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We point out that a face-centered cubic (FCC) optical lattice, which can be realised by a simple
scheme using three lasers, provides one a highly controllable platform for creating Weyl points and
topological nodal superfluids in ultracold atoms. In non-interacting systems, Weyl points automat-
ically arise in the Floquet band structure when shaking such FCC lattices, and sophisticated design
of the tunnelling is not required. More interestingly, in the presence of attractive interaction between
two hyperfine spin states, which experience the same shaken FCC lattice, a three-dimensional topo-
logical nodal superfluid emerges, and Weyl points show up as the gapless points in the quasiparticle
spectrum. One could either create a double Weyl point of charge 2, or split it to two Weyl points of
charge 1, which can be moved in the momentum space by tuning the interactions. Correspondingly,
the Fermi arcs at the surface may be linked with each other or separated as individual ones.

Fascinating progresses have been made in studying
topological matters of ultracold atoms in the past few
years. A number of topological models and topologi-
cal phenomena difficult to access in solid materials have
been realised[1–5]. For instance, the Harper-Hofstadter
model[6] and the topological Haldane model[7] have been
delivered in optical lattices[1–4]. In the continuum, a
two-dimensional (2D) synthetic spin-orbit coupling has
created a single stable Dirac point that can be moved
anywhere in the momentum space[5]. So far, most of
these studies have been focusing on one or two dimen-
sions. A large class of three-dimensional (3D) topological
phenomena remain unexplored at the moment.

A Weyl point is a characteristic 3D topological band
structure [8], which provides an analog of Weyl fermions,
a building block in quantum field theory. It also serves as
an ideal platform to explore a wide range of topological
phenomena in gapless quantum systems, such as Fermi
arc[9] and chiral anomalies[10]. Weyl points and Weyl
semimetals have recently be discovered in certain solid
materials[11–13]. Whereas this development represents a
major advancement in the current frontier of condensed
matter physics, challenges remain on manipulating Weyl
points, since microscopic parameters are essentially fixed
in a given solid material. Further more, a fundamentally
important question regarding the interplay between Weyl
semimetal and interaction remains unsolved. Though
theoretical studies have predicted a variety of interesting
results, including novel superconductivity in doped Weyl
semimetals[14–20] and the emergent supersymmetry[20],
there have been no experimental observation of such phe-
nomena. It is therefore desirable to have a highly con-
trollable platform to investigate Weyl points and the re-
sultant quantum phenomena in interacting systems.

In this Letter, we show that a face-centered cubic
(FCC) optical lattice provides physicists a unique means
to create and manipulate Weyl points in both non-

interacting and interacting systems. An intrinsic prop-
erty of a FCC lattice is that, the lowest two bands,
which are labeled as A and B, respectively, have “in-
verted” band structures, i.e., tunnellings with opposite
signs. This comes from a simple fact that the Brillouin
zone (BZ) of a FCC lattice is the one folded from a simple
cubic (SC) lattice, as shown in Fig. 1(a,b). As a result,
Weyl points naturally arise in the Floquet band struc-
ture, if one simply uses a periodic shaking to overcome
the band gap and couple the A and B bands. This is
distinct from the majority of previous proposals[21–24],
which require sophisticated designs to engineer tunnel-
ings along all three directions. Moreover, uploading two
hyperfine spin states onto such optical lattice, the highly
tunable attractive interaction between fermionic atoms
allows one to create a 3D nodal superfluid, which is com-
posed of layered 2D chiral superfluids in the momentum
space. Strikingly, Weyl points show up in quasiparticle
spectrum of such superfluid. One could either glue two
Weyl points with the same chirality to a monopole of
charge 2, or further split such multiple-charge monopoles
into multiple charge-1 ones, and move them around in the
BZ by tuning interactions. Correspondingly, two Fermi
arcs emerge at the surfaces, and can be either linked with
or separated from each other, depending on locations of
the Weyl points in the bulk spectrum.

Hamiltonian We consider a circularly shaken 3D FCC
optical lattice, whose Hamiltonian in the Floquet frame-
work is written as H0 − i~∂τ , where τ is time,

H0 =
P2

2M
+ V (x+ f cosωτ, y + f sinωτ, z), (1)

and f and ω are the shaken amplitude and frequency,
respectively. M is the atom mass. Formally, the above
equation is a direct generalisation of the scheme of shak-
ing a 2D checkerboard lattice[25] to a 3D FCC lattice,

ar
X

iv
:1

61
1.

