalues of v̄ are
[16]:

v‖ = vF (1− β̃ε), v⊥ = vF (1 + β̃νε), (120)

where β̃ = β − 1, ν is the Poisson’s ratio, ε is
the strain and v‖(v⊥) is the Fermi velocity parallel
(perpendicular) to the direction of the applied strain.
In [215], an accurate and alternative approach is
carried out to estimate v‖ and v⊥ from a fitting of the
π-bands obtained with a DFT calculation for graphene
under uniaxial strains along the zigzag and armchair
directions.

Consider an isotropic expansion, ε̄ = εĪ, as
a consistency test. It was demonstrated in section
(4.3.1) that the Fermi velocity of graphene is given by
vF (1 + ε − βε) to first order in ε (see equation (78)).
Therefore, any expression reported as Fermi velocity
tensor for strained graphene [148, 170, 126, 216, 217]
to be evaluated for ε̄ = εĪ must reproduce vF (1 + ε−
βε). When this simple test is not fulfilled, the most
probably cause will be an expansion around points of
the reciprocal space which are not the true Dirac points
[120, 127].

One can use the Hamiltonian (118) to evaluate
other quantities up to the first order in strain tensor.
For example, the local density of states (LDOS) is given
by [148, 218, 219]:

ρ(E) ≈ ρ0(E)
(

1− β̃Trε̄
)
, (121)

where ρ0(E) is the local density of states for unstrained
graphene given by Equation (58). Since β̃ > 0, the
strain effect in the LDOS depends on the sign of Tr ε̄
which can be written as Tr ε̄ = A/A0−1, being A (A0)
the area of the strained (unstrained) graphene sample.
Thus, for an expanded sample (A/A0 > 1) the effect is
a local decrease of the LDOS, whereas for a compressed
sample (A/A0 < 1) the effect is a local increase. The
LDOS does not change for a shear strain (A/A0 =
Tr ε̄ = 0). These results permit understanding
scanning tunnelling spectroscopy measurements, which
are sensitive to the LDOS [220].

Anisotropic Dirac quasiparticles described by the
effective Hamiltonian H = ~(vxσxqx + vyσyqy) have

Landau levels given by En =
√
vxvy/v2

FE
(0)
n [162],

where E
(0)
n = sgn(n)

√
2e~Bn are the conventional

relativistic Landau levels [221]. This result can
be extrapolated to strained graphene, described by
Hamiltonian (118) if one diagonalizes the Fermi

velocity tensor (119) and multiplies its eigenvalues.
After some algebraic manipulations up to first order in
strain tensor, it can be shown that the Landau levels
of uniformly strained graphene are given by:

En = E(0)
n

(
1− β̃

2
Trε̄

)
. (122)

Last expression explains corrections of the Landau
levels in the presence of a position-dependent Fermi
velocity which is interpreted as emergent gravity within
an approach based on general relativity [222].

4.8.2. Nonuniform strain: Gauge fields and position-
dependent Fermi velocity. If the spatial variation of
the strain is small on the lattice scale, one expands
the Hamiltonian obtained for uniform strain, Equation
(118), around the true Dirac point in the momentum
space, and goes to real space by the replacement
[127, 120]:

v̄ijqk → v̄ij(r)

(
−i ∂
∂rk
−KD

k (r)

)
− i

2

∂v̄ij(r)

∂rk
, (123)

where the last term assures hermiticity of the ensuing
Hamiltonian [148, 126]. This transformation makes
space-dependent ε̄ = ε̄(r) [223, 224]. Thus, the Dirac
points and the Fermi velocity (both functions of ε̄
for uniform strain) now become functions of position
r, as denoted by K±D(r) and v̄(r), respectively.
As a consequence, K±D(r) can be interpreted as
a pseudovector potential (gauge field), which yields
an alternative physical picture for the strain-induced
pseudomagnetic field [225]. The rotational of the gauge
field KD(r) gives [120]:

Bs = ∇×K±D(r),

= ∇× (ε̄(r)− ω̄(r)) ·K± ±∇×A(r),

= ± (∂xAy − ∂yAx),

= ∓ β

2a
(2∂xε̄xy(r) + ∂y ε̄xx(r)− ∂y ε̄yy(r)). (124)

Inclusion of the local rotation tensor ω̄(r) through
equation (18) can be employed to demonstrate the
lack of K±-dependent pseudovector potentials [226,
52] (another way to demonstrate this is presented
later on in the context of the discrete approach
[108, 109] (seccion 4.9)). Equation (124) is the
expression of the strain-induced pseudomagnetic field
Bs that appears in early derivations [152, 227]
where, unlike the approach presented here, the
pseudovector potential comes from an expansion of
the strained TB Hamiltonian around the fixed points
K±. The emergence of the pseudomagnetic field due
to nonuniform strain has been also considered from
a symmetry analysis [170, 228] or from a quantum
field theory in curved spaces [229, 230]. In section
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Figure 27. (a) Schematics of a graphene strip of varying width under a uniaxial pulling, leading to a uniform pseudomagnetic
field Bps. (b)-(d) Contour plots of the resulting strain components, εxx, εyy , and εxy under a 5 % uniaxial stretch. (e) Resulting
pseudomagnetic fields in the graphene nanoribbon shown in (a) under a uniaxial stretch of 5 %, 10 %, and 15 %, respectively. (f)
Intensity of the pseudomagnetic field as the function of position along the centerline of the graphene ribbon for various applied
stretches. (g) Intensity of the pseudomagnetic field is shown to be linearly proportional to the applied uniaxial stretch and inversely
proportional to the length of the graphene ribbon L. (h) Local density of states of unstrained graphene and graphene with a constant
strain gradient determined by density functional theory calculations. Reproduced from Ref. [195] with permission. Copyrighted by
the American Physical Society.

4.9, we will present another derivation of the strain-
induced pseudogauge fields from considerations based
on discrete differential geometry.

According to the replacement (123) into Hamil-
tonian (118), the effective Dirac Hamiltonian for
graphene under a nonuniform strain can be written as
[127, 120]:

Hps = −i~σ · v̄(r) ·∇−~vFσ ·A(r)−~vFσ ·Γ(r), (125)

where the position-dependent Fermi velocity tensor
v̄(r) is given by:

v̄(r) = vF
(
Ī + ε̄(r)− βε̄(r)

)
, (126)

and the components of the corresponding complex
vector field Γ(r) are:

Γi =
i

2vF
∂j v̄ij(r) =

i(1− β)

2
∂j ε̄ij(r), (127)

with an implicit sum over repeated indices. Keep
in mind that the complex gauge field Γ is due to
a position-dependent Fermi velocity, and its presence
guarantees the hermiticity of the Hamiltonian (125).
UnlikeA, Γ is a purely imaginary, so that, Γ cannot be
interpreted as a gauge field. Therefore, it does not give
rise to pseudomagnetism in the density of states [148].
At present, experimental signatures of such complex

gauge field Γ remain as open questions; see section
4.9 for a discussion of Hermicity within the context of
space-dependent pseudospin Hamiltonians.

Besides graphene, the procedure described in
previous paragraph has been recently employed to
obtain the effective low-energy Hamiltonian of 3D
Dirac semimetals [161] and certain class of 3D Weyl
semimetals [231] under mechanical deformations. In
general, this approach corresponds to the scheme of
emergence of gauge fields and gravity in the vicinity
of the Dirac, Weyl or Majorana points in the energy
spectrum [232, 233, 234].

Nowadays, the transport signatures of the pseu-
domagnetic fields remain the most investigated strain-
induced effects [235, 236, 237, 238, 239, 240, 241, 242].
The nature of these fictitious fields yields the possibil-
ity of observing Landau quantization and a pseudo-
quantum Hall effects under zero external magnetic
fields. Early proposals of such strain distributions
[128, 129] are technically challenging because they re-
quire complex stress fields applied at the boundaries of
graphene sample, but they can be engineered in molec-
ular graphene [196]. Zhu et al. recently conceived an
alternative method to achieve programmable extreme
pseudomagnetic fields with uniform distributions over
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large areas [195] by a pulling along one axis (see Fig-
ure 27). They revealed the special shape in which a
graphene strip must be cut (like a 2D projection of
a musical horn) so that, pulling on its ends yields a
constant strain gradient and, accordingly, a uniform
pseudomagnetic field.

Experimental confirmation of the strain-induced
pseudomagnetic field was reported on scanning tun-
neling microscopy of graphene nanobubbles [27]. The
scanning tunneling spectroscopy (STS) spectra mea-
sured directly over the nanobubbles (strained graphene
regions) showed a series of peaks in the same manner
as if graphene was subjected to an external magnetic
field [243]. Giant values of the pseudomagnetic fields
Bs, of 300 Tesla were determined. For comparison and
as a matter of context, (pulsed) magnetic fields of up
to 100 Tesla can only be obtained in state-of-the-art
experimental facilities.

Subsequently, many experimental confirmations
of the pseudomagnetic fields in graphene have been
carried out under other different strain configurations
[244, 245, 246, 247, 248, 249, 250, 251] and in various
graphene-like systems such as, molecular graphene
[196], photonic crystals [252] and optical lattices [253].
Beyond graphene, strain-induced gauge fields have
been also characterized in bilayer graphene [254, 255,
256], borophene [257], topological insulators [258],
transition metal dichalcogenides [9, 259, 260] and
three-dimensional Dirac and Weyl semimetals [161,
231, 261, 262, 263].

The effects solely due to a position-dependent
Fermi velocity tensor on the spinor wavefunction of
charge carriers are now discussed. For this purpose,
consider that:

v̄(x) = vF

(
1 + f(x) 0

0 1

)
, Γ = (if ′(x)/2, 0), (128)

i.e., the Fermi velocity is varying along the x axis. At
the same time, we assume ∇×A(r) = 0, to disregard
the effect of the pseudomagnetic field. As possible
scenarios of the considered problem see the references
[120, 264, 265].

Then, from Equation (125), we can write the
corresponding time-independent Dirac equation for the
spinor wavefunction Ψ as(
−i(1 + f(x))∂x − ∂y − if ′(x)/2

)
ψ2 = εψ1,(

−i(1 + f(x))∂x + ∂y − if ′(x)/2
)
ψ1 = εψ2, (129)

where ε ≡ E/(~vF ) and E is the energy. Following the
calculation presented in Ref. [120], this system has as
solution to the spinor wavefunction

Ψ(r) = A exp
[
ikyy+

∫ x ikx − f ′(x̃)/2

1 + f(x̃)
dx̃
]( 1

seiθ

)
, (130)

where eiθ = (kx + iky)/|ε|, ε = ±(k2
x + k2

y)1/2, A
is a normalization constant and s = ±1 denotes the
conduction band and valence bands, respectively.

Some important remarks follows from the solution
(130). Firstly,

|Ψ|2 ∼ (1 + f(x))−1 (131)

therefore, a position-dependent Fermi velocity induces
an inhomogeneity in the carrier probability density,
which was early analysed by using a quantum field
theory approach in curved spaces [266]. However, a
position-dependent Fermi velocity does not lead to
the emergence of band-gap structure in the energy
spectrum. Besides, given the arbitrariness of the
function f(x), Equation (130) allows to consider
scenarios more complex that those described by
Kronig-Penney-like models for the variation of the
Fermi velocity along a direction [267, 268, 269, 270].

4.8.3. Time-dependent strain. As discussed above, a
nonuniform deformation of the graphene lattice can be
interpreted as a pseudomagnetic field given by equation
(124). Within the same theoretical framework and
by analogy with the normal electromagnetic field, one
can recognized that a time-dependent deformation
gives rise also to a pseudoelectric field expressed by
Es = −∂tA [271, 272], which can accelerate the
electrons and induce current. However, since Es
couples with opposite signs in the two valleys, does
not cause a net electric current. Some works have
been devoted to reveal observable consequences due to
this pseudoelectric field but, the predicted effects, e.g.,
topological electric current [273, 274] or modification
of the Raman spectrum [275], are not experimentally
confirmed yet.

An interesting analogy with a real electromagnetic
problem is given by considering a time-dependent
deformation field of the graphene lattice u(r, t) of the
form [276],

u = (0, u0 cos(Gy − ωt)), (132)

with u0 � a � 2π/G, i.e. the atomic displacement
u0 is much less than the unstrained carbon-carbon
distance a, while the wavelength 2π/G is much
greater than a. As illustrated in Figure 28 (a), this
deformation wave propagates along the y direction,
which is rotated an arbitrary angle θ respect to the
crystalline coordinate system x0y0. For the latter, the
x0-axis points along the zigzag direction of graphene
lattice. Therefore, for θ = 0 the mechanical wave
moves along the armchair direction of graphene lattice,
whereas for θ = π/2, it moves along the zigzag
direction.

