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We introduce a novel class of interaction-enabled topological crystalline insulators in two- and
three-dimensional electronic systems, which we call “topological crystalline magnet.” It is protected
by the product of the time-reversal symmetry T and a mirror symmetry or a rotation symmetry
R. A topological crystalline magnet exhibits two intriguing features: (i) it cannot be adiabatically
connected to any Slater insulator and (ii) the edge state is robust against coupling electrons to the
edge. These features are protected by the anomalous symmetry transformation property (RT )2 =
−1 of the edge state. An anisotropic response to the external magnetic field can be an experimental
signature.

I. INTRODUCTION

Recent years have seen a great expansion of topological
quantum materials beyond time-reversal-invariant topo-
logical insulators1,2, driven by the search for symmetry-
protected topological (SPT) states of matter that are
distinct from trivial states only in the presence of cer-
tain symmetry. This underlying symmetry can be as-
sociated with conservation of internal quantum numbers
such as charge and spin3–5, or with spatial operations
such as rotation and reflection6. Since spatial symme-
try is a common property of all crystals, a wide array of
topological band insulators protected by various crystal
symmetries, commonly referred to as topological crys-
talline insulators (TCIs)7, has been theorized. The hall-
mark of a TCI is the existence of topologically protected
gapless excitations on surfaces that preserve the relevant
crystal symmetry. A notable class of TCIs protected
by reflection symmetry was predicted and observed in
the IV-VI semiconductors Sn1−xPbx(Te,Se)8–11, and the
symmetry protection of the topological surface states
has been demonstrated12–14. More recently, TCIs
have been generalized to band insulators with mag-
netic point group symmetries15,16, nonsymmorphic sym-
metries16–20, and with both glide reflection and time-
reversal symmetry21,22. In addition, topological insula-
tors protected by translation23,24 and magnetic transla-
tion symmetry25 were studied in early works. The inter-
play between topology and crystallography is continuing
to knit together abstract mathematics and real materials.

Recently, a new type of electronic TCIs protected by
reflection symmetry has been theoretically constructed26,
which is enabled by electron interactions and do not
exist in free fermion systems. In a broader context,
interaction-enabled topological crystalline phases were
also been found in fermion superconductors27 and bo-
son insulators28–33. Such phases are now attracting wide
attention, and it is of great interest to find their material
realizations and experimental signatures.

In this work, we find a new class of interaction-enabled
topological crystalline insulators in two and three dimen-
sions, which are protected by time-reversal (T ) and re-
flection/rotation symmetry (R), or simply the combined

symmetry RT . This phase exists in systems of spin-
1
2 electrons with spin-orbit interaction, and cannot be
adiabatically connected to any Slater insulator in the
presence of RT symmetry. Instead, this phase admits a
natural description in terms of a magnetic system of in-
teracting spins, hence is termed “topological crystalline
magnets” (TCMs). A distinctive feature of TCMs is the
presence of gapless spin excitations on the edge paral-
lel to the axis of reflection. These edge states exhibit
strongly anisotropic response to magnetic fields in direc-
tions parallel and perpendicular to edge.

Our model for two- and three-dimensional TCMs
is adiabatically connected to an array of decoupled
one-dimensional symmetry-protected topological (SPT)
states, on which the RT symmetry acts as an inter-
nal anti-unitary Z2 symmetry. This stacking approach
provides a unifying description of all previously known
topological crystalline insulators26, both with35,36 and
without37,38 interactions.

The one-dimensional SPT state serving as the building
block of our higher dimensional TCMs apparently looks
similar to, but, in fact, is remarkably different from the
Affleck, Kennedy, Lieb, and Tasaki (AKLT) state39,40.
The AKLT state belongs to the Haldane phase, which is
a bosonic SPT phase protected, for example, by the dihe-
dral (Z2×Z2) symmetry or the time-reversal symmetry28.
However, the Haldane phase is not a fermionic SPT
phase and is hence trivial as an electronic phase41–43.
Namely, when we decompose the S = 1 spins of the
AKLT model into mobile electrons with spin-1/2, the
ground state is adiabatically deformable into a trivial
band insulator41–43 while keeping the dihedral and the
time-reversal symmetry. In contrast, our 1D TCM state
is a robust fermionic SPT phase protected by RT as we
shall see now.