08
67

1v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

6 
N

ov
 2

01
6



2

FIG. 1. (a) Schematic of the FCC lattice with A and B sub-
lattices. (b) The 1st BZ (red truncated octahedron) of the
FCC lattice folded from that (black cubic) of the SC lattice.
(c) The lowest two bands (blue solid), ε0Ak and ε0Bk, of the
FCC lattice. Red dashed line represents the subband of ε0Ak

after absorbing one photon via shaking. The parameters are
V = 8ER, ~ω = 0.7ER, α = 0.06, f = 0.16d0. (d) One laser
setup to realize the FCC lattice. Red (purple) arrows repre-
sent the lasers with wavelength λ (λ′) and frequency ω (ω′).
Details can be referred to in Supplementary Materials.

whose potential is written as

V (x, y, z) = −V
(

cos2
π

a
x+ cos2

π

b
y + cos2

π

c
z

+α cos
π

a
x cos

π

b
y cos

π

c
z
)
, (2)

where a, b and c are constants. Interestingly, such a 3D
optical lattice of fundamental importance in solids has
never been produced in ultracold atoms. We point out
that it can be produced by three lasers with directions
and polarisations arranged in a few ways, one of which
is shown in Fig. 1(d). Three pairs of lasers are used,
where lasers 1 and 2 interfere with each other and form a
z-dependent checkerboard lattice in the x-y plane, while
laser 3 with a different frequency forms a standing wave
along the z direction (Supplementary Materials). This
setup has already been realized by Esslinger’s group[3].

To concretise the discussion, we focus on a symmet-
ric case, a = b = c. All results here can be easily
generalised to an arbitrary choice of a, b, c. The ex-
act band structure of the static lattice V (x, y, z), where
f = 0, can be solved exactly using plane-wave ex-
pansions. The results for the lowest two bands, de-
noted as ε0Ak and ε0Bk, are shown in Fig. 1(c). Both
of them can be well approximated by the tight binding
results, ε0Ak = 4t(cos kxd0 cos kyd0 + cos kyd0 cos kzd0 +
cos kzd0 cos kxd0)+2t′(cos 2kxd0+cos 2kyd0+cos 2kzd0),
and ε0Bk = −ε0Ak + ∆, where t and t′ characterise the
nearest- and next-nearest neighbor tunnelings in the A
sublattice, and ∆ is the band gap. The inverted struc-

ture between A and B bands could be understood qual-
itatively from the folding of BZ, i.e., ε0Ak ≈ εck, ε0Bk ≈
εck+G + ∆ , εck is the ground band dispersion of the
SC lattice, and G = (1, 1, 1)π/d0. d̃0 =

√
2d0 and d0

are the lattice spacings of the FCC and the SC lattices,
respectively. Applying the shaking, the A(B) band ab-
sorbs (emits) a photon and couples with the B(A) band
in the Floquet Hamiltonian, which can be written as
H0 = (εAk + εBk)I/2 +K with

K =

(
(εAk − εBk)/2 Ωke

iϕk

Ω∗ke
−iϕk (εBk − εAk)/2

)
, (3)

where εAk = ε0Ak + ~ω, εBk = ε0Bk, and δ = ∆ − ~ω
is the one-photon detuning. The inter-band coupling is
written as Ωke

iϕk = Ω(i sin kxd0 − sin kyd0)e−ikxd0 with
ϕk = arg

[
(i sin kxd0 − sin kyd0)e−ikxd0

]
. This coupling

is the same as that in a shaken checkerboard lattice[25],
since V (x, y, z) in Eq.(2) reduces to a 2D checkerboard
lattice for each plane with a given value of z.

Weyl points from shaking A Weyl point requires that
all matrix elements in Eq. (3) become zero at some k0

in BZ. In previous proposals[21–23], this is realised by
engineering the tunnelling along all three dimensions,
which often require sophisticated designs of microscopic
models. Here, a shaken FCC lattice automatically pro-
vides one Weyl points. The off-diagonal term could van-
ish at (kx, ky) = (0, 0), (0, π), or (π, 0). Meanwhile, since
ε0Bk = −ε0Ak + ∆ is readily satisfied in the static lattice,
εAk− εBk = 0 can be easily satisfied if δ is small enough,
i.e., in the strong inter-band hybridisation regime with
the shaken frequency tuned near resonance. For instance,
one may have k0 = (0, 0, k0z) so that |K| = 0, where k0z
satisfies 4t(1 + 2 cos k0zd0) + 2t′(2 + cos 2k0zd0) = δ/2.
Near k0, the matrix can be linearised,