It is very important to keep in mind that the
general expression of the pseudovector potential A,
respect to the rotated frame xy, is given by [277],

Ax =
β

2a

(
(ε̄xx − ε̄yy) cos 3θ − 2ε̄xy sin 3θ

)
,

Ay =
β

2a

(
−2ε̄xy cos 3θ − (ε̄xx − ε̄yy) sin 3θ

)
, (133)
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Figure 28. (a) Schematic representation of a deformation
wave propagates in graphene. The dark regions on the sample
represent zones of higher density of carbon atoms. The inset
plays the relation between the arbitrary coordinate system xy
and the crystalline coordinate system x0y0. (b) Unstrained
graphene under the equivalent pseudoelectromagnetic wave.
The pseudoelectric field lie in graphene plane, whereas the
pseudomagnetic field is perpendicular to this. Reproduced from
Ref. [276] with permission.

whose periodicity of 2π/3 in θ, reflects the trigonal
symmetry of the underlying honeycomb lattice. Then,
for the case of the deformation field (132), from
Equation (133), it is obtained the following effective
gauge field,

A =
βu0G

2a
sin(Gy − ωt)(cos 3θ,− sin 3θ). (134)

Hence the deformation wave (132) leads to a
pseudoelectromagnetic wave propagating along the
y-axis at the velocity vs = ω/G, which can be
assumed equal to the sound velocity in graphene
[276]. Note that while the pseudomagnetic field Bs

oscillates perpendicularly to the graphene sample (see
Figure 28 (b)), the pseudoelectric field Es oscillates
in the sample plane but, in general, it is not
perpendicular to the propagation direction of the strain
wave. As noted in Ref. [276], when the deformation
wave propagates along the zigzag direction, i.e.
for θ = ±π/2 + 2nπ/3), the pseudoelectric field
oscillates along the propagation direction of the
pseudoelectromagnetic wave. So that, in this case, the
pseudoelectromagnetic wave behaves more like a sort
of longitudinal mechanical wave. In contrast, when
the deformation wave propagates along the armchair
direction, i.e. for θ = nπ/3, the pseudoelectric fields
oscillates transversally to the propagation direction
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Figure 29. (a) Chart of the allowed bands (white regions)
for the quasi momentum k̃ (in units of G), with Ã0 ≡
βu0/(2a) = 0.15 and the strain wave propagating along the
armchair direction. The diagram is symmetrical respect to
both axes. (b) Associated Dirac cone, whose red (blue) strips
correspond to the forbidden (allowed) values of the quasi-energy
Ẽ(k̃x, k̃y) (in units of ~vFG) due to the deformation wave.
Reproduced from Ref. [276] with permission.

of the pseudoelectromagnetic wave, as the expected
behavior of a normal electromagnetic wave. Then
including the strain-induced pseudovector potential
(134) via minimal coupling, and disregarding the effect
of a position-dependent Fermi velocity, the resulting
effective Dirac equation reads

vFσ · (−i~∇−A)Ψ = i~∂tΨ. (135)

As solutions of this equation, Oliva-Leyva et
a. [276] found Volkov-type states [278, 279], which
propagates preferably in the propagation direction
of deformation. In addition, they reported a band
structure of allowed and not allowed values for
the quasi-momentum and for the quasi-energy, as
illustrated in see Figure (29). The form of the emergent
band structure is given by the propagation direction
of the strain wave respect to the crystalline directions
of graphene lattice. In consequence, a deformation
wave might produce a collimation effect over the charge
carriers and, accordingly, an alternative mechanism
to archive electron beam collimation, beyond other
traditional methods [280, 281].

Time driven strain has important topological
aspects. In the case of electromagnetic fields, is known
that Floquet bands have topological properties [282].
For strain, zero-energy modes appear at the edges
of the Floquet zone[205, 206, 207] with a complex
topological quantum-phase diagram [208].

4.9. Strain from the perspective of discrete differential
geometry

Just as the justification for the models provided thus
far is to enhance our understanding of strain-induced
effects, the motivation for the discrete approach was
to follow a non-traveled route based on the geometry
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of meshes with the aim to give an additional angle
to this fascinating Physics. The main point of this
approach is to consider the graphene membrane as an
atomistic mesh, and to employ novel geometrical tools
used to deal with discrete meshes [283] to describe the
electronic properties of deformed graphene, without
recourse to a continuum deformation field that every
other author in the field employs. The discrete
approach has an unique economy to it, and it will
be argued in this section that it also generates unique
insights.

The discrete approach takes as input atomic
locations on strained structures (such as those
created from molecular dynamics), as opposed to the
deformation field discussed up to this point [108, 109,
284]. Within the continuum approach, deformation
fields are customarily superimposed to the discrete,
atomistic lattice as in Figure 30 [285], but the discrete
program comes down to re-expressing the theory
beyond continuum elasticity and explicitly on the
atomic lattice, such that matters of spatial scale can
be analyzed.

We divide the discussion on this section into four
parts: We first indicate the motivation for the discrete
approach. Then, we reproduce the derivation of strain-
induced gauges in graphene. A dedicated discussion
of the discrete geometry which captures graphene’s
shape without recourse to continuum approximations
is presented next, and the discussion is closed by
pointing to open avenues of research within this
approach.

4.9.1. Underlying assumptions of the continuum,
Dirac approach. The main assumption of all theories
aiming to understand the effects of mechanical strain
in terms of pseudo-electromagnetic gauges is expressed
in Ref. [128], and it goes as follows:

“If a mechanical strain varies smoothly on the
scale of interatomic distances, it does not break
sublattice symmetry but rather deforms the Brillouin
zone in such a way that the Dirac cones located in
graphene at points K and K’ are shifted in opposite
directions” (see Refs. [41, 152] as well). Previous
statement says that one can understand the effects
of mechanical strain on the electronic structure in
terms of a semiclassical approach, provided that strain
preserves sublattice symmetry.

In this semiclassical approach, a local and strain-
induced pseudo-magnetic field Bs(r) = ∇ × As(r)
and a deformation potential Vs(r) are added into a
pseudospin Hamiltonian Hps(q) (Equation (116)). The
semiclassical approximation is justified if the strain is
slowly varying, that is, when it extends over many unit
cells and preserves sublattice symmetry [6, 152, 128].

The way we understood the problem [108, 109],

−30 300
Bs (Tesla)

0 189
Bs (Tesla)

6 129
Bs (Tesla)

(a) (b) (c)

Figure 30. In the approach from continuum elasticity, strain-
induced fields are defined regardless of spatial scale. A unit
cell “plaquette” is shown in (b) and (c) for comparison. Those
“plaquettes” are the underlying geometrical objects in the
discrete approach. One defines the pseudospin Hamiltonian
Hps at individual plaquettes employing the semiclassical
approximation of low-energy expansions of a tight-binding
Hamiltonian in reciprocal space that are modulated in space. As
a result, strain-induced gauge fields become discrete themselves.
Reproduced from Ref. [109] with permission.

sublattice symmetry is directly linked to the Hermicity
of the Dirac Hamiltonian, and it means that phase
factors for A and B atoms can be considered conjugated
at any given unit cell. If atomic positions are explicitly
known, one can determine the extent to which phases of
atoms A and B cease to be conjugated as the deviation
from the origin of a phasor built up by adding δi for
atom A and δ′i for atom B which, as seen in Figure
31, are not necessarily equivalent:

3∑
i=1

(δi + δ′i) 6= 0. (136)

The deviation of this phasor sum from zero is a direct
numerical measure of “slow-varying strain” and of
“distortions preserving sublattice symmetry.”

One has to preserve crystal symmetry for
reciprocal space to exist, so when crystal symmetry is
strongly perturbed, the reciprocal space representation
starts to lack physical meaning, presenting a limitation
to the semiclassical theory, including ours. Lack
of sublattice symmetry may not allow proper phase
conjugation of pseudospin Hamiltonians at unit
cells undergoing very large mechanical deformations.
Nevertheless, one must realize that this check cannot
proceed on a description of the theory within a
continuum media, because by construction there is no
direct reference to actual atoms on a continuum.

One can disgress further: in mechanics of
continuum media, there is always a suitable spatial
scale in which a mechanical distortion appears
homogeneous enough. Therefore, it is not possible to
assess sublattice symmetry on a continuum, and proper
phase conjugation of pseudospin Hamiltonians Hps is
an implicit assumption of that theory. Indeed, as a
matter of definition there is no explicit information
of interatomic distances on a continuum media, and
continuum elasticity is based on a pillar known as
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No strain: Under mechanical
strain:

Figure 31. (a) Definitions of geometrical parameters in a unit
cell. (b) Sublattice symmetry relates to how pairs of nearest-
neighbor vectors (either in thick, or dashed lines) are modified
due to strain. Reproduced from Ref. [109] with permission.

Cauchy-Born rule, which essentially means that the
deformation field is followed at all spatial scales, even
within a single unit cell. In reality, such assumption
may break down [286].

4.9.2. Derivation of strain-induced gauges. Consider
the unit cell before (Figure 31(a)) and after arbitrary
strain has been applied (Figure 31(b)). For easier
comparison of our results, the starting structure
coincides with Figure 1, and with those shown in
Refs. [6] and [128].

When mechanical strain is applied (Figure 31(b)),
each local pseudospin Hamiltonian will only have
physical meaning at the unit cells where:

∆δ′j ' ∆δj(j = 1, 2). (137)

Condition (137) can be re-expressed in terms of
changes of angles ∆αj or lengths ∆Lj for pairs of
nearest-neighbor vectors δj and δ′j (solid and dashed
lines are drawn in Figure 31(b) for better comparison):

(δj+∆δj)·(δj+∆δ′j) = |δj+∆δj ||δj+∆δ′j | cos(∆αj), (138)

sgn(∆αj) = sgn
(

[(δj + ∆δj)× (δj + ∆δ′j)] · k̂
)
.(139)

In previous Equations, k̂ is a unit vector along the z-
axis, sgn is the sign function (sgn(a) = +1 if a ≥ 0
and sgn(a) = −1 if a < 0), and:

∆Lj ≡ |δj + ∆δj | − |δj + ∆δ′j |. (140)

Preservation of sublattice symmetry [128] requires
that ∆Lj ' 0 and ∆αj ' 0 (j = 1, 2). Forcing
sublattice symmetry to hold from the start amounts
to introducing an artificial mechanical constraint on
the atomistic lattice.

The next task consists in determining how
reciprocal lattice vectors change to first order in

displacements under mechanical load. In order for
reciprocal lattice vectors to make sense at each unit
cell, Equation (137) must hold (∆αj and ∆Lj are all
close to zero). In that case one sets ∆δ′j → ∆δj for
j = 1, 2, and define the change in lattice vectors as
follows:

∆a1 ≡ ∆δ1 −∆δ3, (141)

∆a2 ≡ ∆δ2 −∆δ3, (142)

or in terms of (two-dimensional) components:

∆A ≡
(

∆δ1x −∆δ3x ∆δ2x −∆δ3x
∆δ1y −∆δ3y ∆δ2y −∆δ3y

)
. (143)

The matrix A changes to A′ = A + ∆A and A′−1

becomes to first order in displacements:

A′−1 = (1+A∆A)−1(A−1) ' A−1−A−1∆AA−1.(144)

This way, the reciprocal lattice vectors are renormal-
ized by:

∆B = −2π
(
A−1∆AA−1

)T
. (145)

This additional term was missed in Ref. [226], where
the theory was expressed on a continuum (see Refs. [52,
148] too). Equation (145) can be employed to calculate
the shifts of the K−points due to strain, and K
requires the following additional contribution [109]:

∆K =

− 4π

3a2
0

(
∆δ1x −∆δ2x,

∆δ1x + ∆δ2x − 2∆δ3x√
3

)
, (146)

where δi,j is the j−component of vector δi. Given that
∆K ′ = −∆K [109], one finds that the K (K) and K ′

(−K) points shift in opposite directions, as expected
[41, 128].

Equation (137) provides a numerical assessment
for mechanical strain that varies smoothly on the
scale of interatomic distances and does not break
the sublattice symmetry [128]. On the other hand,
arbitrary strain breaks down to some extent the
periodicity of the lattice, and “short-range” strain can
be identified to occur at unit cells where ∆αj and ∆Lj
cease to be zero by significant margins.

