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ABSTRACT

We compare analytic light curves for SNIabc supernovae with recent high
quality data from (1)) SN2011fe (Pereira, et al. 2013), (2) KSN2011b (Olling,
et al. 2015), (3) the Palomar Transient Factory (PTF) and the La Silla-QUEST
variability survey (LSQ) (Firth, et al. 2015), and (4) a type Ib, SN2008D (Mod-
jaz, et al. 2008; Soderberg et al. 2008). We establish a reasonable bolometric
conversion between Kepler supernovae and SN2011fe, a crude but instructive
one for SN2008D, and discuss the implications of the smoothness of the light-
curve for KSN2011b, as well as the meaning of the deviation of early luminosity
from t2 behavior. The good agreement of the analytic light curves (which nec-
essarily assume mixing and which can reproduce the Phillips relation) and the
observations of highest cadence and stability, are consistent with the occur-
rence of significant large-scale mixing during the explosion, possibly due to 3D
effects (e.g., Rayleigh-Taylor and Richtmeyer-Meshkov instabilities) and consis-
tent with spectrapolarimetry (Porter, et al. 2016). We illustrate how to separate
the light curve of SN2008D, a type Ib (Bianco, et al. 2014) into thermal out-
burst (both break-out and dynamic acceleration) and radioactive components.
The shape of a normalized light-curve can provide an indication of the phase of
newly–discovered Type Ia supernovae, so that 3 early observations are mathe-
matically sufficient to identify an event about 10–18 days prior to maximum,
which has implications for survey telescopes such as LSST. We discuss the in-
terpretation of the “opacity” in the analytic solution in terms of an equivalent
integrated leakage rate for thermal photons. We derive a general relationship
between extrema in the light curve and an arbitrary heating rate.

1. INTRODUCTION

Supernovae whose luminosity is primarily
powered by the decay chains 56Ni(e−, ν)56Co,
56Co(e−, ν)56Fe and 56Co(, e+ν)56Fe have
generic features. These are prominent in
SNIa, and appear in SNIbc, that is, in both
thermonuclear supernovae and those core-
collapse supernovae which have lost their hy-
drogen envelopes (Arnett 1982, 1996).

Automated searches for supernovae are pro-
gressing to the point that it is desirable to
have robust procedures to identify interest-
ing objects early in their evolution, for sub-
sequent follow–up observations. We compare
theoretical light curves (Arnett 1982; Pinto &
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Eastman 2000a,b) to the best-observed SNIa
to date, SN2011fe in M101, the Pinwheel
galaxy (Pereira, et al. 2013), as well as to
KSN2011b, the best of three SNIae (KSN
2011b,c; KSN2012a) detected at early times
by the Kepler satellite (Olling, et al. 2015).
For these supernovae we have bolometric (or
near bolometric) light curves, so we may min-
imize issues of time-dependent atmospheric
physics. This approach, which assumes three–
dimensional (3D) incomplete mixing during
the explosion (Arnett & Meakin 2016), is thus
different from and a natural complement to a
1D, time–dependent non-LTE approach such
as Blondin, et al. (2013); Dessart, et al. (2015,
2016). In addition the analytic solutions allow
a quantitative and precise study of the light
curve shapes.

2. SHAPES OF SUPERNOVA LIGHT CURVES

2.1. Light curves for SN2011fe
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If they are normalized to the luminosity
at maximum light, supernova light curves of
Type I have a characteristic shape, which is
due to radioactive heating by gamma-rays and
positrons, cooling by expansion, and cooling
by radiative loss (Arnett 1982; Pinto & East-
man 2000a). Fig. 1 illustrates this both obser-
vationally for SN2011fe (Pereira, et al. 2013),
and theoretically (Arnett 1982).

Figure 1. Comparison of normalized bolometric
luminosity in analytic models (Arnett 1982) and
SN2011fe (Pereira, et al. 2013). The analytic mod-
els plotted here allow for γ–ray escape, as did the
original ones, by using the deposition estimate from
Monte Carlo simulations of Colgate, Petschek &
Kriese (1980). The four analytic curves are distin-
guished by a slightly different (10%) value for the p2
parameter (see text); this is related to the relation
between luminosity and light curve width (Phillips
1993). The curves are separately normalized at their
own maximum light. The downward arrows indicate
the beginning time of each light curve calculation.

The physical interpretation of the analytic
solutions is slightly modified from Arnett
(1982). The light curves begin after the ex-
plosion, and after shock emergence at the stel-
lar surface. Three-dimensional instabilities in
the flow, especially the Richtmeyer-Meshkov
instability which is the Rayleigh-Taylor insta-
bility with gravity replaced by inertial forces
(Swisher, et al. 2015), will give overturn and
macroscopic but incomplete mixing. This
modifies any strict layering present in the
ejecta, such as found in many theoretical mod-
els of the progenitors.

Due to rapid expansion, adiabatic cooling
converts thermal to kinetic energy, and soon
almost all the supernova energy is contained
in the velocity field (see Appendix B). The
light curve develops due to subsequent heating

by radioactive decay. Despite this change in
interpretation, the theoretical light curves use
identical parameters and mathematical meth-
ods to those used in the original paper, and
are in this sense a prediction rather than a
fit to the observational data. By normalizing
the light curves to peak luminosity, the time
derivatives of L(t) become the natural diag-
nostics to use.

The four analytic curves (colored solid lines)
in Fig. 1 differ in the value of the dimension-
less parameter

p2 = τNi/τd, (1)

which is the ratio of the decay time for Ni56 to
the radiative diffusion time (the leakage time),
where

τd = κtMej/βcR(0), (2)

and β ≈ 13.7 is a dimensionless spatial inte-
gration constant which varys slowly in time
(Arnett 1980), κt is the equivalent constant
opacity, Mej is the mass of ejected matter, c
is the speed of light, and R(0) is the value of
the radius at the time after shock–breakout.
The parameter p2 is increased by steps of
10 percent, corresponding to a decrease in
the ratio of R(0)/(κtMej). This gives a se-
quence which is similar to the Phillips relation
(Phillips 1993); see §2.2 below.