K =

(
vz(k − k0z) ivxkx − vyky
−ivxkx − vyky −vz(k − k0z)

)
, (4)

where vx = vy = Ωd0 ≡ v‖, vz = −8d0 sin(k0zd0)(t +
t′ cos k0zd0). Eq. (4) indeed describes a Weyl point in
the BZ. When k = k0, |K| = 0, and the Weyl point
represents a monopole in the momentum space with a
topological charge ±1. The sign of the charge is deter-
mined by the sign of vxvyvz. Since for each k0z, there is
always another solution −k0z to satisfy |K| = 0 with an
opposite chirality, one sees that the total chirality in BZ
is zero. The positions of the Weyl points are determined
by the microscopic parameters in the system, such as the
detuning δ. Changing the value of |δ|, Weyl points move
in BZ, and once a pair of Weyl points with opposite chi-
ralities meet in BZ, they annihilate each other. For large
enough |δ|, the disappearance of Weyl points indicates
that the 3D band structure becomes topologically trivial
in such cases with weak inter-band hybridisation.

3D nodal superfluid We now turn to the interaction
effects. Whereas the interplay between Weyl fermions
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and interaction has been studied in the literature[14–20],
our shaken lattices provides one a unique system to ex-
plore new physics that has not been explored before. We
introduce two hyperfine spin states into the FCC opti-
cal lattice, each of which has the same single-particle
Hamiltonian specified by Eq.(3). This corresponds to a
spin-independent shaken lattice, where we have two Weyl
points with the same chirality at the same k0 or −k0.
Without interaction, the many-body ground state is sim-
ply composed of two identical copies of Weyl semimet-
als, if the chemical potential is tuned right at the Weyl
point. Unlike the electronic spins, the hyperfine spin is
conserved in ultracold atoms. This gives rise to a to-
tal topological charge of 2 in the single particle level,
as shown in fig. 2(d). However, introducing attractive
interaction inevitably leads to particle-hole mixing be-
tween the two hyperfine spin states. A natural question
is then, what is the fate of such Weyl semimetals? Al-
ternatively, one could consider tuning the chemical po-
tential away from Weyl points so that the fermi surface
becomes finite. Such finite Fermi surface indicates that
the low lying excitations in the interacting system are ac-
tually located at momenta away from the Weyl points of
the non-interacting system. It is thus desired to explore
whether the Weyl point, which is now embedded inside
the Fermi sea, is relevant to the emergent superfluidity
when the attractive interaction is turned on.

Using σ =↑, ↓ to denote these two hyperfine spin
states, the on-site interaction can be written as V̂ =
−UA

∑
i∈A n̂i↑n̂i↓ − UB

∑
i∈B n̂i↑n̂i↓, where n̂iσ is the

density operator for spin-σ particles at site i, and
UA(B) > 0 is the on-site interaction strength for A(B)
sites. Our Hamiltonian is different from the ones pre-
viously studied in the literature, where the degree of
freedom that participates in the interaction is the same
as that provides the band crossing[14–20]. Here, we
consider the attractive interaction between two Weyl
semimetals or two normal metals with small fermi sur-
faces. Define the pairing order parameters, ∆A(B) =

−UA(B)〈Ψ̂A(B),−k↓Ψ̂A(B)k↑〉/N , where N is the number
of unit cells, the BCS Hamiltonian can be written as

ĤBCS =


εAk − µ Ωke

iϕk ∆A 0
Ωke

−iϕk εBk − µ 0 ∆B

∆∗A 0 µ− εAk −Ωke
−iϕ−k

0 ∆∗B −Ωke
iϕ−k µ− εBk


(5)

∆A and ∆B are solved self-consistently for a fixed den-
sity n = n↑ + n↓. Since UA and UB could be controlled
independently, very rich physics emerges.

We first consider n↑ = n↓ > 1/2, i.e., a finite Fermi
surface surrounding each Weyl point in the BZ. Turning
on one of the interactions, say UA or UB , it turns out that
there exists one point on each Fermi surface remaining
gapless, whereas the superfluid gap opens anywhere else,
as shown in fig. 2(e). We note that the BCS Hamilto-

nian (5) is block-diagonalised if one sets kx = ky = 0.
When UA = 0, which naturally leads to ∆A = 0, all
matrix elements of one block vanish at the momenta
k∗ = (0, 0,±k0z ± kF ), i.e., the Bogoliubov quasiparti-
cle spectrum remains gapless. The other branch, which
comes from the other block, opens a gap due to a finite
∆B . Alternatively, when UB = 0 the spectrum is gapless
at k′∗ = (0, 0,±k0z ∓ kF ).