II. 1D MODEL

Our 1D model is composed of a four-dimensional
Hilbert space Hx on each site arising from the spin and
orbital degrees of freedom of an even number of spin-
1
2 electrons. The time-reversal operator T̂ thus satisfies
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FIG. 1. The 1D model. Each gray bond represents a singlet

pair of neighboring two ~̂Γµ~x ’s and orange dots illustrate the
edge degrees of freedom. A gapless edge state appears on
each edge of a finite-size system. The edge degrees of freedom
satisfy (R̂T̂ )2 = −Î, which is distinct from physical electrons
or edge states of noninteracting topological insulators.

T̂ 2 = (−Î)2n = +Î on Hx. As the simplest realization of
such anti-unitary symmetry we take the complex conju-
gation T = K. We also assume that states in Hx are all
even or all odd under a spatial symmetry R, which is ei-
ther the reflection about xz plane (x, y, z)→ (x,−y, z) or
the π-rotation about x-axis (x, y, z) → (x,−y,−z). The

operator R̂ is hence represented by the identity operator
R̂ = Î on Hx. In one dimension R is essentially an inter-
nal symmetry, but will become a true spatial symmetry
in higher dimensional cases to be studied later.

As an explicit example, Hx can be identified as a sub-
set of the states of two spin- 12 electrons occupying two or-
bitals. Assuming each orbital is invariant under reflection
or rotation, the operator R̂ only acts on the spin part of
the two-electron wavefunction. There are in total six two-
electron states, consisting of spin-singlet states formed
by two electrons on the same orbital, as well as spin-
singlet and spin-triplet states formed by two electrons
on different orbitals. We denote the electron operators

associated with these two orbitals by ĉ†x,s and d̂†x,s respec-
tively, where s = ↑, ↓ is the spin projection along the z
axis. Then, out of the six two-electron states, the follow-
ing four satisfy R̂|n〉x = (+1)|n〉x and T̂ |n〉x = (+1)|n〉x
(n = 1, 2, 3, 4) and span the desired Hilbert space Hx:

|1〉x ≡ ĉ†x↑ĉ
†
x↓|0〉, (1)

|2〉x ≡ d̂†x↑d̂
†
x↓|0〉, (2)

|3〉x ≡
1√
2

(ĉ†x↑d̂
†
x↓ − ĉ

†
x↓d̂
†
x↑)|0〉, (3)

|4〉x ≡
1√
2

(ĉ†x↑d̂
†
x↑ + ĉ†x↓d̂

†
x↓)|0〉. (4)

The 1D Hamiltonian for a finite chain 1 ≤ x ≤ L reads

Ĥ1D = J

L−1∑
x=1

~̂Γ1
x · ~̂Γ2

x+1, (5)

where both ~̂Γ1 and ~̂Γ2 are a set of three Hermitian op-
erators that generate the SU(2) algebra and mutually
commute, i.e.,

[Γ̂µa, Γ̂µb] = iεabcΓ̂µc, [Γ̂1a, Γ̂2b] = 0 (6)

with a, b = x, y, z and µ = 1, 2. The components of these
Γ operators are explicitly given by the following 4 × 4

matrices in the basis of |n〉

~Γ1 ≡ 1

2
(−σz ⊗ σy,−σy ⊗ σ0,−σx ⊗ σy), (7)

~Γ2 ≡ 1

2
(−σ0 ⊗ σy, σy ⊗ σz,−σy ⊗ σx). (8)

Note that ~Γ1,2 are pure imaginary and are hence odd
under time-reversal symmetry T . The Hamiltonian (5)
consists of bilinears of Γ’s and is therefore time-reversal
invariant. It is also invariant under R since R does not
transform Γ at all.