The basic nature of the light curve may
be naturally divided into three epochs: on-
set, rise to peak, and post–peak. At very
early times (t ≤ −10 days) the luminosity
rises quadraticaly4 with time (d2L/d2t > 0).
The detailed structure of luminosity L(t) is
qualitatively correct here, but deviates in de-
tail from the observations; this error is due
in part to the coasting approximation5, used
in Arnett (1982) and in the “fireball model”
of Riess, et al. (1999). The approximation
is unnecessary, and may be eliminated, as we
shall show quantitatively in a subsequent pa-
per (see also Appendix B).

In this “coasting” or “fireball” approxima-
tion, the luminosity changes are due only to
increasing area of the surface of emission. The
radius is assumed to increase linearly with

4 Eq. 46 in Arnett (1982) contains a typographical
error: Γ(x, y) ≈ (xy)2 ∼ t2, not x2 as printed. This
error propagated to Arnett (1996), Eq. D.64. Only
this limit is in error; the full equations are correct, and
even with this error the time dependence of luminosity
is quadratic.

5 In 1982 there was too lttle data prior to peak light
to make this an urgent issue.
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time, so L ∝ t2. However, if the velocity
grows (acceleration is positive) then luminos-
ity increases with a higher power of time.
For a constant radiative acceleration (con-
stant flux at early times), L ∝ t4 and asymp-
totically approaches L ∝ t2. Thus L ∝ tn,
where n ∼ 4 → 2, and n is slowly varying,
purely from dynamics. In addition there may
be effects related to the energy input differ-
ing from pure decay of uniformly distributed
56Ni; see Piro & Nakar (2013).

Supernova time is commonly measured rel-
ative to peak luminosity rather than explo-
sion time, so that t → t − tpeak; this variable
is easier to determine observationally. The
early epoch, now at negative time t, is fol-
lowed by a roughly linear rise in luminos-
ity with time (d2L/dt2 ≈ 0 and dL/dt > 0
over −10 ≤ t ≤ −4 days). The luminos-
ity turns at peak (d2L/dt2 becomes negative
and dL/dt ≈ 0), and then begins to decline
(dL/dt < 0 for t ≥ 0). The downward ar-
rows in Fig. 1 indicate the respective begin-
ning times used for the calculation of the ana-
lytic light curves (Arnett 1982). Relaxation of
the coasting approximation would shift these
arrows earlier in time, improving agreement
with the data.

Firth, et al. (2015) present an analysis of
the early, rising light curves of 18 Type Ia su-
pernovae (SNe Ia) discovered by the Palomar
Transient Factory (PTF) and the La Silla-
QUEST variability survey (LSQ). Fitting the
early data to a power law in time results in
a rise time of 18.98 ± 0.54 days and a power
of n = 2.44 ± 0.13. This was interpreted as
“less Ni mixing”, but also could be a natu-
ral outcome of relaxing the “coasting approx-
imation”, giving both n > 2 and earlier ex-
plosion (”bang”) time relative to peak light.
The suggestion of an increase in n with time
(dn/dt > 0) would indicate that the early
light curves are too complex for such simple
dynamic arguments to capture (which suggest
dn/dt < 0).

Firth, et al. (2015) find that the early light
curve does not correlate with light curve shape
or stretch. This is also seen in the analytic
models; see Fig. 2 below and discussion fol-
lowing it.

Globally incomplete mixing (Arnett &
Meakin 2016) would be expected from plume
penetration without a return flow to com-
plete a convective roll. Rayleigh-Taylor and
Richtmeyer-Meshkov instabilities in the ex-

Table 1
Base model for SN2011fe

Variable Symbol Value

Mass ejecteda Mej 1.40M�
Initial 56Ni MNi(0) 0.60M�
Initial radius R(0) 1.0 × 1010 cm
Opacity κt 0.10 cm2 g−1

Explosion energy Esn 1.3 × 1051 ergs

a Total stellar mass for SNIae.

Table 2
Initiala values of derived parameters

Variable Symbol Value

Velocity scale vsc 9.6594 × 108 cm s−1

Expansion time τh 10.353 s
Diffusion time τd 6.7779 × 1010 s
Density ρ(0) 6.64 × 102 g cm−3

Temperature T (0, 0) 8.00 × 107 K
Optical depth ρ(0)κtR(0) 6.64 × 1012

a After shock emergence.

plosion and aftermath would give the early
emergence of radioactivity seen in SN1987A,
the composition heterogeneity seen in Cas
A (Fesen & Milisavljevic 2016), and the fi-
ilamentation seen in young supernova rem-
nants. This sort of mixing is also seen in well–
resolved 3D models of supernova explosions.

The astrophysical parameters chosen for the
SN2011fe light curves are documented in Ta-
ble 1. These determine the analytic light
curve solutions mathematically.

The starting values (after shock emergence)
for some of the important variables in the an-
alytic models for SN2011fe are presented in
Table 2.

2.2. Absolute bolometric luminosity

A more interesting challenge is to con-
sider the unnormalized luminosity and the un-
stretched times, merely shifting the first obser-
vational data to match the start of the ana-
lytic solutions (“bang time”). This is shown
in Fig. 2, using exactly the same theoretical
models. The predicted bolometric luminosity
(L ∼ 1.18×1043 erg/s, or L/L� ∼ 3.06×109)
agrees well with that from Pereira, et al.
(2013).

Unfortunately the theoretical uncertainty in
the leakage time (“effective opacity”) makes
the theoretical fits, while plausible, neither
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Figure 2. Comparison of bolometric luminosity from
analytic models (Arnett 1982) and SN2011fe (Pereira,
et al. 2013). The models are the same as in Fig. 1. For
the same time of explosion, the more luminous curves
peak at a later time, and hence have a larger width
(Phillips 1993), as the parameter p2 is changed (see
text). Prior to peak luminosity, the theoretical curves
are almost invariant under changes in p2.

unique nor simple to interpret; see §5.2 below.
Fig. 2 shows that the light curves are almost

invariant with respect to variations of the pa-
rameter p2 prior to peak luminosity, but they
do vary significantly after the peak (which
shifts in time). This regularity is hidden in the
conventional presentation such as shown in
Fig. 1. The broader curves have higher lumi-
nosity (the Philips relation, Phillips (1993)).
The variability in width is not symmetrical,
and is clearly determined by the post–peak
behavior, as observed by Firth, et al. (2015).