This observation provides the rationale to next
express strain-created gauge fields without ever leaving
the atomic lattice: When ∆δ′j ' ∆δj at each unit
cell a mechanical distortion can be considered “long-
range,” and the first-order theory is valid. The process
to lay down the gauge terms to first order is now
described. Local gauge fields can be computed as low
energy approximations to the following 2×2 pseudospin
Hamiltonian:(

Es,A g∗

g Es,B

)
, (147)

with g ≡ −
∑3
j=1(t+ δtj)e

i(δj+∆δj)·(K+∆K+q).
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Keeping exponents to first order, one has that:

(δj + ∆δj) · (K + ∆K + q) '
δj ·K + δj ·∆K + ∆δj ·K + δj · q. (148)

The exponent is next expressed to first-order:

ei(δj ·K+δj ·∆K+∆δj ·K+δj ·q) ' ieiδj ·Kδj · q +

eiδj ·K[1 + i(δj ·∆K + ∆δj ·K)], (149)

and explicit calculation yields [109]:

3∑
j=1

eiδj ·K[1 + i(δj ·∆K + ∆δj ·K)] = 0. (150)

The term linear on ∆K on Equation (150) cancels
out the fictitious K−point dependent gauge fields
proposed in Ref. [226], which originated from the term
linear on ∆δj in this same equation. Equation (150) is
a consistency check for the discrete formulation of the
theory made completely in the atomistic lattice.

In the presence of strain, Equation (147) takes the
following form in the low-energy regime:

Hps =(
0 t

∑3
j=1 ie

−iK·δjδj · q
−t
∑3
j=1 ie

iK·δjδj · q 0

)

+

(
Es,A −

∑3
j=1 δtje

−iK·δj

−
∑3
j=1 δtje

iK·δj Es,B

)
, (151)

with the first term on the right-hand side reducing to
the standard pseudospin Hamiltonian in the absence
of strain. The change of the hopping parameter t
is related to the variation of length, as explained in
Refs. [6] and [152]:

δtj = −|β|t
a2

0

δj ·∆δj . (152)

This way, Equation (151) becomes:

Hps = ~vFσ · q +

(
Es,A f∗1
f1 Es,B

)
, (153)

with f∗1 = |β|t
2a20

[2δ3 ·∆δ3−δ1 ·∆δ1−δ2 ·∆δ2 +
√

3i(δ2 ·

∆δ2 − δ1 · ∆δ1)], and ~vF ≡
√

3a0t
2 . The parameter

f1 can be expressed in terms of a vector potential: As
f1 = −~vF eAs~ . This way:

As = −|β|φ0

πa3
0

[
2δ3 ·∆δ3 − δ1 ·∆δ1 − δ2 ·∆δ2√

3

− i(δ2 ·∆δ2 − δ1 ·∆δ1)]. (154)

In the absence of a full Poisson solver, one may
estimate the diagonal entries [152] in Equation (147)
as follows [109]:

Es,A = −0.3eV

0.12

1

3

3∑
j=1

|δj −∆δj | − a0/
√

3

a0/
√

3
, (155)

and

Es,B = −0.3eV

0.12

1

3

3∑
j=1

|δj −∆δ′j | − a0/
√

3

a0/
√

3
. (156)

These entries represent the scalar deformation poten-
tial, which are taken to linear order in the average bond
increase [163]. In numerical calculations, the deforma-
tion potential given by these entries tends to be asym-
metric within the A and B sublattices, which gives rise
to a mass term [109, 170].

The derivations are completed with the following,
second, consistency check. In the absence of significant
curvature, the continuum limit is achieved when
|∆δj |
a0
→ 0 (for j = 1, 2, 3). One then has (Cauchy-

Born rule): δj ·∆δj → δj

(
ε̄xx ε̄xy
ε̄xy ε̄yy

)
δTj , where ε̄ij

are the entries of the strain tensor.
This way Equation (154) becomes:

As →
|β|φ0

2
√

3πa0

(ε̄xx − ε̄yy − 2iε̄xy), (157)

as expected [6, 128].
Besides representing a consistent first-order for-

malism, the discrete approach may be especially suited
for the analysis of “raw” atomistic data –obtained, for
example, from molecular dynamics simulations: the
relevant equations (154, 155, 156) take as input the
changes in atomic positions upon strain directly. An
important observation is that the number of pseu-
dospinors one can define in the discrete approach is
finite: N/2 space-modulated pseudospinor Hamiltoni-
ans can be built for a graphene membrane having N
atoms. This is a consequence of a formalism that is in-
herently bound to (and never leaves) the discrete atom-
istic lattice.

Some examples of the predictions from the discrete
approach concerning strain gauges are presented in
Figure 32; see Refs. [108, 109, 284] too. The
main contribution from Figure 32 is the discrete
pseudomagnetic field resolved over individual atoms,
and the estimation of the deformation potential Es.

It becomes convenient to bring to attention a
subtle point concerning the nature of the distortions
of the graphene lattice. The point is that a rippled
graphene membrane may require a certain degree of
load in order to iron-out ripples and start accumulating
actual tensile strain. This point is emphasized in
Figure 33 [109], which has a dependence consistent
with experiments of graphene under load. Additional
mechanical and energetic issues concerning graphene
suspended on small holes have been addressed by
Verbiest and coworkers in the recent past too [287].
Now that the consistency (and insight) gained from
the discrete approach has been discussed, we wish
to present some mathematical constructions that
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Figure 33. (a) The elastic energy versus indentation displays three distinct regimes: (i) isometric, where the membrane follows
an extruder with no change in energy in a deformation that mostly modifies angles among atoms, but not their separation, (ii) a
harmonic distortion, and (iii) the non-linear regime with a force (energy) proportional to the third- (fourth-)power of the indentation,
c.f., Figure 7 and Equation (45). The isometric regime is customarily neglected in the literature, but it could exist on graphene
membranes with plies or other corrugations that are “ironed out” prior to the actual creation of strain. (b) The decomposition of
the elastic energy indicates that bending requires an energy that is an order of magnitude smaller than that required to stretch a
Carbon-Carbon bond. Reproduced from Ref. [108] with permission. Copyrighted by the American Physical Society.
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Figure 32. (a) Bs for z0 = −100 and −215 Å loads. (b) LDOS
with screened values of the deformation potential Es at r = 0,
for z0 = −100 and −215 Å. Reproduced from Ref. [284] with
permission. Copyrighted by the American Physical Society.

are common in describing meshes that find a niche
application in two-dimensional crystals.

4.9.3. Further discussion of the discrete geometry
The local geometry of a two-dimensional (2D) surface
is determined by four invariants of its metric (g) and
curvature (k), that indicate how much it stretches and
curves with respect to a reference non-deformed shape.
Suitable choices are the determinant and the trace of
g, the Gauss curvature K ≡ det(k)/ det(g), and the
mean curvature H ≡ Tr(k)/(2Tr(g)).

In the existing literature, graphene’s geometry

is commonly studied in terms of a continuous
displacement field εα(ξ1, ξ2). Specifically, on thin-
plate continuum elasticity the strain tensor is εαβ =
(∂αεβ + ∂βεα + ∂αεβ∂βεα + ∂αz∂βz)/2, with z an out-
of-plane elongation. There, differential geometry and
mechanics couple as:

gαβ = δαβ + 2εαβ , kαβ = n̂ · ∂gα
∂ξβ

, (158)

where gα(ξ1, ξ2) is a tangent vector field, δαβ is the

reference (flat) metric and n̂ =
gξ1×gξ2

|gξ1×gξ2 |
is the local

normal. The point is that, since the graphene lattice
is a collection of atoms joined by chemical bonds, is it
possible to furnish a geometry for deformed graphene
that does not require transforming the atomistic lattice
into an artificial continuum.

Using the atomistic lattice in Figure 34(a-b),
the discrete metric is defined from the local lattice
vectors aα [284, 288] gαβ = aα · aβ , and the discrete
Gauss curvature (KD) originates from the angle defect∑6
i=1 θi [283, 289]:

KD = (2π −
6∑
i=1

θi)/Ap. (159)

Here θi (i = 1, ..., 6) are angles between vertices shown
in Figure 34(a). The Voronoi tessellation shown in dark
blue in Figure 34(a) with an area Ap generalizes the
Wigner-Seitz unit cell on conformal 2D geometries. As
a consitency check, it may be noted that the angle
defect adds up to 2π on a flat surface, making the
Gaussian curvature KD = 0, as expected.

The discrete mean curvatureHD measures relative
orientations of edges and normal vectors along a closed
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Figure 34. (a) Top view of polyhedra used to determine
the four geometrical invariants from the metric and curvature.
Circles represent atoms on the A-sublattice. Local lattice vectors
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and the central shaded hexagon is the Voronoi cell. (b) Side
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for a smooth gaussian bump where discrete and continuum
results coincide. Percent differences

√
det(g̃) −

√
det(g) and

Tr(g̃)− Tr(g) are also shown. Reproduced from Ref. [284] with
permission. Copyrighted by the American Physical Society.

path:

HD =

6∑
i=1

ei × (νi,i+1 − νi−1,i) · n̂/4Ap. (160)

Here, vi is the position of atom i on sublattice A, and
ei = vi − vp is the edge between points p and i (note
that a1(2) = e1(2)). νi,i+1 is the normal to edges ei

and ei+1 (i is a cyclic index), and n̂ =
∑6
i=1 νi,i+1Ai∑6

i=1 Ai
is

the area-weighted normal with Ai = |ei×ei+1|/2 [283].
For the purposes of discrete geometry, the metric and
curvatures are formally decoupled objects.

As discussed in Ref. [288] and Figure 36, the
discrete geometry readily admits generalization to deal
with samples that have atomistic defects.

The discrete metric and curvatures furnish
geometry consistent with a crystalline structure, and
lead to the faithful characterization of graphene’s
morphology beyond the effective-continuum paradigm,
Equation (158). This may be advantageous when
the atomic conformation is known, as a fitting of
the atomic lattice onto an effective continuum is not
needed. The discrete geometry is accurate regardless
of elastic regime, hence it can be used to verify whether
the conditions for continuum elasticity hold in the
problem at hand, and the geometrical distortion shown
in Figure 35 leads to the strain-derived gauge fields
presented in Figure 32.

Some results on a system where the concepts
learned in this section make plenty of sense are next
showcased. In molecular graphene [196], CO molecules
are employed to establish a triangular, insulating,
lattice. Interstitials among CO atoms create
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r(Å)

0.0

2.5

5.0

−2.5 50250

x

y
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/Å

)

0.00

0.04

0.08

 

50250

−8
−50

−100
−215

r(Å)
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Å
Å
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Figure 36. The neighborhood of an atom changes upon
appearance of topological defects. (a) Neighborhood with no
topological defects. The more common defects are: (b) a
pentagon defect, (c) a heptagon defect, or a combination of (b)
and (c). Reproduced from Ref. [288] with permission. Copyright
2014 American Chemical Society.

conducting paths whose intersections conform what
is known as a dual lattice [283]. Those intersections
conform the so-called “artificial graphene” lattice.

One first determines whether it is possible to
define the honeycomb, dual lattice (artificial graphene
lattice), under arbitrary strain. To be concise, a
honeycomb lattice can be locally defined only when
the number of “atoms,” or intersections, is conserved.

To visualize this idea, Figure 37 shows the
evolution of a triangular lattice and its dual, the
honeycomb one, under a horizontal shear strain. The
direct (triangular) lattice is shown in black circles and
thin black lines, while its dual is shown in white or red
dots, and edges appear in thicker black lines. Color
was employed to distinguish neighboring honeycombs
in the dual lattice. The point is that the honeycomb
(artificial graphene) lattice in this case is a geometrical
construct realized by bisecting lines, and it is therefore
not subject to force minimization processes that would
take place on actual graphene.

At the undeformed configuration (subplot 37(a))



CONTENTS 40

one notes the existence of two white circles per black
circle; these two white circles represent the A and B
sublattice sites on the (dual) honeycomb lattice that is
seen as (golden) conducting paths in Ref. [196].

As seen in Figure 37(b), when shear is introduced
onto the triangular CO lattice, a pair of neighbouring
intersections of (bold black) bisectors (artificial atoms)
come closer together. As shear reaches the point in
which atoms on the (initially triangular) lattice lie
along vertical lines (Figure 37(c)), the lattice becomes
rectangular, and the two “atoms” on the dual lattice
collapse into one. This means that the number of
“atoms” may be ill-defined, which essentially means
that no pseudospin Hamiltonians (which require two
atoms, or sublattices) can be defined at these unit cells.

The observation made in previous paragraph
cannot be reached when working with a continuum
approximation of the system: in that formalism one
would never be able to discuss the collapse of the
Honeycomb lattice, providing another example of how
the discrete approach may be insightful. A natural
question to ask now is whether the considerations
in the present paragraph are of any consequence for
experiment [196].

And they are. In Figure 39 the experimental STM
images of molecular graphene are shown [196]. The
(dual) lattice is superimposed in red, and it follows all
conducting (golden) paths, exactly.

In Ref. [128], it was shown that a finite
displacement field of the form:

∆r = q(2xy, (x2 − y2)), (161)

applied to a honeycomb lattice leads to a constant
pseudo-magnetic field. But it is not the honeycomb
lattice, but the triangular CO lattice the one that
is directly available to experiment [196] and set up
following the prescription given by Equation (161).
Thos displacements do not lead to a honeycomb lattice
consistent with Equation (161):

The direct (CO, triangular) and dual (honeycomb)
lattices transform by different amounts. The process
leading to the dual lattice is illustrated in Figure
38. There, the “atom” positions obtained by applying
the strain field to the honeycomb lattice seen as
Figure 39(a) are shown as green open circles. Actual
locations obtained when the strain field is applied to
the triangular lattice, leading to an excellent match to
experiment, are shown by the red motifs.