We point out that the emergent 3D nodal superfluid is
a topological one, which can be seen from the topological
charges carried by the nodal points in the quasi-particle
spectrum. Expanding the quasiparticle spectrum near
such gapless point, an effective Hamiltonian is obtained,

H±eff =

(
±v∗zqz 0

0 ∓v∗zqz

)
+
v2‖(q

2
x + q2y)

|∆ξ|2 + 4µ2

(
−2ηµ ∆ξe

−2iθq

∆ξe
2iθq 2ηµ

)
, (6)

where q is the momentum measured from the gapless
point k∗ or k′∗, θq = arg(iqx − qy), and v∗z = 8 sin(k0z +
ηkF )[t+ t′ cos(k0z+ηkF )]. η = +1 and ξ = A for UB = 0
while η = −1 and ξ = B for UA = 0. The superscript
± is the valley index, representing the two Fermi sur-
faces surrounding the two Weyl points in non-interacting
systems. H±eff describes a Bogoliubov quasiparticle spec-
trum, which is linear along the qz direction and quadratic
along the qx and qy directions, since the off-diagonal term
∼ (iqx±qy)2. It thus describes a monopole of charge-2 in
the momentum space. We thus see that the topological
charge when introducing attraction interaction shows up
in Bogoliubov quasiparticle spectrum.

Turning on the other interaction, the monopole of
charge-2 splits to two charge-1 ones, i.e., two Weyl points,
in the kx-ky plane, the positions of which are denoted as
k∗1 and k∗2, respectively. This can be understood from
the conservation of the total charge of the monopoles en-
closed in the spheres, as shown in fig. 2(e, f). Near these
two Weyl points, the dispersion becomes linear along all
three directions. Since the non-interacting system has a
four-fold rotation symmetry about the kz axis, and such
a splitting reduces the symmetry to a two-fold one, the
choice of the direction for the splitting is a consequence
of spontaneous symmetry breaking, along either kx or ky
direction. By changing the ratio UA/UB , these two Weyl
points move in BZ before meeting their counterparts with
opposite chiralities emerged from the other valley. For
non-interacting systems, it is known that tuning the pa-
rameters leads to the movement of Weyl points without
opening the gap. In our system, tuning interaction also
offers such opportunity to control the positions of Weyl
points in the Bogoliubov quasiparticle spectrum in BZ.

There is an alternative way to understand why the 3D
superfluid remains nodal with turning on a small UA. As
shown in eq. 5 and fig. 2(d-f), in 3D BZ each 2D plane
with fixed kz defines an 2D s+ (d+ id) superfluid, sim-
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ilar to the one emerged from a 2D shaken lattice [25].
Whereas tuning kz effectively changes the chemical po-
tential of such 2D superfluid, its Chern number can be
computed straightforwardly. When |kz| < k∗z , where k∗z is
the z component of k∗1 (and k∗2), this 2D chiral superfluid
is topologically nontrivial with a Chern number of 2, as
the chiral component (d+ id) is dominant for small UA.
When |kz| > k∗z , C = 0. The topological transition of the
2D superfluid just corresponds to the nodal points. Thus,
the nodal points cannot be suddenly gapped, and the 3D
superfluid remains nodal when UA is small enough.

The pairing here is an inter-valley BCS pairing be-
tween −k and k. There have been studies of the com-
petition between the inter- and intra-valley parings near
Weyl points[14–18, 20]. Here, it is the hyperfine spin
states that incorporate the interaction effect. We find
out that, at least in the mean field level, the inter-
valley pairing wins. This can be qualitatively under-
stood from the phase space argument. In the inter-
valley pairing, a paired state (k0 + q ↑,−k0 − q ↓)
can be scattered to both (k0 + q′ ↑,−k0 − q′ ↓) and
(−k0 + q′ ↑,k0 − q′ ↓). For the intra-valley paring, a
paired state (k0+q ↑,k0−q ↓) could only be scattered to
(k0 +q′ ↑,k0−q′ ↓). Thus, the inter-valley paring gains
more energy than the intra-valley paring (Supplementary
Materials). Another mechanism favoring the inter-valley
pairing is that εkσ = ε−kσ is satisfied. Since the shak-
ing is spin-independent, εk0+q↑ = ε−k0−q↓ is thus valid.
However, near the same Weyl point, εk0+q is not ex-
actly the same as εk0−q, when q is large enough and the
linear approximation for the single particle energy is no
longer accurate. This energy mismatch disfavours the
intra-valley pairing.