The Phillips–relation behavior seen in Fig. 2
may be due to (1) Ni having a higher opac-
ity than Si–Ca (that is, κNi > κSiCa), and
(2) only Ni contributing the the radioactive
heating. Hoeflich, Khoklov & Mueller (1991);
Pinto & Eastman (2000b) have stressed the
importance of frequency-dependent opacity
and the complexity of the problem; see also
discussion in §5.2. The current state of the
art may be Blondin, et al. (2013). While the
detailed problem is complex, the essential fea-
tures of the light curves are captured by a
simple leakage time (an “effective opacity” pa-
rameter which is easy to specify but difficult
to calculate convincingly and uniquely).

Burning 12C and 16O to nuclei lying in the
range 28Si–40Ca releases almost as much ex-
plosive energy as burning the same nuclei to
56Ni (qSiCa ∼ qNi), but the ashes Si–Ca are
not radioactive, and do not provide late heat-
ing. This implies that the analytic models

for a thermonuclear supernova should have a
connection between the explosion energy and
the mean opacity (leakage time) which distin-
guishes between the mass of material burned
to 28Si–40Ca and to 56Ni. Thus

Esn ≈MNi qNi +MSiCa qSiCa (3)

where q represents the appropriate energy re-
lease per unit mass of fuel burned, and

κ ≈ XNi κNi +XSiCa κSiCa, (4)

where κ represents the opacity. It is possi-
ble to increase both the luminosity and the
leakage time (width of the peak) by increas-
ing the amount of 56Ni produced (the Phillips
relation), if the burning varies in degree of
completeness.

2.3. Supernovae observed by the Kepler
satelite

While the Kepler satellite does not have
comparable wavelength coverage to that
which became available for SN2011fe, the Ke-
pler coverage is broadband, has high cadence
in time, has small errors from statistical fluc-
tuations, is free from multi-instrumental in-
consistency, and has light curves which track
the data from SN2011fe well; see Fig. 1 in
Olling, et al. (2015) and Fig. 3.

The spectra of SN 2011fe in Pereira, et al.
(2013) were obtained using the SuperNova In-
tegral Field Spectrograph (Lantz et al. 2004)
on the 88” telescope on Mauna Kea and are
presented as fully calibrated. We convolved
the spectra with the filter function for Kepler
(a wide filter, ∼ 4400 − 8800 Å)6. The Ke-
pler system is not fully calibrated, so there is
no measured zero point to place Kepler mag-
nitudes on a known scale. We used a zero
point similar to that for standard filters, a
procedure which gives a reasonable answer,
but still contains some arbitrary scaling. Even
evaluating the flux directly from the spectra
through the filter requires some knowledge of
the calibration of the filter. We can construct
a Kepler magnitude and a flux in the Kepler
filter for each spectrum, that are all consistent
relative to each other, but there is still an un-
certain absolute scaling. Actual bolometric
corrections are hard to do without calibrating
the Kepler system.

As an alternative, we take the Kepler mag-
nitude light curve of SN 2011fe, show that it

6 http://keplerscience.arc.nasa.gov/the-kepler-
space-telescope.html
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Figure 3. Comparison of the luminosity of SN 2011fe
(Pereira, et al. 2013) in the Kepler filter and adjusted
data (see text) based on KSN2011b (Olling, et al.
2015). The time axis was translated to match the
point of explosion. We took the time of explosion for
SN 2011fe from Pereira, et al. (2013) (2.6 days be-
fore the first spectrum) and from Olling, et al. (2015)
for Kepler 2011b (18.1 days before maximum). The
light curves presented by Pereira, et al. (2013) are
also obtained by convolving filter functions with their
spectra. They estimate the errors in their magnitudes
using the flux calibration procedure for their spectra
and we adopt the same 1σ errors per epoch.

is similar to KSN2011b, and then infer that
the bolometric light curve of KSN2011b would
be similar to SN2011fe. There are many
caveats that need to be considered for such
an inference, such as the fact that SN2011fe
and KSN2011b may have different bolometric
characteristics. Given the striking similarity
of the two light curves in the Kepler band,
though, we believe that this is a plausible in-
ference. We take the flux and treat it as a rel-
ative luminosity (L/Lmax); this ratio also re-
moves concerns about absolute scaling. Fig. 3
shows the time evolution of L/Lmax for both
SN2011fe and KSN2011b.

It appears that SN2011fe and KSN2011b
are similar enough that we may use this
similarity in the data to establish a corre-
spondence between the bolometric scale of
SN2011fe and the Kepler supernovae.

Now that we have a calibration, how do
the Kepler supernovae compare with the an-
alytic curves? The best example, KSN2011b,
from Olling, et al. (2015) is shown in Fig. 4.
Again we see a deviation between observations
and analytic light curves at very early times,
which may be related to use of the coasting
approximation. After this first deviation, the
curves are strikingly similar, as the higher ca-
dence of the Kepler data makes clear. Al-

Figure 4. Comparison of bolometric luminosity from
analytic models (Arnett 1982) and KSN2011b (Olling,
et al. 2015), which are both smooth. The deviation
of the post-peak radioactive tail may be due in part
to our bolometric correction procedure, which was fo-
cused on the pre-peak and peak behavior (see text).
The parameters from Table 1 were used with no ad-
justment.

though the observed supernovae might not be
identical, so that fitting with different theoret-
ical parameters would be legitimate in princi-
ple, we have used exactly the same theoretical
parameters as in Fig. 1 in order to illustrate
just how similar these light curves seem to be.

Well past peak light (> 15 days), there is
a deviation between the analytic models and
our approximate bolometric conversion of the
KSN2011b data. This corresponds to the “ra-
dioactive cobalt tail” and, while important, is
beyond the scope of our present discussion.
The deviation may be due to our procedure
for bolometric correction, which was focused
on the pre-peak and peak epochs.