To analyze the topological nature of the ground state
of Ĥ1D, it is more convenient to switch the basis of Hx
from {|n〉x}n=1,2,3,4 to {|s〉1x ⊗ |s′〉2x}s,s′=± by the local
linear transformation |s〉1x ⊗ |s′〉2x =

∑
n |n〉xUn,ss′ :

|+〉1x ⊗ |+〉2x ≡
1√
2

(|1〉x − i|4〉x), (9)

|+〉1x ⊗ |−〉2x ≡
1√
2

(|3〉x − i|2〉x), (10)

|−〉1x ⊗ |+〉2x ≡ −
1√
2

(|3〉x + i|2〉x), (11)

|−〉1x ⊗ |−〉2x ≡
1√
2

(|1〉x + i|4〉x). (12)

In this new basis, ~̂Γµx is nothing but the spin operator
acting on {|s〉µx}s=±,

U†~Γ1U =
1

2
~σ ⊗ σ0, U†~Γ2U =

1

2
σ0 ⊗ ~σ. (13)

For example, the usual spin algebras such as Γ̂µzx |±〉µx =

± 1
2 |±〉µx and (Γ̂µxx ± iΓ̂µyx )|∓〉µx = |±〉µx hold. Therefore,

Ĥ1D in Eq. (5) is just an antiferromagnetic spin chain
whose exchange coupling is nonzero every other bond.
The ground state is the valence-bond solid (VBS) state:

|Ψ(s, s′)〉 ≡ |s〉11 ⊗
(
ΠL−1
x=1 ⊗ |φ0〉x,x+1

)
⊗ |s′〉2L, (14)

|φ0〉x,x+1 ≡
1√
2

(|+〉2x|−〉1x+1 − |−〉2x|+〉1x+1). (15)

In a finite-size system, the ground state is four-fold de-
generate due to the edge dofs |s〉11 and |s′〉2L (s, s′ = ±).

The nontrivial topology of the model is encoded in the
symmetry property of the edge states. Although the aux-
iliary field |s〉µx apparently behaves like an electronic spin,

its transformation under R̂T̂ is in fact quite distinct from
the physical spin. In the {|s〉1x ⊗ |s′〉2x} basis, T̂ and R̂
are represented by U†T U = U†U∗K = (iσy) ⊗ (iσy)K
and U†RU = U†IU = σ0 ⊗ σ0, respectively. Namely,
|s〉µx transforms under T in the same way as the physical

spins, while it does not change under R (R̂|±〉µx = |±〉µx)
unlike electrons. This peculiar transformation property
of the auxiliary field |s〉µx can be summarized as

R̂ = +Î , T̂ 2 = −Î , (R̂T̂ )2 = −Î (16)

on the two dimensional Hilbert space spanned by
{|s〉µx}s=±. Equation (16) must be compared to T̂ 2 =
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R̂2 = −Î and hence (R̂T̂ )2 = +Î of a physical spin-
1
2 electron. One may think one can redefine R̂′ ≡ iR̂
to get (R̂′)2 = +Î, but even after that (R̂′T̂ )2 remains

unchanged since T̂ is anti-unitary.
Although the Hamiltonian Ĥ1D is invariant under

T̂ and R̂ separately, we can add arbitrary symmetry-
breaking perturbations keeping only the combined sym-
metry R̂T̂ and the bulk gap. Since R̂T̂ is an anti-unitary
symmetry that squares into −1, it protects the Kramers
degeneracy on each edge.

The fact that the value of (R̂T̂ )2 of our edge state is
different from that of physical electrons has two impor-
tant implications. (i) The edge state of any (noninteract-

ing) topological insulator satisfies (R̂T̂ )2 = +Î. There-
fore, the VBS state in Eq. (14) cannot be adiabatically
connected to electronic topological insulators. In other
words, the VBS state is an interaction-enabled topolog-
ical phase protected by R̂T̂ . (ii) The edge state of the
VBS state is robust against the perturbation of attach-
ing physical spin- 12 electrons to the edge. In the case of
the standard AKLT model, for example, the edge spin-
1
2 can be gapped by attaching an electron, since both
of them fall into the same class of projective representa-
tions R̂2 = T̂ 2 = −Î. On the other hand, the edge state
of our model cannot be gapped this way, since even af-
ter attaching an electron, the anti-unitary symmetry R̂T̂
remains (R̂T̂ )2 = −Î.