We now consider half filling n = 1/2. In such Weyl
semimetal, due to the vanishing Fermi surfaces, a weak
attractive interaction is no longer relevant[20]. Our cal-
culations indeed show that the pairing remains vanishing
before either or both interactions reach a critical value.
The critical interaction strength by itself is not universal,
in the sense that it depends on the details of the single-
particle spectrum at both low and high energies. For a
purely linear dispersion, the critical value is written as
U cA = 6π2vzΩ

2/Λ2 for UB = 0, where Λ is the high en-
ergy cutoff. In realistic systems, the high energy part
of the spectrum is no longer linear, and is also impor-
tant to the critical interaction. Thus, there is no simple
expression of U cA. Nevertheless, if UA > U cA , the re-
sults become similar to those with a finite Fermi surface.
A double Weyl point of charge 2 emerges in the quasi-
particle spectrum. Turning on UB , such multiple-charge
monopole splits to two Weyl points of 1.

Fermi arcs A characteristic feature of Weyl points in
non-interacting system is the existence of Fermi arc[9] at
the surface, an unclosed line as the zero energy state.
Whereas in the absence of interaction, such Fermi arc is
indeed observed in our system as shown in fig. 2(a), it

FIG. 2. (a-c) Fermi arcs of the single-particle (a) and Bo-
goliubov quasi-particle (b-c) spectra on the (100) surface of
the FCC lattice for half filling with (UA, UB) = (0, 0)ER,
(UA, UB) = (0.15, 0)ER, and (UA, UB) = (0.15, 0.08)ER, re-

spectively. k̃y,z = (kz ± ky)/
√

2. (d-f) Schematics of nodal
points in the bulk spectrum corresponding to (a-c), respec-
tively. Red (blue) and pink (green) dots are the nodal points
with +(−)2 and +(−)1 charges, respectively. Spheres enclos-
ing the nodal points have the same Chern number −2. Pa-
rameters for single particles are the same as those in Fig. 1(c).

is more interesting to explore the interacting case when
the nodal superfluids have emerged. We solve the BDG
equation for half filling self-consistently with (100) sur-
face such that ky and kz are still good quantum numbers,
and the zero energy surface state is shown in Fig. 2(a-c).

Without interactions, two identical Fermi arcs, each of
which comes from one hyperfine spin state, are on top
of each other. Turning on one of the interactions, two
Fermi arcs connect with each other at two points in the
2D BZ, which are just the projection of the two charge-2
monopoles in the bulk spectrum onto the surface. Turn-
ing on the other interaction, accompanied with the split-
ting of each charge-2 monopole into two Weyl points, the
two Fermi arcs split, and the four ending points are sim-
ply the projections of the four Weyl points in the bulk.
One could understand these fermi arcs from the layered
2D superfluids. When the 2D superfluid is topologically
nontrivial with Chern number 2, its two zero-energy edge
states have momenta ky1(kz) and ky2(kz), respectively.
Changing kz leads to different values of ky1 and ky2, and
gives rise to Fermi arcs as the trajectories of zero-energy
states on the surface. Such zero energy states merge into
the bulk spectrum when |kz| > k∗z and the 2D superfluid
becomes the topologically trivial.

We have shown that Weyl points are readily achiev-
able in current ultracold atom experiments. The inter-
play between the interaction and the topological band
structure leads to a 3D topological nodal superfluid with
Weyl points and Fermi arcs, which are highly control-
lable via tuning the interaction. We hope that our work
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will stimulate more studies on 3D topological matters in
ultracold atoms.

This work is supported by Hong Kong Re-
search Grants Council/Collaborative Research Fund
HKUST3/CRF/13G. Q.Z. acknowledges useful discus-
sions with T. Esslinger.

∗ They contribute equally to this work.
† qizhou@phy.cuhk.edu.hk

[1] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro,
B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301
(2013).

[2] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Bur-
ton, and W. Ketterle, Phys. Rev. Lett. 111, 185302
(2013).