Because of the fast cadence of observa-
tions and stability of its instrumentation,
Kepler provides new information on SNIae:
the smoothness of the light curve. While
KSN2012b tracks SN2011fe within its error
bars, the KSN2012b light curve is noticeably
smoother (the error bars for KNS2012b are
plotted in Fig. 4, but are so small they merely
give a slightly fat dot). There is no indication
of bumps due to (1) collision of ejecta with
circum-supernova matter, as with SNIbn and
SNIIn events, or to (2) variation in opacity
due to spherical shells of different composi-
tion. SN2011fe does exhibit fluctuations con-
sistent with its observational error bars, an
issue that will resurface later (Figure 9 and
§3.3).
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3. A PHASE DIAGRAM FOR TYPE I
SUPERNOVAE

3.1. Time derivatives of luminosity

We may discuss the shape of normalized
light curves in terms of time derivatives, which
we approximate as time–centered finite differ-
ences over three points in time:

dL/dt≈ 1
2

[
L2−L1

t2−t1
+ L1−L0

t1−t0

]
, (5)

and

d2L/dt2≈

[
L2−L1
t2−t1

−L1−L0
t1−t0

]
1
2 (t2−t0)

, (6)

where the subscripts indicate the sequence of
observation, and the luminosities L are as-
sumed to be normalized (as in Fig. 1 and 4).
Because of the repeated differences used in the
construction of Eq. 6, high quality evaluations
of the luminosities are necessary to avoid a re-
sult dominated by observational error. This is
especially true if the light curve is nearly lin-
ear (dL/dt ∼ constant). The time appears
only in differences, so that the zero in time is
irrelevant in defining these finite differences,
although it is relevant in comparing observa-
tion and theory (centering the peak and esti-
mating “bang” time).

Figure 5. Time dependence of luminosity (thin
green line) and first and second derivatives (thick red
and medium black lines) for Type I supernovae, il-
lustrated by the default analytic model (cyan shown
in previous figures). Most variation occurs prior to
maximum light (at ∼16 days).

Fig. 5 shows the variation with time of the
luminosity (solid green line) and its first (thick
red line) and second derivatives (medium

black line) with respect to time. Most of
the variation occurs early, prior to peak lumi-
nosity at ∼16 days for these analytic models.
The luminosity is normalized to that at max-
imum light. The first derivative is expressed
in units of normalized luminosity divided by
time measured in units of two mean lives for
56Ni decay. The second derivative uses the
same units of luminosity and time. For easier
interpretation the time axis is simply labeled
in units of days, beginning at explosion time.

3.2. A phase plane for Type 1 supernovae

The rise and fall of a light curve may be rep-
resented mathematically by a piece-wise set of
pairs of luminosity and time (t0, t1 and L0,
L1), which corresponds to a function and its
time derivative (to detect the change). More
information is contained in the second deriva-
tive of luminosity with respect to time. To
define a second derivative (observationally, a
second-order difference) requires a third ob-
servation. Using a set of triples of data (t0, t1,
t2 and L0, L1, L2) we may place each triple as
a point in a phase plot in the dL/dt—d2L/dt2

plane; this is shown in Fig. 6. The final object
of interest, the luminosity, is ignored at first
by normalizaton; the normalized luminosity is
independent of assumed distance. We may ig-
nore the distance and focus upon the shape of
the curve. This requires use of the remaining
two variables, and may be plotted in a phase
plane, in which the position in the plane in-
dicates the evolution of the trajectory of the
luminosity in time, from explosion to final de-
cline.

Fig. 6 shows such a trajectory, beginning at
the point labeled “bang”, and moving to max-
imum light, after which the luminosity falls,
eventually becoming the radioactive tail. The
analytic model uses the coasting approxima-
tion, like the fireball model, so that “bang”
occurs away from the origin (L ∼ t2 has a
constant positive nonzero second derivative).
As discussed earlier and in Firth, et al. (2015),
higher powers of t are more realistic, so that
the “bang” should occur near the origin in this
plot, and asymptotically approach the curve
shown.

The choice of variables emphasizes the early
(pre-peak) part of the light curve; a bias indi-
cated by the density of dots, which are equally
spaced in time. The positive value of d2L/dt2,
with a coinciding positive value of dL/dt, in-
dicates a light curve which is 6 days (or more)
prior to maximum light. Because nearer su-
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Figure 6. A Phase diagram for Type I supernovae,
illustrated by analytic models (Arnett 1982). The pre-
maximum evolution is emphasized with these coordi-
nates, making the early evolution more obvious. The
coasting approximation makes the earliest points de-
viate from observations, as shown in Fig. 1, 2, and
4. The position of the point labeled “Bang” would be
at the origin in a more realistic approximation to the
very early light curve (see text).

pernovae will have better statistical data, con-
structing a second derivative will be more re-
liable for those which will eventually be the
brightest observational targets.

Figure 7. A Phase diagram for Type I super-
novae, illustrated by analytic models (Arnett 1982)
and KSN2011b data (Olling, et al. 2015). The pub-
lished observational data are shown, with no smooth-
ing. The pluses (green) are more than 18 days be-
fore maximum, and are dominated by statistical er-
rors (no SN yet). The crossed circles (red) are from
18 to 10 days, diamonds (blue) are 10 to 0, and solid
squares (turquoise) are post-maximum. There is a
large scatter due to taking numerical derivatives of
observational data.

In Fig. 7 are shown the data for KSN2011b
(Olling, et al. 2015) in such a phase diagram.
Pre-outburst data lies along the vertical axis,
with post-maximum points lying to the left
of this. Before the supernova is detected the
data is dominated by statistical noise, which
shows up as larger fluctuation in the inferred
second derivative compared to the first deriva-
tive, causing the pre-outburst data to cluster
around the vertical axis. The analytic model
of Fig. 6 is shown for reference.

3.3. Statistical fluctutions

Taking finite differences of data will empha-
sis statistical fluctuations. However Fig. 3 in-
dicates that at high cadence the underlying
curve would be smooth. The Kepler data has
an almost constant cadence, so a very simple
smoothing algorithm will preserve the shape
of the data by filtering the highest frequency
fluctuations, which we assume to be statistical
in nature:

ŷj =
1

2
(yj−1 + yj+1) +

1

2
yj , (7)

where the smoothed values are ŷj . This has
a 3–point stencil, which is what is required
for second derivatives; the smoothing oper-
ates on the smallest time intervals available
in the data, but preserving unitarity. No data
is rejected, but a smoother curve is required,
as Fig. 3 implies. The smoothing algorithm
(Eq. 7) is chosen as a particularly simple
and transparent example; more sophisticated
methods might be applied in practice, taking
into account observational details. Treatment
of triples of data points may be optimized for
cadence and rejection algorithms.

As a test of this approach, we consider the
set of sequential triplets of the KSN2011b
data as an ensemble of supernova observa-
tions, with each triplet of flux measurements
corresponding to a hypothetical supernova
discovery. Can we identify the epoch of the
discovery of each hypothetical supernovae?
Yes, with surprisingly high reliability.