To summarize, we have presented a simple 1D model of
interacting electrons that realizes an interaction-enabled
topological phase protected by the combined symmetry
R̂T̂ . The edge degrees of freedom satisfies (R̂T̂ )2 = −Î
and are stable against attaching additional electrons to
the edge.

III. 2D MODELS

Now we move onto 2D TCM models. This time the
reflection/rotation symmetry is truly a spatial symmetry
and the 2D TCM phases are hence protected purely by
non-local symmetries.

We will discuss two models. The first one is stacked
1D chains shown in Fig. 2 (a). The Hamiltonian is

Ĥ2D = J

Lx−1∑
x=1

+∞∑
y=−∞

~̂Γ2
(x,y) · ~̂Γ1

(x+1,y), (17)

where ~Γ1 ≡ 1
2~σ ⊗ σ0 and ~Γ2 ≡ 1

2σ
0 ⊗ ~σ in the basis of

{|s1〉1(x,y)⊗ |s2〉2(x,y)}s1,s2=±. The second one is a square-

lattice model depicted in Fig. 2 (b).

Ĥ ′2D =J

Lx−1∑
x=1

+∞∑
y=−∞

~̂Γ2
(x,y) · ~̂Γ1

(x+1,y)

+J

Lx∑
x=1

+∞∑
y=−∞

~̂Γ4
(x,y) · ~̂Γ3

(x,y+1), (18)

0
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FIG. 2. Two 2D models: the stacked 1D chains (a) and a
more intrinsically 2D model (b). The reflection/rotation sym-
metry must be site-centered, not bond-centered. We can add
weak perturbation to realize A-B sublattice structure (gray
shadow) to break the bond-centered mirror.

where ~Γ1 ≡ 1
2~σ⊗σ0⊗σ0⊗σ0, ~Γ2 ≡ 1

2σ
0⊗~σ⊗σ0⊗σ0, ~Γ3 ≡

1
2σ

0⊗σ0⊗~σ⊗σ0, and ~Γ4 ≡ 1
2σ

0⊗σ0⊗σ0⊗~σ in the basis

of {|s1〉1(x,y) ⊗ |s2〉2(x,y) ⊗ |s3〉3(x,y) ⊗ |s4〉4(x,y)}s1,s2,s3,s4=±.

For both models, each auxiliary field |s〉µ(x,y) (s = ±)

transforms as

R̂|s〉µ(x,y) = |s〉µ(x,−y), T̂ |s〉µ(x,y) = s | − s〉µ(x,y) (19)

so that ~̂Γµ(x,y) satisfies

R̂~̂Γµ(x,y)R̂−1 = ~̂Γµ(x,−y), T̂ ~̂Γ
µ
(x,y)T̂ −1 = −~̂Γµ(x,y). (20)

The first transformation in Eq. (19) is again distinct from
that of spin- 12 electrons. As a consequence, |s〉µ(x,y) sat-

isfies (R̂T̂ )2 = −Î unlike electrons as before. Although

both Ĥ2D and Ĥ ′2D themselves are invariant under R̂
and T̂ separately, arbitrary perturbations can be added
to these Hamiltonians as long as the combined symmetry
R̂T̂ is respected and the bulk gap is not closed.

Note that the reflection/rotation symmetry R here
needs to be site-centered [R : (x, y, z) 7→ (x,−y,±z)] and

cannot be bond-centered [R̃ : (x, y, z) 7→ (x, 1 − y,±z)].
The bond-centered one does not protect gapless edge
states as we discuss below. To break the body-centered
symmetry without affecting the site-centered one, one
can introduce A-B sublattice structure [gray shadows in
Fig. 1(b)] by modifying the spin Hamiltonian by weak
perturbation.
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domain wall +h−h

0

y

R
FIG. 3. The 1D edge state along x = 1 of the 2D models
in Fig. 2. The color represents the nonuniform perturbation

Ĥ ′ =
∑
y
~H(y) · ~̂Γ1

(x=1,y) with ~H(y) = h tanh(y)ẑ, for ex-

ample, which respects the R̂T̂ symmetry. The edge state in
the region y � 0 and y � 0 opens a gap proportional to h,
while there will be a residual gapless edge state protected by
(R̂T̂ )2 = −Î on the domain wall.