[3] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat,
T. Uehlinger, D. Greif, and T. Esslinger, Nature 515,
237 (2014).

[4] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider,
J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte,
and L. Fallani, Science 349, 1510 (2015).

[5] L. Huang, Z. Meng, P. Wang, P. Peng, S.-L. Zhang,
L. Chen, D. Li, Q. Zhou, and J. Zhang, arXiv:1506.02861
(2015).

[6] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[7] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[8] G. E. Volovik, The Universe in a Helium Droplet, 1st ed.

(CLARENDON PRESS OXFORD, 2003).
[9] X. Wan, A. Turner, A. Vishwanath, and S. Savrasov,

Phys. Rev. B 83, 205101 (2011).
[10] H. Nielsen and M. Ninomiya, Physics Letters B 130, 389

(1983).
[11] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao,

J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen,
Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5,
031013 (2015).

[12] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane,
G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-
C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez,
B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin,
S. Jia, and M. Z. Hasan, Science 349, 613 (2015).

[13] S.-Y. Xu, I. Belopolski, D. S. Sanchez, C. Zhang,
G. Chang, C. Guo, G. Bian, Z. Yuan, H. Lu, T.-R.
Chang, P. P. Shibayev, M. L. Prokopovych, N. Alidoust,
H. Zheng, C.-C. Lee, S.-M. Huang, R. Sankar, F. Chou,
C.-H. Hsu, H.-T. Jeng, A. Bansil, T. Neupert, V. N. Stro-
cov, H. Lin, S. Jia, and M. Z. Hasan, Science Advances
1 (2015), 10.1126/sciadv.1501092.

[14] G. Y. Cho, J. H. Bardarson, Y.-M. Lu, and J. E. Moore,
Phys. Rev. B 86, 214514 (2012).

[15] B. Lu, K. Yada, M. Sato, and Y. Tanaka, Phys. Rev.
Lett. 114, 096804 (2015).

[16] G. Bednik, A. A. Zyuzin, and A. A. Burkov, Phys. Rev.
B 92, 035153 (2015).

[17] T. Zhou, Y. Gao, and Z. D. Wang, arXiv:1510.01051
(2015).

[18] Y. Li and F. D. M. Haldane, arXiv:1510.01730 (2015).
[19] N. F. Q. Yuan, W.-Y. He, and K. T. Law,

arXiv:1608.05825 (2016).
[20] S.-K. Jian, Y.-F. Jiang, and H. Yao, Phys. Rev. Lett.

114, 237001 (2015).
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Supplemental Material for “Weyl points and topological nodal superfluids in a
face-centered cubic optical lattice”

In this supplementary material, we present the results on the realization of the FCC lattices and the comparison
between inter- and intra-valley pairings.

Realization of the FCC lattices

FIG. 3. (a) Schematic of laser 1 beams (red arrows) along x axis with linear polarisations êz along z direction. (b)Schematic
of laser 2 (red arrows) and laser 3 (purple arrows) beams, which are both in y-z plane. The linear polarisations, ê2 and ê′2, of
laser 2 beams normal to the propagating directions can be in general out of the plane. (c) The polarisation directions, ê2 and
ê′2, of laser 2 beams are parameterized by angles θ and φ.

We can use three retro-reflected lasers with linear polarisations to generate the potential of the face-centered cubic
(FCC) lattice. As shown in Fig. 3(a,b), laser 1 in x direction and laser 2 in y-z plane both with linear polarisations
have the same wavelength λ1 and frequency ω1, and thus can interfere with each other. The total electric field is

E = 2E1e
i(ϕ1+ϕ

′
1)/2 cos

(
k1x+

ϕ1 − ϕ′1
2

)
ez

+2E2e
i[k1z cos θ+(ϕ2+ϕ

′
2)/2]

(
ei[k1y sin θ+(ϕ2−ϕ′2)/2]e2 + e−i[k1y sin θ+(ϕ2−ϕ′2)/2]e′2

)
(A.7)

where k1 = 2π/λ1 is the wavenumber, E1 and E2 are the strengths of the electric fields of lasers 1 and 2, respectively.
As shown in Fig. 3(b,c), θ is the angle of the direction of laser 2 to the positive z direction, and φ is the angle of the
porlarisation of laser 2 to the y-z plane. e2 = ex sinφ+ey cosφ cos θ+ez cosφ sin θ and e′2 = ex sinφ−ey cosφ cos θ+
ez cosφ sin θ are the unit vectors of the polarisation directions of the two laser 2 beams, respectively. ϕ1(2) and ϕ′1(2)
are the phases of the incedent and reflected beams of laser 1(2), respectively. So the corresponding potential is