The KSN2011b data (Olling, et al. 2015),
smoothed according to Eq. 7, is shown in
Fig. 8. Of the 14 very early points, -18 to -10
days relative to maximum light, only one does
not lie in the first quadrant; ∼ 93% would be
identified by plotting them in the phase plane.
There are 19 remaining pre-maximum points,
14 of which are in the second quadrant, giv-
ing a rate of 73% correct. Very early triples
have stronger evidence for a second derivative,
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Figure 8. A Phase diagram for Type I super-
novae, illustrated by analytic models (Arnett 1982)
and KSN2011b data (Olling, et al. 2015). The obser-
vational data are smoothed to reduce statistical fluc-
tuation (see text). The pluses (green) are more than
18 days before maximum, and are dominated by sta-
tistical errors (no SN yet). The crossed circles (red)
are from 18 to 10 days, diamonds (blue) are 10 to
0, and solid squares (turquoise) are post-maximum.
Even with the large scatter due to taking numerical
derivatives of observational data, the earliest observa-
tions cluster in the first quadrant.

which favors their identification (93% versus
73%). The Kepler data was binned with a
cadence of ∼ 0.5 days which is not too short
to see a change, nor too long to provide good
time resolution; see Fig. 5.

Use of a more sophisticated version of such
an approach should allow the development of
a reliable automated system for detection of
good candidates for detailed follow-up obser-
vations. Although Fig. 8 has its own theoret-
ical value, it may prove to be of most use in
categorizing observational data of SNIae, and
identifying promising targets early in their
evolution.

Fig. 9 shows the phase diagram for
SN2011fe data (Pereira, et al. 2013), with no
smoothing. Notice the larger range of the vari-
ables than in the previous figure. The first
five triples of data lie in the first quadrant,
indicating a supernova more than ∼ 8 days
prior to maximum in this case. The earli-
est data points radiate from the origin, con-
sistent with L ∝ tn with n > 2. The next
data are in the linear rise, so that the second
derivative is small and thus sensitive to sta-
tistical error. This causes the diagonal jitter
seen near the label “Inflection”. Examination
of Fig. 3 shows that this jitter corresponds
to an epoch in which the SN2011fe data does

Figure 9. A Phase diagram using SN2011fe data
(Pereira, et al. 2013). The observational data are
not smoothed to reduce statistical fluctuation (see
text). The crossed circles (red) are from 8 days or
more prior to maximum, diamonds (blue) are from -8
to maximum, and solid squares (turquoise) are post-
maximum. Even with the large scatter due to taking
numerical derivatives of observational data, the first
five triples of data are in the first quadrant. The data
sequence is in time order, connected by a solid (green)
line to visually highlight fluctuations, which we sus-
pect may be attributed to statistical error; see Fig. 3.

show larger wiggles than the KSN2011b data.
The higher cadence of the Kepler data and
the greater observational consistency (a sin-
gle nstrument in space) seem to be benefi-
cial. The intercept is relatively well-defined
(dL/dt) and agrees with the analytic model,
but the value of d2L/dt2 is dominated by sta-
tistical error. Some sets of triple observations,
with an even spacing of ∼ 0.5 days, would
make the descending light curve less sensitive
to observational error.

4. OTHER SUPERNOVAE

The similarity in light curves of thermonu-
clear and core-collapse supernovae (Arnett
1982) suggests the hope that these procedures
might be extended. How does the phase plane
behave for types SNIbc? Intrinsic diferences
between SNIa and SNIbc supernovae present
challenges.

4.1. SN2008D, a SNIb

Supernova 2008D was discovered at the
time of explosion, which coincided with an
X-ray event due to the break-out of the su-
pernova shock wave (Soderberg et al. 2008).
This was the first successful observation of
the previously predicted break-out of a super-
nova shock (Colgate & McKee 1969; Arnett
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Table 3
Parameters for model of SN2008D

Variable Symbol Value

Mass ejecteda Mej 2.9M�
Initial 56Ni MNi(0) 0.10M�
Initial radius R(0) 1.0 × 1010 cm
Opacity κt 0.10 cm2 g−1

Explosion energy Esn 5.0 × 1051 ergs

a Total stellar mass is Mej plus the mass of the
collapsed core for SNIb.

1971; Chevalier 1976), and to be associated
with a bare core, or stripped-envelope super-
nova (Arnett 1977). Modjaz, et al. (2008)
presented a detailed discussion of the observa-
tional data (optical, infra-red, and X-ray) of
this event, and Bianco, et al. (2014) summa-
rized the results for 64 similar events, includ-
ing this one. None of the others exhibit clear
evidence for break-out; such evidence might
have been missed in the other supernovae. We
base our discussion on the data sets in these
papers, which contain a more detailed history
and references.

SN2008D occurred in NGC 2770 (D = 31±
2 Mpc) and had a peak absolute magnitude of
MV = −17.0±0.3 mag and MB = −16.3±0.4
mag (Modjaz, et al. 2008). The rise time in
the V-band was 16.8± 0.4 days and in the B-
band 18.3± 0.5 days, near the long end of the
range for SNIbc. The observation of the X-
ray outburst determines a more precise value
for the explosion time, which is of value in fit-
ting theoretical models to the data. Integrat-
ing the observed bands, or fitting a blackbody
give similar bolometric corrections, so that at
19.2 days after explosion, the bolometric lu-
minosity peaks at L = 1042.2±0.1 erg s−1 or
L = 4.12× 108L�.

The key parameters chosen for SN2008D
are given in Table 4. For comparison, Soder-
berg et al. (2008) gives R∗ ∼ 7 × 1010 cm,
vph ∼ 0.3(EK/Mej)

1/2 ∼ 11, 500 km/s, EK ∼
(2 − 4) bethe, Mej ∼ (3 − 5)M� and MNi ∼
(0.05 − 0.1)M�. This is reasonable consis-
tency, considering our different strategy for
de-convolving the breakout and radioactively
driven epochs (see below).