The ground state of these 2D Hamiltonians is the VBS
state illustrated in Fig. 2, analogous to Eq. (14). There
is a 1D edge state formed by {|s〉1(x=1,y)}y∈[−Ly,Ly ] along

the line x = 1, and another 1D edge state formed by
{|s〉2(x=Lx,y)

}y∈[−Ly,Ly ] along x = Lx.

To see the gaplessness of the edge states, we add a R̂T̂ -

symmetric perturbation Ĥ ′ =
∑
y
~H(y) · ~̂Γ1

(x=1,y) along

the line x = 1 as shown in Fig. 3, where ~H(y) is an odd

function of y that approaches to a constant ~H(y) → ~h

for y � 1. Note that ~H(y) must flip sign at y = 0 to

be consistent with the R̂T̂ symmetry, forming a domain

wall around y = 0. All ~̂Γ’s along the edge away from the
domain wall open a gap proportional to h. However, the
edge state at the domain wall y = 0 must remain gapless.
This is protected, again, by the anti-unitary symmetry
R̂T̂ with (R̂T̂ )2 = −Î. This unavoidable gaplessness of
the edge state signals the topological nature of our 2D

models. Essentially, ~Γµ~x’s on the y = z = 0 line plays the
role of the 1D spin chain discussed above. In contrast,
when R is bond-centered, there will be an even number
of |s〉’s at the domain wall and (R̂T̂ )2 = (−Î)2n = +Î
and the edge may be completely gapped.

IV. ANISOTROPIC RESPONSE TO A
MAGNETIC FIELD

An experimental signature of TCMs is the anisotropic
response of the edge state to the external magnetic field
~B.

We start with the case where R is the reflection My

about the xz plane. Recall that the (Bx, By, Bz) →
(−Bx, By,−Bz) under My, while ~̂Γ does not react to

My. Both ~B and ~̂Γ flips sign under T . The familiar

form of the coupling to the external field ~B · ~̂Γµ~x is thus
not allowed by symmetryMyT . Instead, arbitrary linear

coupling to By, i.e., BycµaΓ̂µa~x , is allowed. When By is
set to a constant value, this term breaks the MyT sym-
metry and the edge states will be gapped and the gap

should be proportional to |By|. On the other hand, Bx
and Bz do not couple linearly to Γ̂µ~x. We therefore ex-
pect anisotropic response of the edge state towards the
external magnetic field.

WhenR is the π-rotationRπ,x around x axis, the mag-
netic field (Bx, By, Bz) changes to (Bx,−By,−Bz) under
Rπ,x. Thus, arbitrary linear coupling between Bx and
Γµa~x is allowed. Thus a constant Bx can induce a gap
to the edge, while By and Bz cannot. We thus expect
similar anisotropic response in this case too.

V. 3D MODEL

One can readily construct a 3D TCM model in the
same way as we did for the 2D models. The 3D model is a
2D array of the 1D TCM chains, illustrated in Fig. 4. For
this 3D model, R must be the site-centered π-rotation
about the x-axis. Namely, the rotation axis must coincide
with one of the 1D chain.

The gapless 2D surfaces at x = 1 and x = Lx are
protected by the combined symmetry RT . To see this,
let us again add a RT -symmetric perturbation Ĥ ′ =∑
y,z

~H(y, z) · ~̂Γ1
(x=1,y,z). To be consistent with the RT

symmetry, ~H(y, z) should satisfy ~H(y, z) = − ~H(−y,−z),
meaning that H(0, 0) = 0. Therefore, there will be a
residual zero mode at the “vortex core” of the perturbed
surface, protected by (R̂T̂ )2 = −Î.

VI. CONCLUSION

In this paper we introduced TCM phases protected
by non-local symmetry RT in two and three dimension.
They are interaction-enabled and are robust against at-
taching physical electrons to the edge. They can be de-
tected in experiment from their anisotropic response of
the edge state towards external magnetic fields.

x

y

z
Rπ

FIG. 4. The 3D model, which is the 2D array of the 1D chain.
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