As indicated in previous paragraphs, it is the
(direct) triangular lattice that is directly accessible in
the experiment [196], and the hexagonal (dual) lattice
reaccommodates in response to the changes to the
direct lattice. The artificial graphene lattice shown
as golden conducting paths is a Voronoi tessellation
of the triangular lattice. Using imaging processing
techniques, it is possible to determine the center

of the black CO molecules, and to determine the
connections that are shown in red in Figure 39.
Note that the Voronoi tessellation shown in red
follows the conducting paths in the experimental data
extraordinarily well.

To further demonstrate that the displacement field
in Equation (161) was directly applied to the CO
molecules and not to the artificial graphene lattice,
one can superimpose the dual hexagonal lattice onto
the experimental image when the triangular lattice is
displaced following Equation (161) for q = 0, q = 5,
and q = 10 ×10−4 Å−1, which leads to a remarkable
agreement.

The red arrows in Figure 39 start at “atomistic”
locations predicted when the displacement given by
Equation (161) is applied to the dual lattice, and end
at the actual “atomistic” locations seen in experiment.
Those arrows thus indicate the actual deviation from a
strain pattern that should lead to a constant magnetic
field. We note that, in experiment, the magnetic
field was only ascertained at the origin, which is the
only spatial location where the density of states were
reported [196].

In addition, and as it was foreseen in Figure 37,
the number of “atoms” begins to decrease at the largest
amounts of strain. This is emphasized within yellow
circles, where two atomic positions collapse into one.
Pseudospin Hamiltonians are not properly defined at
these locations any more.

At unit cells where such collapse has not taken
place, it is possible to assess preservation of sublattice
symmetry by adding vectors joining neighboring
atoms. This is done in Figure 38, where the vectors
joining nearest neighbouring atoms are shown at the
unit cell shown in light green. These vectors do not
add up to zero, and the amount to which they deviate
from one another is directly related to the amount
in which sublattice symmetry is not preserved in the
system. It is remarkable that no such analisis based on
the evident discreteness of the experimental system,
and which lends itself to an increased insight, has been
provided to date.

4.9.4. Open directions within the discrete approach.
The exposition of the discrete approach is closed
with a short discussion of an open avenue for further
exploration. Given that the model is laid out to
describe arbitrary strain, it is desirable to generalize
these concepts to include back-scattering. As a starting
point, this could be done by enhancing the present
description to include cross-terms among inequivalent
K−points.
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Finite shear distortion

Figure 37. A shear distortion converts a triangular lattice onto a rectangular one, and the dual from hexagonal to rectangular:
The number of “atoms” in the dual lattice (white and red circles) is not preserved. There are four atoms in the dual lattice in plot
(c), and eight in all the others. This gradual collapse of the atoms on the dual lattice is highlighted by the red circles in (b) and (d).
Image courtesy of Bradley Klee.

Figure 38. A zoom-in that demonstrates the construction
leading to atomistic positions. Intersections of blue and black
lines are positions of CO molecules obtained from Ref. [196]. The
red lines bisect the triangular lattice, and lead to the Voronoi
tessellation resulting in the honeycomb lattice. As described
in Figure 31, the amount to which nearest-neigbouring atoms
deviate from one another, is related to the extent to which
sublattice symmetry is violated at any given unit cell. The
discrete approach is thus properly suited to unveil inherent
assumptions of the continuum approach to strain in graphene.

4.10. Results from density-functional theory

Ab-initio or first principles methods are becoming more
accessible due to the availability of fast computers.
One of the most used ab-initio methods is based on
the Density Functional Theory (DFT) which can be
traced to 1964 with a manuscript by Hohenberg and
Kohn in which the ground state of an interacting
electron gas is obtained through an electron density
universal functional [290]. This work lead to the
important theorem which establishes that for any
system of interacting particles in an external potential,
the external potential is uniquely determined by the
ground state density (charge density). This theory was
latter generalized by Levy [291]. Therefore, under the

DFT approach, the total energy can be expressed as:

E(ρ) = K(ρ) + U(ρ) + Eex(ρ), (162)

where K(ρ) is the kinetic energy of a system
of noninteracting particles of density ρ, U(ρ) is
the classical electrostatic energy due to coulombic
interactions, and Eex(ρ) is a term that includes the
exchange and correlation energies in addition to other
many-body contributions. Note that all the terms
depend on the charge density.

In order to compute the third term of the
above equation, certain approximations are needed,
the simplest approximation is the Local Density
approximation (LDA) which mainly comes from the
exchange-correlation energy of a uniform electron gas
[292, 293, 294]. The LDA approach can be improved
to include inhomogeneous effects of the electron gas
by implementing a gradient expansion of the density,
leading to the non local spin density approximation
(NLSD) or gradient corrected approximation [294, 295,
296, 297].

In order to be able to apply the DFT approach
to the lattice dynamics of a system, density functional
perturbation theory (DFPT) has been developed: In
this method, the second derivative of the total energy
with a given perturbation is computed. Depending on
the perturbation, different properties can be obtained,
for example, if the perturbation is in the ionic
positions, phonon dispersions can be obtained, if the
perturbation is in the unit cell vectors, elastic constants
can be calculated [298, 299, 300].

Nowadays it is possible to perform DFT calcula-
tions on thousands of atoms systems to understand
their electronic, mechanical, vibrational and chem-
ical properties and graphene is not the exception.
Graphene band structure has been calculated by DFT
since the beginning of carbon nanotube research in the
1990’s in order to understand not only these amaz-
ing 1-D tubular structures [301]. Moreover, other car-
bon allotropes such as Fullerenes [302] and 3-D systems
known as Schwarzites [303, 304] have also been studied
with DFT.
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(a) (c)(b)

Figure 39. Upper row: Evolution of the honeycomb (dual) lattice (“artificial graphene”) as the (direct) triangular lattice is displaced
following Equation (161), for (a) q = 0, (b) q = 5, and (c) q = 10 ×10−4 Å−1. Experimental data is shown for direct comparison
[196]. The (dual) hexagonal lattice does not follow the displacement field given in Equation (161) –red arrows are corrections to
actual crossings– and as a result, the pseudomagnetic field is not quite constant. Vectors within yellow circles in (c) highlight the
collapse of “atoms” positions onto a single point, which means that the number of “atoms” is not preserved any more. None of these
conclusions could have been reached within the continuum approach. Experimental data was adapted by permission from Macmillan
Publishers Ltd. from Ref. [196], copyright (2016). Voronoi tesselation courtesy of Bradley Klee.

Figure 40. Band Structure and Density of States of Graphene
calculated using DFT-LDA.

From the DFT-LDA graphene band structure and
density of states (DOS) it is possible to appreciate their
main features: the zero band gap at theK points in the
Brillouin zone and the linear energy dispersion, closed
to the K points (see figure of bands and DOS of DFT-
LDA graphene Figure 40).

Also strain effects in graphene can be computed
through DFT finding that the band gap is more
sensitive to uniaxial strain than to bi-axial strain
[305]. Some authors report a band gap opening under
uniaxial strain of 12.2 % (parallel to the C-C bonds)
up to 0.486 eV, and others with a combination of
uniaxial strains report a gap opening of 1 eV [160].
However, the stability of graphene under these extreme
strains should be carefully analyzed by DFPT to see
if the phonon dispersion does not exhibit negative
frequency values. DFT confirms that under uniaxial
strain the symmetry of graphene is broken and under
bi-axial strain the hexagonal lattice symmetry is
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Figure 41. DFT calculation of the graphene density of states
under strain. Uniaxial strain was applied in the zigzag direction
using a compression of s̄xx = 5.0 GPa and a expansion s̄xx =
−5.0 GPa. The biaxial expansion used was s̄xx = s̄yy =
−5.0 GPa.

preserved. Figure 41 shows that when small biaxial
strain is applied, the density of states (DOS) changes
little around the K points, but when uniaxial strain
is applied, noticeable changes in the DOS can be
observed, even generating a small band gap. As will be
seen in the Raman section of this review, the phonon
dispersions are very sensitive to strain.

5. Optical properties

Experiments on the optical response of graphene
indicate that its absorbance is uniquely expressed by
the fine structure constant α, which has a more or
less constant magnitude πα ≈ 2.3% over a broad
range of frequencies from the far-infrared to the visible
spectrum [306, 307]. Thus absorbance leads to a
universal optical conductivity for graphene equal to
σ0 = e2/4~ for zero chemical potential, which is
ultimately a consequence of the behaviour of charge
carriers as massless Dirac fermions [166, 308, 309, 310,
311].

5.1. Strain engineering of optical absorption

The strain-induced anisotropy in the electron dynamics
results in an anisotropic optical conductivity [130, 312,
313, 218, 158, 314, 315]. Combining the effective
Dirac Hamiltonian (118) and the Kubo formula, the
general expression for the optical conductivity tensor
is [218, 219]:

σ̄(w) ' σ0(w)
(
Ī − 2β̃ε̄+ β̃Tr(ε̄)Ī

)
, (163)

where σ0(w) is the (isotropic) frequency-dependent
conductivity in the absence of strain [316].

For example, Equation (163) yields σ‖,⊥(w) =

σ0(w)(1∓ β̃ε(1 + ν)) for uniaxial strain, where σ‖(σ⊥)
is the optical conductivity parallel (perpendicular) to
the direction of the applied strain, ν is the Poisson’s
ratio and ε is the applied strain [130]. Note that the
optical conductivity along the direction of the strain
decreases while the transverse conductivity increases
by the same amount. Thus, an increase of σ⊥ helps
explain the variation of waveguide transmission of
hybrid graphene integrated microfibers elongated along
their axial direction [317].

The strain-induced anisotropy of the optical ab-
sorption yields two effects: dichroism and modulation
of the transmittance as a function of the polariza-
tion direction. For normal incidence of linearly polar-
ized light upon strained graphene, the transmittance is
given by (Equation (163) [131]):

T (θi) ≈
1− πα

(
1− β̃(ε̄xx − ε̄yy) cos 2θi − 2β̃ε̄xy sin 2θi

)
, (164)

whereas the dichroism effect is expressed by:

θt − θi ≈ αβ̃
( ε̄yy − ε̄xx

2
sin 2θi + ε̄xy cos 2θi

)
, (165)

where θi(θt) is the incident (transmitted) polarization
angle. Expressions (164) and (165) show π-periodic
modulations respect to the incident polarization angle
θi which are due to the physical equivalence between
θi and θi + π for linearly polarized light at normal
incidence.

Equation (164) yields T (θi) = 1 − πα(1 − β̃(1 +
ν)ε cos 2θi) for uniaxial strain [130], where ε is the
magnitude of strain, ν is the Poisson ratio and θi is
measured with respect to the stretching direction. This
periodic modulation of the transmittance as a function
of polarization direction has been experimentally
confirmed by measuring the modulation in the
transmittance of visible light 4T through strained
graphene, and extracting the magnitude ε for uniaxial
strain by means of ε ≈ 4T/(2πβ̃(1 + ν)) by Raman
spectroscopy measurements [318].

5.2. Raman spectrum to determine nanometre-scaled
strain variations

Raman spectroscopy is an important technique to
characterize layered materials because it is not invasive
and is very sensitive to defects, number of layers,
strain, curvature, doping, etc. In the context of
carbon nanostructures, Raman spectroscopy has been
used in Fullerenes [319], carbon nanotubes [320], and
graphene [321, 322, 323, 324]. Carbon-based materials
such as graphite, carbon nanotubes and graphene are
characterized by three main Raman features: One
signal around 1590 cm−1 called the G band which is
a first-order signal due to the in-plane vibrations of
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Figure 42. (a) Scattering of normal-incident linearly polarized light over strained graphene. (b) Schematic representation of the
dichroism induced by the anisotropic absorption. The electromagnetic fields lie in the graphene plane. (c) Rotation of the transmitted
field and transmittance as a function of the incident polarization angle for uniaxial strain with ε = 0.03.

the carbon atoms (E2g modes in graphite), another
signal at around 1350 cm−1 called the D−band that
originates from defects in the lattice, and a 2D band
around 2700 cm−1.