In order to compare bolometric light curve
shapes to observational data, we employ a
crude but suggestive approximation: we cor-
rect the V-band magnitudes (Bianco, et al.
2014) using the bolometric luminosity at peak
light (Modjaz, et al. 2008). Instead of a con-

Figure 10. Scaled V-magnitudes from the Ib su-
pernova SN2008D (Bianco, et al. 2014) compared to
analytic models, using the bolometric correction at
peak light of (Modjaz, et al. 2008); see text. The ini-
tial X-ray burst is 100 times brighter than the first
V-band luminosities, but only lasts ∼ 200 seconds.
The pluses denote the differences between scaled V-
band luminosities and the analytic solutions (which ig-
nore burst behavior), and are thus an estimate (lower
bound?) of the thermal luminosity of the burst.

stant scaling, a better approach would be to
use a variable one (see Fig. 9 in Modjaz, et al.
(2008), but from 10 to 30 days after outburst,
the variation is not large. Moreover, the very
early analytic light curves are plagued by er-
rors due to the coasting approximation (see
§2.1), so for the present we choose a simple
approximation which is adequate for illustra-
tion. The nature of the error is to underesti-
mate the luminosity from 0–10 days after out-
burst; the first V-band point (with our scal-
ing, ∼ 1.4×108L�) is about 0.01 of the X-ray
luminosity (∼ 1.6× 1010L�, which lasts only
∼ 200 seconds, Soderberg et al. (2008)).

In Fig. 10 the scaled V-band data is com-
pared to the analytic light curves with the pa-
rameters given in Table 4, and with the same
fractional variation in parameter p2 as used
previously for SN2011fe and KSN2008b. In
the coasting approximation the initial radius
is only relevant in that it is small; there is no
shock break-out in analytic solutions which
use this approximation, so that only the ef-
fects of radioactive heating are captured. No-
tice the excess luminosity relative to the ana-
lytic solutions for t ≤ 6 days, which in fact is
due to shock break-out and to cooling non-
homologous expansion and higher moments
of the radiative diffusion solutions (Arnett
1980, 1982; Pinto & Eastman 2000a). After
this time the total luminosity (which is due
primarily to radioactive decay) is well repre-
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sented by this analytic model.
Chevalier & Fransson (2008) conclude that

“a shock breakout model does not reproduce
the observations in a straight-forward way”;
their preferred model is a combination of
breakout plus a central engine of some sort.
The initial radius is a key parameter in their
discussion, and it may be that there is a con-
flation of the initial stellar radius prior to
breakout and that immediately after, which
rapidly changes. A fluid-dynamic treatment
will give a strongly non-homologous expan-
sion after breakout at initially small radii (Ar-
nett 1980), resulting in modification of density
structure, radiation temperature, and radia-
tion leakage. In particular, arguments based
upon similarity solutions in an atmosphere
may be questionable during this transition
phase, in which an initially hydrostatic con-
figuration (centrally condensed) changes into
a Sedov-like ring structure (see §99 and Fig. 78
in Landau & Lifshitz (1959)) . This is a more
acute form of the problem of luminosity evo-
lution at early time for SNIae discussed in re-
gard to the fireball and coasting approxima-
tions in §2.1.

Subtracting the analytic solution from the
observations gives an estimate of the lumi-
nosity due to the breakout itself (discussed
in Soderberg et al. (2008); Modjaz, et al.
(2008)), plus the radiative relaxation which
follows (Arnett 1980), and contains informa-
tion about the explosion, the structure of the
progenitor, and possible effects of a central
engine7. The blue pluses represent an esti-
mate of the luminosity due to this early burst
alone; it is constructed by subtracting the an-
alytic solution from the shifted V-band obser-
vations, and thus is an estimate of the mini-
mum luminosity. A definitive comparison re-
quires a bolometric light curve derived from
the observations, but Fig. 10 illustrates a fun-
damental difference in early light curves be-
tween SNIa, and SNIb (see Fig. 2 and 4).

For SN2008D, the early thermal luminosity
occurs during the epoch at which the phase
diagram does work for SNIae, which have a
negligible thermal luminosity bump (perhaps
due to smaller progenitor radii). The interpre-
tation of the early light curve may be further
complicated by variations in the initial radii of

7 It is expected that a SNIb contains a condensed
core (neutron star or black hole); the question is pre-
cisely what robust information the early light curve
contains about a central engine.

the progenitor stars. All SNIb may not be like
the best-observed one; see Fig. 13 in Bianco,
et al. (2014).

4.2. SNII

SNII light curves are dominated by light
from the shock heating of an extended (red gi-
ant) envelope which is rich in hydrogen (Falk
& Arnett 1973; Arnett & Falk 1976; Falk &
Arnett 1977; Falk 1978). This implies that
the first light would quickly become char-
acteristic of shock emergence in low density
plasma, merging into a recombination front
at the photosphere (Woosley & Weaver 1986).
Because of the quicker rise (the shock break-
out is faster than decay of 56Ni), advance
warning is more difficult to attain. As with
SN1987A, neutrinos from core collapse would
be the first messengers, which are followed af-
ter the time interval required for the shock
to travel through the envelope, by hard ra-
diation associated with shock emergence (Ar-
nett 1988). Gravitational waves should be an-
other early messenger, but both neutrino and
gravitational wave detection require the core-
collapse supernova to be exceptionally close.

SNII are prone to hydrodynamic insta-
bilities (Rayleigh-Taylor and Richtmeyer-
Meshkov), both during the explosion and
during entrainment of circumstellar material
(Falk & Arnett 1973, 1977; Fryxell, Arnett &
Müller 1991; Müller, Fryxell, B. & Arnett, D.
1991). This has been incorporated into super-
nova models only in a crude, one-dimensional
(1D) way, but has 3D consequences observ-
able in young supernova remnants (Arnett &
Meakin 2016).

5. OUTSTANDING ISSUES

5.1. Relevant parameters

While the analytic solutions give excellent
representations of the observations, it is de-
sirable to further restrict the range of param-
eters by improving the underlying physics.
These analytic models have four parame-
ters: explosion energy, mean opacity (leakage
time), Ni mass, and ejected mass. Specifying
that the heating source is dominated by the
56Ni decay chain fixes the nuclear parameters
to measured values.

The explosion energy and the ejected mass
affect the leakage time through the veloc-
ity. The Ni mass affects the leakage time
through the opacity, and the explosion energy
for purely thermonuclear supernovae through
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the degree of burning (§2.2). Additional con-
straints will further reduce the degrees of free-
dom (e.g., independent measurement of the
velocity field, identification of a pure ther-
monuclear explosion, independent constraints
on the circum-supernova medium (CSNM),
etc.).