V12 = −V1 cos2
(
k1x+

ϕ1 − ϕ′1
2

)
− V2

(
1− 2 cos2 θ cos2 φ

)
cos2

(
k1y sin θ +

ϕ2 − ϕ′2
2

)
(A.8)

−2
√
V1V2 cosφ sin θ cos

(
k1x+

ϕ1 − ϕ′1
2

)
cos

(
k1y sin θ +

ϕ2 − ϕ′2
2

)
cos

(
k1z cos θ − ϕ1 + ϕ′1 − ϕ2 − ϕ′2

2

)
,

where V1,2 are the single-beam lattice depths of laser 1 and 2, respectively. Laser 3 also in y-z plane with wavelength λ3
and frequency ω3 can form an independent standing-wave potential along z direction, as long as we make |ω3 − ω1| � τ ,
where τ is the typical measurement time, such that it doesn’t interfere with other lasers. The potential is

Vz = −V3 cos2
(
k3z +

ϕ3 − ϕ′3
2

)
, (A.9)

where k3 = 2π cos θ/λ3 is the z-component wavenumber of the laser 3, ϕ3 and ϕ′3 are the phases of the incedent and
reflected beams of laser 3, respectively, and V3 is the single-beam lattice depth. For convenience, we can tune the
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parameters as ϕ1 = ϕ′1 = ϕ2 = ϕ′2 and ϕ3 = ϕ′3, so the potential is reduced to

V (r) = −V1 cos2 k1x− V2
(
1− 2 cos2 φ cos2 θ

)
cos2 (k1y sin θ)− V3 cos2 k3z

−2
√
V1V2 cosφ sin θ cos k1x cos (k1y sin θ) cos (k1z cos θ) . (A.10)

If we make V1 = V2
(
1− 2 cos2 φ sin2 θ

)
= V3 ≡ V, k1 cos θ = k3, and define k2 ≡ k1 sin θ and α ≡

2 cosφ sin θ
√
V1V2/V . The lattice potential becomes

V (r) = −V
(
cos2 k1x+ cos2 k2y + cos2 k3z + α cos k1x cos k2y cos k3z

)
. (A.11)

This is just the potential for FCC lattic

Comparison between inter- and intra-valley pairings

Consider the inter-valley pairing, for any fixed q and q′, the initial state of a pair (k0 + q, ↑;−k0 − q, ↓) can be
scattered to (k0 + q′, ↑;−k0 − q′, ↓), as shown in Fig (4a). For the same values of q and q′, the same initial state
can also be scattered to (−k0 + q′, ↑;k0 − q′, ↓), which also conserves the total momentum and energy, as shown in
Fig (4b). Similarly, the initial state of a pair (−k0 + q, ↑;k0 − q, ↓) can be scattered to (−k0 + q′, ↑;k0 − q′, ↓) in
Fig (4c) or (k0 + q′, ↑;−k0 − q′, ↓) in Fig (4d). Thus the energy gained by the inter-valley pairing is proportional to∫
dqdq′ ∼ 4N (EF ), whereN (EF ) is Density of States of a single Fermi surface of a single spin component. In contrast,

for intra-valley pairing, the initial state of a pair (±k0 +q, ↑;±k0−q, ↓) can be scattered to (±k0 +q′, ↑;±k0−q′, ↓)
in the same valley only, as shown in Fig (4e). Thus the energy gained by the intra-valley pairing is proportional to∫
dqdq′ ∼ 2N (EF ). One thus conclude inter-valley pairing is in general favored in our system.

q

q0

(a) (b)

(c) (d)
k0 + q0

k0 + q

(e)

�k0 � q0

�k0 � q

k0 � q0

�k0 + q0

�k0 + q

�k0 + q0 k0 � q

k0 � q0 �k0 � q0

k0 + q0

FIG. 4. Blue and red circles represent the identical Fermi surfaces of spin-up and spin-down atoms, respectively, which have
been slightly displaced for clarity. Solid and dotted arrows represent the initial and final momenta, respectively. Dashed curves
highlight the changes of the momentum of spin-up (blue) and spin-down (red) atoms. (a-d) Inter-valley paring. (e) Intra-valley
pairing.
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