The D and the 2D signals involve double (second
order) resonance processes [321, 322, 323]: For the
D band, intervalley electron scattering takes place
involving a defect and a TO phonon around the K
point in the first Brillouin zone (1BZ). For the 2D
band, the double resonance does not involve defects
but phonons around the K− point in the 1BZ. One
unique characteristic is that the 2D band exhibits
a much higher intensity than the G band. These
features are seen in Figure 43, where the Raman
signal of pristine graphene is compared to that of
nitrogen-doped graphene. Here, the D′ signal –due
to intravalley electron scattering by a defect involving
a LO phonon– is observed too. On the other hand,
the D and D′ signals are greatly reduced in pristine
graphene due a small amount of defects. Figure 44
shows the DFT phonon dispersion.

Symmetry becomes lowered when graphene is
exposed to uniaxial tensile stress, and a shift to lower
frequencies accompanied of a splitting of the LO and
TO modes at the gamma point in the BZ is produced,
giving rise to Raman bands G+ and G− [326, 155, 327].
Figure 45 shows a series of Raman spectra of graphene
under uniaxial strain [326], and a DFT calculation
shows the splitting in the phonon dispersion that is
in agreement with experimental results. Also note
that there is a shift of the phonons around the K
towards lower frequencies under tensile stress,thus
agreeing with the observed shifts of the 2D band. The
Grüneisen parameters –that relate the rate of change
of phonon frequencies with respect to strain– can be
obtained from the Raman shifts under strain [155, 328].

Symmetry is preserved when uniform biaxial
strain is applied, so there is no splitting of the G band
(See 46), but only a shift towards lower frequencies
in the case of tensile stress, and to higher frequencies

Figure 43. Experimental Raman espectra of nitrogen doped
graphene and pristine graphene. Reproduced from Ref. [325]
with permission.
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Figure 45. Graphene under uniaxial tensile strain: (a)
Experimental Raman espectra of graphene under uniaxial tensile
strain showing the splitting of the G band (reproduced from
Reference [326]). (b) DFT calculation showing the shift and
the splitting of graphene under uniaxial stress along the zigzag
direction s̄xx = −3.5 GPa compared to pristine graphene (the
black circles show the splitting at the Γ point in the 1BZ.

for compressive stress [155]. Raman spectroscopy also
plays a crucial role in the characterization of other
2D materials such as transition metal dichalcogenides
(TMDS) [329, 330, 331] and phosphorene [332, 333].

6. Strain in multi-layered graphene

Even though multi-layered graphene is not a truly
2D material, it can be studied with the techniques
discussed so far for graphene. Layers can be stacked
following different sequences that depend on the
relative placement of the graphene’s bipartite lattices
A and B in different layers [334]. Nowadays, it is
possible to control the stacking sequences, including
the addition of other different layered materials to
build nanocomposites [335]. For graphite, the most
common stacking is known as Bernal stacking (see
Figure 47(b)), where B atoms of layer 2 (B2) sit
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Figure 46. Graphene under biaxial tensile strain: DFT
calculation showing the shift and the splitting of graphene under
biaxial tensile stress s̄xx = s̄yy = −3.5 GPa compared to pristine
graphene. Note that there are no splitting at the Γ point in the
1BZ.

directly on top of A atoms of layer 1 (A1), while B1
and A2 atoms are in the center of the hexagons of
the opposing layers [336, 337]. In Figure 47(c) the
structure of ABA trilayer graphene is presented as well.

The band structure of multilayered graphene can
be understood using the Slonczewski-Weiss TB model
for graphite [338]. Within this model, there is a
hopping parameter t0 as in monolayer graphene to
account for the intra-layer interaction, as indicated in
Figure 47(b) by arrows. For bilayer graphene, there are
five hopping parameters γi with i = 0, ..., 4 to account
for the different kinds of overlaps of Π-orbitals. Also,
there are four on-site energies εA1, εB1, εA2, εA2 on the
four atomic sites. As indicated in Figure 47(c), these
parameters were determined by infrared spectroscopy
[339], resulting in t0 = 3.16 eV, γ1 = 0.381 eV,
γ3 = 0.38 eV, γ4 = 0.14 eV, εB1 = εA2 = 0.022 eV
and εA1 = εB2 = 0. In trilayer graphene, two others
parameters γ2 and γ5 are needed in addition.

The following 4× 4 Hamiltonian matrix describes
the single-particle electronic dispersion for bilayer
graphene:

H =
εA1 −t0f(k) γ4f(k) −γ3f

∗(k)
−t0f∗(k) εB1 γ1 γ4f(k)
γ4f
∗(k) γ1 εA2 −t0f(k)

−γ3f(k) γ4f
∗(k) −t0f∗(k) εB2

(166)

where f(k) is given by Equation (52). The four
resulting bands are schematically represented in Figure
47(b); they red are parabolic and touch without a gap
within this single-particle picture. Nevertheless, a gap
does open at low temperatures due to electron-electron
interaction [340, 341, 342].

Within a single-particle, low-energy picture, it
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Figure 47. Unstrained lattice structure (upper panels) and a sketch of their corresponding energy dispersion (lower panels) for
(a) monlayer graphene, (b) Bernal stacked bilayer graphene and (c) Bernal stacked trilayer graphene. Blue atoms belong to the A
bipartite lattice while red atoms belong to the B lattice. The arrows indicate the different kinds of interactions that appear in a
TB calculation, parametrized by t0 for intra-layer interaction, and γi with i = 1, ..., 5 for inter-layer interactions. The Dirac cone
seen in (a) for graphene is replaced by parabolic bands in (b), while trilayer graphene includes both types of bands. Reprinted by
permission from Macmillan Publishers Ltd: Nature [337], copyright (2011).

is possible to obtain an effective Hamiltonian [338].
Trilayer graphene can be treated in a similar way,
resulting in a mixing of the bilayer and monolayer
energy dispersion that is shown in Figure 47(c).

Strain in bilayer graphene can be studied using
the methodology presented for graphene with the
peculiarity of having extra degrees of freedom in the
deformation associated with the presence of two layers
[343, 344]; band gaps can be opened by in-plane layer
distortions or by pulling the layers apart [344].

Also, triaxial strain effects can be described
by an effective pseudo-magnetic field [345]. Using
this methodology, it has been found that in-plane
strain applied equally to both layers breaks the layer
symmetry, i.e., at low energy, just one of the layers
feels the pseudo-magnetic field while the zero-energy
pseudo-Landau level is missing in the other layer. This
effect produces a gap between the lowest non-zero levels
[345].

When two graphene layers are rotated relative
to each other by an angle θ away from Bernal
stacking, a moiré pattern is produced [346]. This
stacking misorientation mimics the effect of in-plane
pseudomagnetic fields [256].

A very important advance made possible by using
rotationally faulted biaxial graphene was the first
experimental observation of the Hofstadter butterfly
[21]. This fractal spectrum was predicted to occur for
electrons in a lattice under a constant magnetic field

[22]. Its importance was paramount since it provided
a platform to understand the Quantum Hall effect
(QHE) in terms of topological phases. Originally, the
problem of electrons in a constant field was studied by
Landau, giving rise to the well known Landau levels
with energy E = (n+ 1/2)~ω and n integer. As noted
by Hofstadter, the lattice length adds a new scale in
the problem that competes with the magnetic length
[22]. As a result, the spectrum is controlled by the
ratio between the elementary quantum flux (φ0) and
the magnetic flux (φ). This results in a one dimensional
effective problem, where the potential depends on the
ratio φ/φ0. The corresponding Equation is known
as the Harper equation, and is quite similar to the
equation dictating the dynamics of uniaxial strained
graphene.

As it was discussed with graphene monolayers
in previous sections, the spectrum depends upon the
ratio φ/φ0 and it leads to a periodic or quasiperiodic
behavior depending on whether φ/φ0 is rational or
irrational. The corresponding spectrum is a complex
fractal, known as the Hofstadter butterfly [22] with
interesting topological properties [138]. For small
ratios of the fluxes, Landau levels are recovered.
However, the fractality only appears at bigger ratios.
Unfortunately, for atomic systems this requires the use
of magnetic fields well beyond the available sources.
However, such fractal spectrum was measured recently
by using bilayer graphene over a hBN sustrate [21].
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Figure 48. Moiré superlattice and anomalous quantum Hall states. (a) Sketch of bilayer graphene on hBN. The rotation of graphene
by the mismatch angle θ determines the wavelength. (b) Left: AFM image of the multiterminal Hall device. Right: a magnified
region of the same device. The resulting pattern is a triangular lattice (upper inset shows a further magnified region). A fast Fourier
confirms the triangular lattice symmetry. (c) Diagram showing the longitudinal resistance, Rxx (left), and Hall resistance, Rxy

(right) for the device presented in (b). Rxx is plotted versus magnetic field on the vertical axis and versus gate voltage V(g). Rxy is
plotted as a function of the magnetic flux ratio φ/φ0 on the vertical axis and the normalized carrier density n/n0 on the horizontal
axis. QHE states corresponding to the conventional BLG spectrum are indicated by white lines. Solid yellow and red lines track the
QHE outside the conventional spectrum, with dashed lines indicating the projected n/n0. The slope of each line is shown on the top
axis as well as the intercept. Each pair of parameters are the solution of a Diophantine equation [21], characteristic of topological
states in the QHE [138]. (d) Longitudinal and transversal Hall conductivities corresponding to line cuts at constant magnetic field
(constant φ/φ0). The color bars indicate the features with the same color appearing in (c). For magnetic fields of 12 T and 26 T,
additional QHE states appear with non-integer Landau level filling fractions. Reprinted by permission from Macmillan Publishers
Ltd: Nature [21], copyright (2013).

As shown in Figure 48 (a), the mismatch angle
θ between both lattices determines the moiré pattern
(see section 3). In panel (b) of Figure 48, the resulting
triangular pattern and the device used to measure the
electronic properties are shown. In Figure 48(c), the
longitudinal resistance Rxx (left), and Hall resistance,
Rxy (right) measured by Dean et. al. [21] are
presented. Rxx is plotted as a function of the gate
voltage Vg and magnetic field B(T ), while Rxy as

a function of the magnetic flux ratio φ/φ0 on the
vertical axis and the normalized carrier density n/n0

on the horizontal axis, where n0 is the carrier density
at zero gate voltage. Both plots reveal fountain-like
structures characteristic of the Hofstadter butterfly
[138] (associated to these structures there are Van Hove
singularities).

Moreover, the slope and intercept with the vertical
axis of each observed line in Figure 48(c) are the
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solution of the Diophantine equation, characteristic of
topological states in the QHE, and in Figure 48(d),
the longitudinal and transversal Hall conductivities
corresponding to line cuts for three constant magnetic
fields (constant φ/φ0) are presented.

7. Extensions to other 2D systems

In this subsection, a brief and incomplete guide to other
strained 2D materials is presented. Although there
are some recent reviews already covering this subject
[9, 13, 14], this rough guide highlights differences
and similarities with graphene. This allows for
a quick identification of the methods and ideas
suitable to be applied. This short review covers the
following materials: silicene and other group-IV two-
dimensional materials, phosphorene, transition metal-
dichalcogenides and layered monochalcogenides.

There is a vastly unexplored avenue within two-
dimensional atomic materials that relates symmetry
operations to structural phase transitions. Before fo-
cusing on individual materials, the three requirements
to observe such transitions are established:

(i) A necessary (but insufficient) condition is the
existence of degeneracies of the structural ground
state. An example of these symmetry operations
appears in Figure 49(a). They exist when
reflections with respect to the two-dimensional
plane, or the exchange of x- and y-coordinates on
structures that have rectangular unit cells, change
the original arrangement of atoms (Figure 65(a)).

(ii) The existence of an energy pathway that joins
these degenerate ground states, having a barrier
smaller than the melting point (see Figures 49(b)
and 65(b)).

(iii) Thermodynamic equilibrium makes all degenerate
ground states to be evenly sampled. Therefore,
the last condition is that sufficiently large
mono-domains (that minimize strain at domain
boundaries and hence reduce the structural
energy) can be created.

When conditions (i-iii) above are satisfied, there
will be structural two-dimensional structural phase
transitions on these materials at finite temperature
[34], which tune their material properties [347] just as
strain does.

7.1. Silicene and other group-IV two-dimensional
materials

Silicene [348, 349, 350] is a 2D material that is
attracting a lot of interest in part due to its
compatibility with the available present technology in
electronics (for a review on Silicene see Ref. [351]). If
the silicene sheet is flat (called α silicene), all of the
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Figure 49. Two-dimensional structural phase transitions occur
when (a) symmetry operations change the location of basis
atoms, (b) the degenerate structures can be turned onto one
another via an energy path that has a maximum energy smaller
than the melting point, that in the present case corresponds
with a planar structure having an energy of about 450 K and
(c) sufficiently large monodomains (which reduce boundary-
wall strain) exist. Past that critical temperature, the material
acquires the structure displayed as c, on average.

methods discussed for studying graphene carry over
[351]. Thus strain produces similar effects as those in
graphene. However, the silicon sheet is low-buckled (β
silicene): its lattice is similar to that of graphene, with
the particularity that Si atoms in the two triangular
bipartite sublattices are vertically displaced by 0.46 Å.
The interatomic distance between atoms is 2.28 Å,
which is larger than the C-C distance in graphene
[351]. A simple tight-binding method can be derived
to calculate its electronic properties.