5.2. Leakage time

The analytic solutions for the bolometric
light curve require specification of a rate at
which thermal energy leaks from the ejected
mass; this is quantified by a “leakage time”,
that is, the mean time for a typical thermal
photon to escape. This is estimated by a
radiative diffusion model, involving the inte-
grated effect of the Rosseland-mean opacity
over structure and time. Although the local
opacity will vary sensitively with the density,
temperature and photon frequency, the leak-
age time integrates over these effects (Pinto
& Eastman 2000b), giving a smoother time
variation of global properties, as seen in the
observations of KSN2011b (Fig. 4).

The term “opacity” in the analytic solutions
is a placeholder for a leakage time. This “effec-
tive opacity” is a constant (for analytic sim-
plicity) which approximates the same leakage
rate for radiative energy as a physically cor-
rect simulation would (in practice, this may
only mean that the choice of effective opac-
ity fits the observations). The leakage time
is determined by the fastest paths of escape,
so the “opacity” represents a minimum value,
and this may be why interesting light curves
result from values near the electron scattering
value.

A further advantage of the idea of a leakage
time is that it allows a smooth transition from
a spherical diffusion model to a filamentary
emission model appropriate to a supernova
remnant. This allows us to mitigate the com-
plex problem of the detailed nature of the re-
cession of the photosphere through a clumpy,
heterogeneous 3D medium. The heating rate
simply tracks the gamma-ray and positron de-
position rate at late time, so there is no longer
any delay in escape of thermal photons.

Table 4 shows the values of selected vari-
ables at maximum light for the analytic mod-
els presented earlier for SN2011fe. The tem-
peratures lie in the range 1×104 K to 2×104

K, which are commonly found in normal stars.
Because of the large radiative conductivity the
SN has a relatively shallow temperature gra-
dient.

Unlike the temperatures, the densities,
of order 3 × 10−13 g cm−3, are consider-
ably lower than encountered in stellar atmo-
spheres. These low densities suggest the ques-
tion: how valid is the assumption of collisional
equilibrium? As discussed in Pinto & East-
man (2000b), v � c implies that collisional
equilibrium is difficult to attain in supernovae,
and thermal equilibrium comes from radiative
interactions.

For a radiusR ∼ 1×1015 cm, the light travel
time is tc ∼ 3×104 seconds, or about 8 hours.
In contrast, even without scatter, the travel
time for electrons (which, although slow, are
still faster than ions) would be te ∼ 109 sec-
onds, or 30 years, which is much longer than
the rise times of 15 to 20 days. Because elec-
trons will interact with ions and magnetic
fields, their trajectories will not be straight,
and their travel times will be much longer
than this. Photons must provide whatever
coupling there is across a supernova; there is
no collisionally equilibrated thermal bath as
is traditionally assumed in stellar atmosphere
theory.

Photons are bosons, so we consider a Bose-
Einstein gas not in equilibrium (Landau & Lif-
shitz 1969). A dilute radiation field would cor-
respond to a finite chemical potential, skewing
the equilibrium distribution from black-body
to Bose-Einstein. If fluorescence can pro-
vide sufficient photon splitting, the distribu-
tion approaches a black-body (Bose-Einstein
with zero chemical potential), as discussed in
Pinto & Eastman (2000b).

5.3. Physical opacity

The opacity depends upon the density, tem-
perature, composition, and photon energy. To
illustrate the effects of non-constant opacity,
we consider a toy model, but one which in-
cludes some of these effects. We consider iron
as a representative composition for illustra-
tion. Figure 11 shows the logarithm of the Fe
opacity as a function of photon energy, for var-
ious combinations of temperature and density.
These opacities are produced by the OPLIB
database team (Magee et al. 1995), extended
with new calculations courtesy of C. Fontes to
produce the opacities needed at low densities.

We explore some consequences of the opac-
ity variation with a numerical model: we use
a simplified “leakage scheme”, assuming a sin-
gle opacity for the transport, but allowing
the opacities to vary dramatically with pho-
ton energy, as shown in Fig. 11. For leak-
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Table 4
Some variables at maximum light for analytic models of

SN2011fe

Light curve color red green blue turquoise

Explosion time (d) −15.09 −14.57 -14.11 -13.69
−mbol at peak 19.08 19.02 18.96 18.91
Optical depth 419 449 479 509
ρ (g cm−3) 3.32 × 10−13 3.69 × 10−13 4.07 × 10−13 4.45 × 10−13

Tc/(104 K) 1.81 1.85 1.89 1.92
Teff/(104 K) 1.03 1.03 1.04 1.04

Figure 11. Logarithm of Fe opacity as a function of
photon energy for various combinations of density and
temperature using an extension (courtesy C. Fontes)
of the OPLIB database(Magee et al. 1995). Note that
as the ejecta expand (and the density and tempera-
ture decrease), the opacity in a given band can both
decrease and increase.

age schemes, the transport is dominated by
the dips in the opacity, not the peaks. The
energy at which these dips occur depends on
both the temperature and density of the su-
pernova ejecta. The leakage opacity may vary
both up and down as the ejecta expands,
ranging within the visible bands from below
0.001 cm2g−1 to above 10 cm2g−1.

To better understand some of the effects of
these variable opacities, we have implemented
an opacity switch in the simplified transport
code (Bayless, et al. 2013) that allows the
opacity to move up or down by an order of
magnitude as the temperature drops below
1 eV (1.16 × 104K). Figure 12 shows three
light curves: (1) a standard model assuming
κ = 0.1, as well as the opacity switch that

increases (2) and decreases (3) the opacity.
These light-curves demonstrate the sensitiv-
ity to changes in the opacity.

The wiggles in the light curve from the toy
model and the observations of SN2011fe are
roughly at the same size. However, the data
from KSN2011b has much smaller error bars
and is much smoother (Fig. 3, 4, 7, and 9).
This smoothness is an important constraint
upon theoretical models. With a full trans-
port solution but in spherical symmetry, we
might expect opacity variation with radius to
produce observable features in the light curve,
which are not noticeable in KSN2011b.