β silicene also referred to as low-buckled silicene
requires taking into account the coupling of π and
σ electrons leading to an effective 8 × 8 matrix
Hamiltonian [352] (see [169] as well). In spite of this,
most of the research on strain has been made using
DFT.

It has been shown in DFT calculations that the
Dirac point is preserved for β silicene up to 5 % of
strain[352]. This can be explained by the fact that
the in-plane symmetry is unchanged. Higher strain
induces hole doped Dirac states because of weakened
Si-Si bonds [353]. The Grüneisen parameter shows a
significant variation, from 1.64% for a strain of 5% to
1.42% for 25% [353].

Due to a larger spin-orbit coupling than that
of graphene, low-buckled silicene is a quantum spin
Hall insulator [355] with a topological quantum phase
transition controlled by an out-of-plane electric field
[356, 357]. The field-induced electronic transition can
be further tuned by an in-plane hydrostatic biaxial
strain ε owing to the curvature-dependent spin-orbit
coupling (SOC) [169]. It is a Z2 = 1 topological
insulator phase for biaxial strain |ε| smaller than 0.07,
and the band gap can be tuned from 0.7 meV for
ε = +0.07 up to a fourfold 3.0 meV for ε = −0.07.

As seen in Figures 50 and 51, first-principles
calculations also show that the critical field strength
Ec can be tuned by more than 113%, with the absolute
values nearly 10 times stronger [354, 358] than the
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Figure 50. The electronic properties of silicene are
independently tuned by (a) in-plane biaxial strain ε, and (b)
an out-of-plane E-field Ez . Subplots (c) and (d) are band
dispersions under typical values of ε or Ez , respectively. Insets
are zoom-ins of the band dispersion near the K−point (the Fermi
level is set to zero; note the overlapping bands for ε = 0.00 and
0.05 on (c)). Here, we will explore the combined effects of ε and
Ez on its electronic structures. Reproduced from Ref. [354] with
permission.

theoretical predictions based on a tight-binding model
[356, 357]. Due to the curvature-enhanced SOC,
the buckling structure of the honeycomb lattice thus
enhances the tunability of both the quantum phase
transition and the SOC-induced band gap, which are
crucial for the design of field-effect topological field-
effect transistors based on two-dimensional materials.

Atomistic defects play an important role in the
structural properties of silicene nanoribbons, as the
Young modulus exhibits a complex dependence on the
combinations of vacancies and on temperature [359].

Additional group-IV two-dimensional materials
have been proposed, and experimental efforts to syn-
thesize them are well under way. This subsection is
concluded by highlighting relevant energetic consider-
ations that raise the stakes to generate crystalline two-
dimensional phases out of group-IV elements.

In Figure 52(a) the total DFT energy as a
function of the lattice constant is displayed. Thus,
while silicene has a structural minima at the low-
buckled, β−phase, the actual structural minima for
two-dimensional materials in group-IV is at the minima
labeled HB at the figure, which is a hexagonal-close-
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packed bilayer with nine-fold coordination shown in
Figure 52(a) [360]: the structural minima is not the
one proposed in Ref. [361] and latter reproduced in
Ref. [362].

A possibility for tuning the band-gap in low-
buckled two-dimensional tin is to add fluorine atoms to



CONTENTS 50

Sn
F

2

1

4

3

6

7

5

60ο

a1

a2

t’
t
t

A
B

(b)

(c)

0

800

1600

E
ph

 (c
m

-1
)

Γ Κ1 Κ2Μ1 Μ2 Γ

(a)

6 7
4
3

5

1

2

E
−E

m
in
 (e

V
/u

.c
.) 1.6

1.2

0.8

0.4

0.0
3.0 4.0 5.0

a0 (A)
o

x

y

z x z

y

(d)

6.0

Figure 53. (a) Phases of 2D fluorinated tin; structures shown
to the right. (b) Symmetries of the most stable structure (7),
depicting triangular (dashed) and Wigner-Seitz (within dotted
perimeter) unit cells, the two symmetry axes, and the two Sn
sublattices A and B. Structural stability is demonstrated by (c)
phonon dispersion curves and (d) the structural stabilization of a
finite-size sample. Reproduced from Ref. [360] with permission.
Copyrighted by the American Physical Society.

the two-dimensional structure [361], a result confirmed
in Ref. [362]. As it turns out, such fluorinated structure
labeled 6 in Figure 53(a), is not the structural minima
either. As seen in Figure 53(a), the actual minima of
fluorinated stanene corresponds to structure 7, which
is displayed in a larger scale in Figure 53(b). In the
minima of fluorinated stanene, pairs of fluorine atoms
tilt to bridge Tin atoms, which breaks the three-fold
symmetry of the lattice and has profound consequences
on electronic properties.

Indeed, the 1BZ in Figure 54(a) shows a top view
of the conduction band and the high-symmetry points
in momentum space. As seen in Figure 54(b), the
arrangement of parallel 1D Tin wires gives rise to an
electronic structure with only two anisotropic Dirac
cones, located away from the K-points at positions V1

and V2 = ±0.85K1, respectively. The existence of
only two-Dirac cones is a consequence of the reduced
structural symmetry, and 54 represents the first two-
dimensional material where a chemical route to create
a reduced number of valleys is discussed [360].

If one identifies the x−axis with the line joining tin
atoms across fluorine bridges, then the Fermi velocity
is close in magnitude to that of graphene and it is
anisotropic: vFy = 5.4 × 105 m/s (Figure 54(c)), and
vFx = 2.1 × 105 m/s (Figure 54(d)) and a 2∆ = 0.02
eV gap opens due to SOC, five times larger than
the intrinsic gap due to spin-orbit coupling (SOC) in

graphene [169]. Phase 6 transitions from a topological
insulator to a trivial insulator, but the electronic
structure of the optimal phase remains robust under
larger isotropic strain.

As it was discussed for silicene, the electronic
dispersion in Figure 54(b-d) can be understood in
terms of a 2× 2 π−electron tight-binding Hamiltonian
discussed before [162], in which an effective coupling
t′ is set among the tin atoms originally linked by
fluorine bridges (thin bonds on Figure 53(b)), and t is
the coupling among actual Tin atoms (thick bonds on
Figure 53(b)). The blue dashed lines in Figure 54(c,d)
are fitted with t = 0.8 eV and t′ = vFx

vFy
t, which

reproduce first-principles results [360].
When spin-orbit coupling is taken into account,

an oblate low-energy Dirac-Hamiltonian is realized
at the vicinity of the V1,2 points. The relevant
subspace is four-dimensional at any given valley, and
the task is to reproduce the spin texture displayed in
Figure 54(e) where spin projects onto the +x or the
−x directions while leaving the sublattice (pseudospin)
degree of freedom unpolarized. The numerical results
on Figure 54(e) are consistent with a coupling τzσxsx
[360] and the low-energy dynamics is given by:

H = −i~Ψ†(vFxτzσx∂x + vFyσy∂y)Ψ

+Ψ†(∆τzσxsx)Ψ. (167)

An unprecedented specific coupling of momentum
–including direction– with spin oriented along x̂ and
valley degrees of freedom is thus realized by the second
term in previous equation. The valley degree of
freedom can be addressed by a bias along the V1−V2

axis that breaks inversion symmetry (this will be the
case for monochalcogenide monolayers [363], which also
have a low structural symmetry below their transition
temperature [347]). Similarly, a magnetic field along
the x̂ axis will break time-reversal symmetry, locking
the valley and crystal momentum direction at the
V1, V2 points. The dynamics discussed in Ref. [360]
thus invites applications of 2D fluorinated tin for
valleytronics.

The discussion on silicene ends by reemphasizing
its structural degeneracies, and contrasting them with
the lack of similar degeneracies existent in graphene
(and in transition metal dichalcogenide monolayers for
that matter).

To that end, the energy landscape [364] is
displayed for graphene and silicene in Figure 55 as
a function of the buckling vertical distance ∆z and
the lattice parameter a0. The reader will attest that,
while graphene has a single energy minima at ∆z =
0 (i.e., under a planar structure), silicene has two
such minima that are mirror images upon a reflection
about the two-dimensional plane. The energy barrier
separating these two minima is equal to 450 K. The
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Copyrighted by the American Physical Society.
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result conveyed by Figure 55 makes a direct call
for studying two-dimensional materials that possess
structural degeneracies at finite temperature [34, 347].

7.2. Phosphorene

Phosphorene is a single-layer material obtained by
exfoliation of layered black phosphorus (BP). Black
phosphorene, Figure 56(a), has a semiconducting gap
that is tunable with the number of layers, and by
in-plane strain [9, 365, 366, 367, 368]. Phosphorene
[369, 370, 371] has many allotropes that are either
semiconducting or metallic depending on their two-
dimensional atomistic structure [372, 373, 374, 375].
The unit cells of blue phosphorene is displayed on
Figure 56(b). As it will be shown when discussing
monochalcogenides later on, phosphorene does not
satisfy condition (ii) in section 7.1, and it melts before
undergoing any two-dimensional phase transition [34].

The outstanding performance of transistors built
using phosphorene in 2014 ignited intense research
activities [369, 376]. Many groups consider this
material as better suited for electronics than graphene
due to several factors: the ease of fabrication, a
0.2 eV direct gap, a band topology not altered by
thickness with an impressive anisotropy [377, 378]. It
possess a reasonable on/off ratio (104-105) with a good
carrier mobility (around 1000 cm2/V.S) suitable for
many applications [378]. Concerning the mechanical
properties, it has a highly anisotropic Young modulus
and Poisson ratio [379]. All these remarkable features
are a result of the stacked layered structure and
weak van der Waals (vdWs) interlayer interactions.
Considering the existence of reviews on this material
[378, 379], results from our teams will be mostly
highlighted in what follows.

One of the most interesting findings is that the
inclusion of many body effects is essential for the
correct description of the electronic properties of
monolayer BP[368]; for example by changing the gap
from 0.90 eV to 2.31 eV. Also, the authors of Ref. [368]
found that tensile strain enhances electron transport
along the zigzag direction, while biaxial strain is able to
tune the optical band gap from 0.38 eV (at 0.8% strain)
to 2.07 eV (at 5.5%). Another interesting phenomena
resulting from ab initio calculations is the notable
increasing of the electron-phonon interaction by biaxial
strain [380]. This results in a predicted raising of 10K
for the superconductor transition temperature at 4%
strain.

Using a low-energy TB Hamiltonian that includes
the spin-orbit interaction for bulk phosphorene it has
been found that a compressive biaxial in-plane strain
and a perpendicular tensile strain leads to a topological
phase transition [381]. Protected edge states are
observed for zigzag nanoribbons when the system is
in the topological phase. For a width of 100 nm, the
energy gap is at least three orders of magnitude larger
than the thermal energy at room temperature [381].

This section ends with an study that links the
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local geometry of phosphorene with the magnitude of
its semiconducting band gap.

Theoretical studies of defects on planar phospho-
rene indicate that dislocation lines do not induce lo-
calized electronic states within the electronic bandgap
[383]. This somehow unexpected result was employed
to build semiconducting phosphorene cones that have
a finite curvature [382].

As described in Section 4.9, four invariants from
the metric (g) and curvature (k) tensors determine
the local geometry of a 2-D manifold, and a planar
structure can be described by Tr(g) = 1, Det(g) = 1
(i.e., no strain), H = 0, and K = 0 (i.e., no curvature)
at both sublayers S1 and S2. In addition, their
thickness τ is equal to τ0 before a structural distortion
sets in. These five numbers quantify the local reference
(flat) geometry.

Structural defects induce curvature and strain
[384], and may lead to the chemical degradation of
phosphorene. In Figure 57 phosphorene cones were
built from finite disk-like planar structures, with edges
passivated by hydrogen atoms. The black phosphorene
cone seen in Figure 57(a) is created by first removing
an angular segment –that subtends a φ = 46◦ angle–
from a planar structure that has a dislocation line
[383], and then joining the two “ridges” that are
highlighted by the red segments on the planar structure
in Figure 57(a). Atoms are placed in positions
dictated by an initial (analytical) conical structure,
and were subsequently optimized at the DFT level
to relieve structural forces [382]. Blue phosphorene
has a (buckled) honeycomb structure reminiscent of
graphene, so the conical structure seen to the left
of Fig. 57(b) was generated by removing an angular
segment subtending a φ = 60◦ angle on planar
blue phosphorene, and following similar prescriptions
afterwards.

The local geometry is displayed to the right on
Figures 57(a) and 57(b). The data is arranged into

three rows that indicate the geometry of the planar
structure at sublayer S1, and the local geometry of
the cones at sublayers S1 and S2. An additional plot
shows the value of τ/τ0 that tell us of local vertical
compression.

There is strain induced by the dislocation line on
the planar black phosphorene structure, as indicated
by the color variation on the Tr(g) and Det(g) plots,
that implies having atoms at closer/longer distances
than in the reference structure, Figure 57(a). A slight
curvature on the black phosphorene planar structure,
induced by the dislocation line, is also visible on the
H plot in Figure 57(a). The planar blue phosphorene
sample does not have any dislocation line, and for that
reason the metric shows zero strain (Tr(g) = 1 and
Det(g) = 1) and zero curvature (H = 0 and K = 0)
on that reference structure (Figure 57(b)).

The black phosphorene conical structure seen on
Figure 57(a) displays a compression near its apex
and an asymmetric elongation towards the edges.
In addition, there is a radially-asymmetric non-
zero curvature; the observed asymmetry reflects the
presence of the dislocation/disclination axis, which
provides the structure with an enhanced structural
rigidity. This rigidity is confirmed by the ratio τ/τ0
close to unity. The blue phosphorene cone has a more
apparent radial symmetry, except for the disclination
line that is created by the conical structure, as
reflected on the metric invariants and on H. There is
compression (elongation) at the apex, and elongation
(compression) along the disclination line in sublayer
S1 (S2). The disclination line has a semi-cylindrical
shape and hence a zero radius of curvature along the
disclination line, resulting in a zero Gaussian curvature
along such line.

Figure 52 indicates that the blue phosphorene
cone acquires the largest curvatures of these two
cones. This is so because the angular segment
removed from the planar blue phosphorene sample has
a comparatively larger value of φ. One notes the rather
smooth curvature at the apex on the blue phosphorene
conical structure after the structural optimization.

The change of τ with respect to τ0 is created by an
out-of-plane strain or by shear. The blue phosphorene
cone shows out-of-plane compression near the apex.
The distance among planes in black phosphorene
is closer to its value in an ideal planar structure
throughout, showing scatter around the dislocation
line.

The main point from Figure 57 is the strain
induced by curvature. The strain pattern observed on
that Figure is far more complex than those reported
before for planar phosphorene [365, 366, 367, 368], and
the discrete geometry captures the strain pattern with
the precision given by actual atomic positions.
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Figure 57. (a) Black and (b) blue phosphorene cones are built by removing the angular segments in white from the planar structures
(as illustrated at the upper-right corner of the conical structures), joining the cut structures along the red (disclination) lines, and
a subsequent structural optimization. The discrete local geometry of these conical structures at sublayers S1 and S2 is given by
four local invariants (Tr(g), Det(g), H and K) that are obtained at each atomic position. These invariants are contrasted with the
geometry of planar structures (Tr(g) = 1, Det(g) = 1, H = 0, and K = 0) that is depicted at the uppermost row for sublayer S1.
The change in relative height τ/τ0 is shown at each atomic position as well. Features such as: (i) strain induced by the dislocation
line in planar black phosphorene; (ii) a sensible compressive strain near the apex; (iii) curvature lacking a radial symmetry; and (iv)
the lack of significant changes in τ on conical black phosphorene, are clearly visible. The disclination line on the blue phosphorene
cone is reflected on the metric invariants and on H: This disclination has a semi-cylindrical shape, that yields an overall radially-
symmetric Gaussian curvature K. In addition, a decrease of τ , and an in-plane compression (elongation) at sublayer S1 (S2) near
the apex can also be seen on the blue phosphorene cone. Reproduced from Ref. [382] with permission.

Black and blue phosphorene monolayers are both
semiconducting 2-D materials with a direct bandgap,
and we investigate how this semiconducting gap evolves
with their shape. The semiconducting gap Eg = is
equal to 1.1 (2.2) eV for the finite-size planar black
(blue) phosphorene monolayers on display in Figure 58,
before the removal of the angular segments.

Size-effects on the semiconducting gap of planar
structures were first determined: The magnitude of the
gap Eg increases as the number of atoms decreases on

strain-free disk-like planar structures; c.f., Figure 58,.
For an infinite number of atoms –i.e., for a fully
periodic planar 2-D crystal– the gap converges to the
values indicated by the dash and dash-dot lines on
Figure 58; namely, 0.8 eV and 2.0 eV for black and blue
phosphorene, respectively. These magnitudes were
obtained from standard density-functional theory [369,
372]. Although we acknowledge that other methods
describe the dielectric properties more accurately on
smaller samples [366], our focus is on the trend the
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gap follows, and given that the trend is geometrical in
nature, it will stand correct despite of the particular
method employed in computing the semiconducting
gap.

Phosphorene is well-known to oxidize readily
[386, 387] and, as shown in Figure 59, structural
defects provide the only structural mechanism known
to dissociate O2 dimers [385].

As in graphene, another emerging field is the
study of strained multilayered black phosphorus sheets.
It has been found that a periodic stress produces
a remarkable shift of the optical absorption band-
edge, up to 0.7 eV between the regions under tensile
and compressive stress [388]. This tunability greatly
exceeds the reported value for strained transition metal
dichalcogenides. According to theoretical models,
the periodic stress modulation can yield to quantum
confinement of carriers at low temperatures [388].

7.3. Transition metal dichalcogenide monolayers

The family of two dimensional transition metal-
dichalcogenides (TMDCs), with chemical composition
MX2 where M is a transition metal and X a
chalcogenide, is one of the most promising for solving
fundamental scientific and technological challenges
[389]. They have electronic properties ranging from
semiconducting to superconducting, with no surface
dangling bonds and the added feature of a high thermal
stability and an enhanced spin-orbit coupling [390].
Although the first reports on TMDCs are almost 60
years old[389], a surge occurred after the discovery of
graphene and the building of a high-quality field-effect
transistor [391].

Two particulary promising applications are in

photonics and electronics. For photonics applications,
TMDCs posses a strong exciton-binding energies in
materials like MoS2, WS2,MoSe2 and WSe2, a feature
that promises a new age of atomic-scale photonics[392].
For electronics applications, the most attractive feature
is the formation of abrupt tunnel junctions. Such effect
is due to their two dimensional nature, which results
in very small geometric screening lengths.

Transition metal dichalcogenides nanoribbons can
have interesting properties due to edges, as for example
an enhanced catalytic activity [393], useful for several
applications like in dye-sensitized solar cells [394] or
as robust electrocatalyst for Hydrogen generation [64].
Three basic mechanisms explain the active properties
due to edges: quantum confinement, edge topology,
and for very narrow nanoribbons, the electronic
interaction between edges [393].

In MX2 materials, mechanical deformation is an
important tool to modify the electronic properties.
According to a density-functional-based tight binding
method calculation, when isotropic and uniaxial strain
is applied to MoS2, the bandgap is linearly lowered
until a semicondutor-metal transition occurs for 11% of
strain [395]. The first experiments of MoS2 strained up
to 2% are in general agreement with the tight binding
calculation, since the bandgap decreases around 70
meV for each % of strain[396]. This scenario have
been confirmed in experiments that demonstrate a
continuous and reversible tuning of the optical band
gap by as much as 500 meV by applying very large
biaxial strains [397].

More recently, strained MoS2 and WSe2 field-
effect transistors (FETs) have been fabricated on a
500µm flexible polyimide substrate[398]. In Fig. (60)
we present the transfer characteristics of such WSe2

FET as reported by Shen et. al. [398]. By comparing
the transfer characteristics, is clear that strain induces
a band gap tunability. According to Shen et. al.[398],
Fig. (60) a is clear evidence of a band gap reduction of
100 meV in WSe2 under 1.35% uniaxial tensile strain,
attributed to a decrease in the Schottky barrier (SB)
for electrons without any change for hole injection into
the valence band.

7.4. Monochalcogenide monolayers

This review is concluded by highlighting structural
aspects different from strain that may be of relevance
on two-dimensional atomic materials with structural
degeneracies. Group-IV monochalcogenides contain
one element from column-IV (Si, Ge, Sn, Pb) and
a chalcogen heavier than Oxygen (S, Se, Te). To
facilitate the discussion, an average atomic number Z̄
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Figure 59. Unveiling the dissociation of O2 at intrinsic defects. The first frames to the left show the initial vertical placement of
O2 within the intrinsic defects. Oxygen dissociation at these intrinsic defects occurs at the frames highlighted in yellow. Frames at
the far right show the optimized structures, at which distances among O atoms are 2.96 and 3.08 Å for at structure (a) and (b),
respectively. For reference, the equilibrium distance among O atoms in O2 is 1.25 Å. Reproduced from Ref. [385] with permission.

Figure 60. Transfer characteristics of a WSe2 FET built over
a flexible polyimide substrate, as sketched in the figure. Vgs
is the gate voltage while Id is the current. The measurement
were made at room temperature for 0% (blue curve) and 0.9%
(red curve) of tensile strain. A higher flat band voltage of 0.2V is
observed under strain as indicated by the arrows. Reprinted with
permission from Ref. [398]. Copyright 2016 American Chemical
Society.

is defined as follows [34]:

Z̄ =
1

4

4∑
i=1

Zi, (168)

where the sum is over the four atomic elements on
a unit cell, each having atomic number Zi (i =
1, 2, 3, 4). Materials such as SnTe, PbSe, and PbTe,
for which Z̄ > 50 realize a rocksalt bulk structure.
They are topological crystalline insulators [399], and
will not be discussed here. On the other hand,
group-IV monochalcogenides with Z̄ < 50, such
as SnSe (Z̄ = 42), SnS (Z̄ = 33), GeSe (Z̄ =

Figure 61. The structural phase transition in bulk, layered
SnS and SnSe is signaled by the coalescence of in-plane lattice
parameters, labeled a and c on this Figure. Adapted from
Ref. [401] with permission.

33) and GeS (Z̄ = 24), are known to realize
a layered, black-phosphorus-like phase [400]. The
important point for the ensuing discussion is that these
layered monochalcogenides undergo structural phase
transitions at finite temperature and prior to melting.

One signature of these structural transitions is
provided in Figure 61 [401], where a coalescence of in-
plane lattice parameters (labeled a and c, where a ' c)
was shown to occur in bulk layered SnS and SnSe. The
structural transition turns a Pnma structure onto a
Cmcm one. As displayed in Figure 62, this structural
phase transition was shown to lead to an unexpectedly
large thermal figure of merit ZT [402], which may
result in novel thermoelectric applications based on
bulk SnSe. The nature of the structural transition in
the bulk, displayed in Figure 63 was analyzed more
recently, and attributed to electronic (orbital) modes
[403].
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Figure 62. (a) Crystal structure of bulk SnSe along the a axis:
grey, Sn atoms; red, Se atoms. (b), Highly distorted SnSe7
coordination polyhedron with three short and four long SnSe
bonds. (c) Structure along the b axis. (d) Structure along
the c axis. (e). Thermal figure of merit ZT along different
axial directions; the ZT measurement uncertainty is about 15%
(error bars). Inset images: left, a typical crystal; right, a crystal
cleaved along the (l00) plane, and specimens cut along the three
axes and corresponding measurement directions. Inset diagram,
how crystals were cut for directional measurements. Reproduced
with permission from Macmillan Publishers Ltd. from Ref. [402],
copyright (2014).

It is time to turn the discussion to monolayers
of these materials. At this moment, they are yet
to be experimentally exfoliated down to monolayers,
so all the discussion that follows is of a theoretical
character. Their salient characteristics in structures
at zero Kelvin are:

• A rectangular unit cell. As seen in Figure 64,
this unit cell with a reduced symmetry leads to
a unique placement of valleys in the first Bril-
louin zone [404, 405, 406, 363]. Valleys in dichalco-
genide monolayers are addressable with circularly-
polarized light, but the valleys in monochalco-
genide monolayers can be addressed with linearly-
polarized light [407]. (The extraordinary effect
of lower structural symmetry on valley placement
was touched upon in Section 7.1 and Figure 54.)

• An inherent piezoelectricity, given their diatomic
chemical composition, and the placement of such
atoms within the unit cell [29, 30, 408].

Figure 63. (a,d) Crystal structures of SnSe in the Pnma (a) and
Cmcm (d) phase (conventional non-primitive cell for the latter),
showing the double bilayer structure and Pnma distortion. (b,e)
Sn coordination polyhedron corresponding to the structures in
(a,d), respectively. (c,f) Valence electron density (isosurface
at 0.26eÅ−3), computed from first principles for the structures
in (a,d), respectively. Sn atoms are in grey and Se atoms in
green. The Sn 5s2 lone pairs are seen as “caps” in the space
between bilayers. Reproduced with permission from Macmillan
Publishers Ltd. from Ref. [403], copyright (2015).

Figure 64. Contrasting the spin polarization, number of valleys,
and their placement on the first Brillouin zone for MoS2 and
SnSe monolayers: (a-c) The MoS2 monolayer displays spin
splittings at the valence-band valley, and the conduction and
valence band valleys lie at the same location in reciprocal space.
(d-e) Spin-polarized conduction-band valley and valence band
valleys for SnSe: the electron/valley couplings on subplots (d-e)
are unique to IV-VI monolayers and can originate a new platform
for valleytronics in 2D. Subplots (a-c) are adapted from Ref. [409]
with permission. Copyrighted by the American Physical Society.

Just as it is the case for silicene (Figures 49
and 55), 2D materials with rectangular unit cells
such as black phosphorene and monochalcogenide
monolayers have a natural structural degeneracy with
a relatively low energy barrier. In the latter case,
and as seen in Figure 65(a), the degeneracy occurs on
monochalcogenide monlayers upon exchange of lattice
vectors. Additional degeneracies occur upon reflection
of the basis vectors, Figure 65(b), yielding a four-fold
degenerate structural ground state. Anharmonicity
of the phonon dispersion is a consequence of the
bistability of the energy profile shown in Figure 65
[410]. The energy landscape originally presented in
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Figure 65. (a) The elastic energy landscape E(a1, a2) as
a function of lattice parameters a1 and a2 is generic to all
monolayers with a Pnma structure, and it is exemplified on a
GeS monolayer at zero temperature. A dashed white curve joins
points A and B at two degenerate minima (EA = EB = 0).
The circle labeled C at (4.0 Å, 4.0 Å) is a saddle point with an
atomistic structure in which atom 0 forms bonds to four in-plane
neighbors, and the elastic energy barrier is defined by EC . (b)
Atomistic decorations (i.e., the specific pair of atoms bonding
atom 0) increase the structural degeneracy at points A and
B. The four degenerate ground states are named A1, A2, B1

and B2, and assigned in-plane arrows that label them uniquely.
Reproduced from Ref. [34] with permission. Copyright (2016)
American Chemical Society.

Ref. [34] has been subsequently confirmed in Ref. [411].
Similarly, the fourfold degenerate structural ground
states have later been reported in Refs. [411] and [412].

Now that the issue of structural degeneracies has
been discussed, it is time to show why one should
expect phase transitions in these materials. This was
done by looking at the evolution of a1/a2 and EC
evolve with Z̄. A technical note becomes needed here,
in the sense that the energy barriers are extremely
sensitive to the choice of pseudopotentials employed
in calculations, and so it is desirable to employ
pseudopotentials that reproduce all-electron results.
This was the case for all results in Ref. [34], where
all pseudopotentials were thoroughly validated [413].
Given that 1 K ∝ 10−4 eV, differences of the order of 50
K in estimates of the barrier amount to tiny differences
in total energies of the order of 5 meV in calculations
carried out by different teams.

Nevertheless, the values of a1/a2 and EC averaged
over their magnitude from three different calculations
displayed in Figure 66 show an exponential decay with
mean atomic number Z̄. Light compounds such as
black phosphorus monolayer or SiS monolayers (Z̄ =
15) have the largest values of a1/a2 and EC and do not
satisfy condition (ii) expressed in the opening remarks
of Section 7, so these materials will directly melt before
showing eny sign of a two-dimensional structural phase
transition.

On the other hand, ultrathin Pb-based monochalco-
genides (Z̄ > 48) have a rock-salt structure so that
a1/a2 = 1 and EC = 0 [399]. All remaining
monochalcogenide monolayers (MMs) have values of
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Figure 66. (a) The ratio a1/a2 among orthogonal in-plane
lattice constants decreases exponentially with the mean atomic
number Z̄, and (b) EC decays exponentially with Z̄ as well.
EC/kB < 300 K (and a1/a2 ≤ 1.1) for Z ≥ 30, prompting the
question whether three-fold coordinated GeSe, SnS and SnSe
monolayers are disordered near room temperature. Structures
with a1 ' a2 display a five-fold-coordinated and non-degenerate
ground state with EC ' 0. Solid lines are exponential fits.
Reproduced from Ref. [34] with permission. Copyright (2016)
American Chemical Society.

a1/a2 and EC lying somewhere in between, which im-
plies a vast tunability with atomic number and the
possibility displaying a two-dimensional phase transi-
tion.

Bond covalency is gradually sacrificed with
increasing atomic number to favor a higher atomistic
coordination and a weaker (i.e., metallic) bonding.
It has been shown that group-IV two-dimensional
materials turn from a threefold- to a ninefold-
coordinated phase with increasing atomic number
[360]. In the case of monochalcogenide monolayers,
a threefold-coordinated structure evolves towards a
fivefold-coordinated one with increasing Z̄ [34].

It is relevant for the present discussion to
note that the ratio of in-plane lattice constants of
monochalcogenides increases with the number of layers
[363]. This raises the transition temperatures in going
from monolayers to the bulk, which means that Ec is
tunable by the number of layers too.



CONTENTS 58

(a) T0=200 K

300

200

100

(b) T0=300 K (c) T0=425 K

100
200
300
400
500

200

400

600

800

−2

0

2

−2

0

2

T 
(K

)
σ x

x (
m

eV
/A

3 )

80

85

90

95

80

85

90

95

0 10,000 20,000 0 10,000 20,000

80

85

90

95

0 10,000 20,000

α3

α1

α2

t (fs)

An
gl

es
(d

eg
)

σ y
y (

m
eV

/A
3 )

−2

0

2

−2

0

2

−2

0

2

−2

0

2

Figure 67. Time-evolution of temperature, in-plane stress, and
angle order parameters for a GeSe monolayer. Among other
measures [34, 347], the transition is signaled by the coalescence
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So far, the structural degeneracies of monochalco-
genide monolayers have been discussed, and an argu-
ment for estimating energy barriers among these de-

generate states has been given. Such physics is at play
in bulk ferroelectrics like BiFeO3, that has a 6-fold
structural degeneracy. In BiFeO3, the low-symmetry
ferroelectric ground state is created by the lone pair
of Bi+3 moving off-center from the initially-cubic unit
cell. The structural signature of the phase transition
is a structure with an average cubic symmetry.

In the case of monochalcogenide monolayers,
which are ferroelectrics as well, the lone pair is
located at the chalcogen [400, 403], and this two-
dimensional structural phase transition has been
probed via molecular dynamics (MD) in Figures 67,
68 and 69 [34, 347]. Basically, the instantaneous
temperature, pressure against the walls holding the
monolayer equilibrate. And angles formed among
atoms lying at the same sublayer turn to 90o at
the transtion (see Figures 69(b), and 65(a) for
definitions of sublayers): what this means is that
the structure becomes square on average at the
transition. Additional order parameters, such as
lattice parameters, and interatomic distances (Figure
68) provide additional signatures for this structural
transition [34, 347]. The dynamical range of angles
being sampled implies that the transition is not static;
it is for this reason that we characterized it of order-
disorder type in Ref. [34]: the distribution of lattice
parameters seen in Figure 69(c-f) attest to the large
range of fluctuations in these structurally-degenerate
two-dimensional structures that are already known to
give rise to floppy and anharmonic phonon modes [403].

As discussed in Ref. [347], some consequences of
the transition are as follows: No in-gap states develop
as the structural transition takes place, so that these
phase-change materials remain semiconducting below
and above Tc. Nevertheless, as the in-plane lattice
transforms from a rectangle onto a square at Tc, the
electronic, spin, optical, and piezo-electric properties
dramatically depart from earlier predictions.

Indeed, the Y− and X−points in the Brillouin
zone become effectively equivalent at Tc, leading to a
symmetric electronic structure. The spin polarization
at the conduction valley edge vanishes, and the
hole conductivity must display an anomalous thermal
increase at Tc. The linear optical absorption band
edge must change its polarization as well, making this
structural and electronic evolution verifiable optically.
A pyroelectric response of about 3× 10−12 C/Km was
also predicted for monolayers of GeSe and SnSe (due
to their inherent AB-stacking, a net dipole moment
only exists in structures with an odd number of layers),
and the quenching of the dipole moment was latter
confirmed in Ref. [414]. The results in Ref. [347]
thus uncover the fundamental role of temperature as
a control knob for the physical properties of few-layer
group-IV monochalcogenides, and conclude the review
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Figure 69. (a) Schematic depiction of the structural transition. (b) Structural order parameters highlighting the transition. (c
to f) Left: thermal averages for the order parameters provided in (b) as a function of T for GeSe and SnSe MLs and BLs. Tc is
reached when average values agree (〈a1〉 = 〈a2〉, 〈d2〉 = 〈d3〉, and 〈α1〉 = 〈α3〉). The average distance among layers 〈∆〉 for BLs is
shown too. Right: the distribution of lattice parameters a1 and a2 dramatically highlights the fluctuations leading to the error bars
on the subplots on the left. The line a1 = a2 is shown in white. Reproduced from Ref. [347] with permission. Copyrighted by the
American Physical Society.

0 100 200 300 400

Parallel 
to a2

Parallel to a1

0

1

2

0

−1

−2

−3

SnSe ML

D
ip

ol
e 

m
om

en
t

(1
0−

10
 C

/m
)

Py
ro

-e
le

ct
ric

 re
sp

on
se

(1
0−

12
 C

/K
m

)

0

1

2

0 100 200 300 400 500 600

0

−1

−2

GeSe ML
Parallel to a1

T (K) T (K)

Parallel 
to a2

Figure 70. The structural transition in monochalcogenide
monolayers (MLs) quenches the intrinsic electric dipole and
creates a pyroelectric response. Reproduced from Ref. [347] with
permission. Copyrighted by the American Physical Society.

of this novel material family.

8. Conclusions and outlook

Mechanical deformations in graphene and other 2D
systems is a very active field of research, and the
possibility of tailoring very strong magnetic fields via
pseudomagnetic potentials produced by sustrates is
opening new research avenues. In more than one sense,
strained 2D materials are a playground for realizing
interesting physical systems, like Luttinger liquids,
topological phases, broken chiral symmetry phases due
to Kekulé ordering, two-dimensional structural phase
transitions, and so on. Topological phases, spintronics,
direct band-gap semiconductors or band gap tunability
are among the most important areas of actual research.

Although research in graphene is mature in many
senses, there are many open questions, like the
kind of perturbations needed to treat graphene over
substrates, or even more basic questions like the
mismatch between energetic and geometry descriptions
observed in uniformly-deformed graphene. Even the
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existence of gaps in graphene strained using different
ways is a highly debated issue and more work is needed
to elucidate this question.

Furthermore, the treatment of pseudomagnetic
potentials needs to be formalized using techniques
borrowed from the electromagnetic case using concepts
like magnetic groups and lattices, and can also employ
tools like discrete geometry. Multilayered systems
still represent a tantalizing promise to design at will
materials by stacking one-atom thickness surfaces.

Deformations and structural phase transitions in
other 2D materials like silicene and monochalcogenides
monolayers are still in the process of being explored,
where there are many new interesting questions that
deserve attention.
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F. Piéchon. Tilted anisotropic Dirac cones in quinoid-
type graphene and α-(BEDT-TTF)2I3. Phys. Rev. B,
78:045415, Jul 2008.

[163] Seon-Myeong Choi, Seung-Hoon Jhi, and Young-Woo Son.
Effects of strain on electronic properties of graphene.
Phys. Rev. B, 81:081407, Feb 2010.

[164] Zhen Hua Ni, Ting Yu, Yun Hao Lu, Ying Ying Wang,
Yuan Ping Feng, and Ze Xiang Shen. Uniaxial Strain on
Graphene: Raman Spectroscopy Study and Band-Gap
Opening. ACS Nano, 2(11):2301–2305, 2008. PMID:
19206396.

[165] Ni Zhen Hua, Yu Ting, Lu Yun Hao, Wang Ying Ying,
Feng Yuan Ping, and Shen Ze Xiang. Uniaxial Strain
on Graphene: Raman Spectroscopy Study and Band-
Gap Opening. ACS Nano, 3(2):483–483, 2009. doi:
10.1021/nn8008323.

[166] Tsuneya Ando, Yisong Zheng, and Hidekatsu Suzuura.
Dynamical Conductivity and Zero-Mode Anomaly in
Honeycomb Lattices. Journal of the Physical Society
of Japan, 71(5):1318–1324, 2002.

[167] Eduardo Fradkin. Field Theories of Condensed Matter
Physics. Cambridge University Press, 2 edition, 2013.

[168] Jing Wang, Guiping Zhang, Fei Ye, and Xiaoqun Wang.
Mechanical manipulations on electronic transport of
graphene nanoribbons. Journal of Physics: Condensed
Matter, 27(22):225305, 2015.

[169] Daniel Huertas-Hernando, F. Guinea, and Arne Brataas.
Spin-orbit coupling in curved graphene, fullerenes,
nanotubes, and nanotube caps. Phys. Rev. B,
74:155426, Oct 2006.
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