In constructing numerical light curves it is
traditional to mix the composition in initial
models; e.g., see Dessart, et al. (2012). Such
“boxcar” mixing contrasts with plume mix-
ing expected from physical mechanisms such
as the Rayleigh-Taylor instability. This “box-
car mixing” has a 1D, spherically symmetric
geometry, unlike the 3D, filamentary geome-
try seen in young supernova remnants. The
better alternative of NLTE radiative transfer
in 3D seems to be beyond present-day com-
putational capacity.

Given the sensitivity to opacity, how do
light curves become as smooth as observed by
Kepler (Olling, et al. 2015)? Several effects
conspire to smooth the light curves: (1) the
radiative diffusion operator strongly smooths
variations in temperature, (2) fluid-dynamic
instabilities strongly mix the composition and
density in a global sense, (3) large mean-free-
paths sample disparate conditions, tending to
average them, and (4) doppler shifts smooth
variations in frequency space.

Besides these issues and those discussed in
Blondin, et al. (2013); Dessart, et al. (2015),
there are the difficulties associated with non–
spherical variation inevitably resulting from
instabilities in the explosion. Theoretical
models of supernovae which are spherically
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Figure 12. Comparison of bolometric luminosity
from SN2011fe (Pereira, et al. 2013) using our dif-
fusion code with 3 opacity prescriptions: constant:
κ = 0.1 cm2 g−1 (solid), increase at low temperatures:
κ increases to 1 cm2 g−1 below 1 eV (dotted), decrease
at low temperatures: κ decreases to 0.01 cm2 g−1

below 1 eV (dashed). Raising the opacity broadens
the light-curve, decreasing the light-curve narrows the
light-curve. These explosions assume an explosion
mass of 1.4 M�, an explosion energy of 1.3 × 1051 erg
and a nickel mass of 0.6 M�

symmetric, can have no angular resolution to
deal with this broken symmetry. Observed
young supernova remnants have a pronounced
filamentary structure, a heterogeneity which
may have developed during this epoch of in-
stability.

Unmixed numerical models (1D) represent
a limiting case; analytic models (1 zone; using
separation of variables) represent another.

Until these issues are convincingly resolved,
the leakage time should be considered to be
an adjustable parameter, constrained by ob-
servation, but not yet one precisely founded
in experiment and simulation.

5.4. Radioactivity and Maximum Light

It has been shown, for one-zone models
(Arnett 1979), and for solution by separa-
tion of variables (radius and time) (Arnett
1982), that for constant opacity and radioac-
tive heating by 56Ni and 56Co decay, the lu-
minosity from radioactive heating equals that
for radiative diffusion at maximum light. , so

Lpeak = MεNiCo(tpeak). (8)

Here we present a new derivation which is
more concise, general, and hopefully clearer.

The luminosity due to radiative diffusion
may be written as

L = aT 4R3/τdiff , (9)

where
τdiff ∼ κM/βcR, (10)

and β ≈ 13.7 is a dimensionless form factor
from integration of the diffusion equation over
space; see also Eq. 2. It includes the geo-
metric factor for spherical geometry, and is
very slowly varying with mass-density struc-
ture; see Table 2 and §VI in Arnett (1980).

At any extremum in L, either a peak or a
dip, dL/dt = 0. The time derivative of Eq. 9
is

d lnL/dt= 4d lnT/dt+ 4d lnR/dt

−d lnκ/dt. (11)

For a slowly-varying escape time, the term
d lnκ/dt will be small; see discussion in §5.2
and 5.3. This is also consistent with the good
fits to the light-curve data shown in Fig. 1, 2,
3 and 4 above.

A second constraint on the luminosity is
first law of thermodynamics, which may be
written after spatial integration as

L/M ∼ ε(t)− dE/dt− PdV/dt. (12)

For homologous expansion (Hubble flow)

d lnV/dt = 3d lnR/dt

and for a radiation-dominated plasma,

E = 3PV = aT 4V,

so

dE/dt+PdV/dt = E(4d lnT/dt+4d lnR/dt).
(13)

This requires a 3D simulation of high reso-
lution to compute accurately, but deviations
from Hubble flow may be thought of as heat-
ing from an inelastic collision of the supernova
ejecta with surrounding matter. Using Eq. 11
and 13 we have

L/M ∼ ε(t)− E(d lnL/dt+ d lnκ/dt).(14)

At any extremum in L, dL/dt = 0, so at that
time we have

L/M = ε− E d lnκ/dt, (15)

for any heating rate ε. This will be true at
multiple peaks and at dips as well. This is a
more general form of Eq. 8.
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Heating from other causes would have the
same qualitative effects as radioactive heat-
ing. The first peak in SN2008D (Fig. 10)
may be attributed to such compressional heat-
ing as the supernova shock break-out occurs.
Multiple-peaked light curves like SN2016gkg
(Tartaglia, et al., 2016) may also be inter-
preted in this way.

6. CONCLUSION

A detailed comparison of analytic light
curves for Type Ia supernovae to observa-
tional data shows both good agreement and
subtle differences (Pereira, et al. 2013; Olling,
et al. 2015; Firth, et al. 2015). The very early
light curves deviate from the “fireball” and
the “coasting” model (L ∝ t2), which proba-
bly indicates the presence of dynamic activity
not captured by those simplifications. How-
ever, both the analytic light curves and the
data are distinctly non-symmetric relative to
maximum light: the approach to maximum is
insensitive to the parameter p2 = τNi/τd (the
Phillips relation) while the opposite is true af-
ter maximum.

We estimate a bolometric scale for the Ke-
pler supernovae (Olling, et al. 2015) by using
the data from SN2011fe (Pereira, et al. 2013),
and suggest that the high cadence, low sta-
tistical error, and smoothness of the Kepler
data severely constrains spherically symmet-
ric theoretical models, requiring realistic 3D
mixing.

The analytic models use the assumption of
constant opacity to estimate a leakage time
(§5.2), which is consistent (at least) with
a global mixing (“overturn”) in the explo-
sion. This is suggested on other grounds:
it is consistent with numerical simulations as
well as the deep connection between Rayleigh-
Taylor instabilities, Richtmeyer-Meshkov in-
stabilities, and frozen-out turbulent convec-
tion, as well as observations of young super-
nova remnants; see Arnett & Meakin (2016).

The light-curve shape is independent of dis-
tance, and can provide an indication of the
phase of newly–discovered supernovae of Type
Ia. For the first ∼ 6 days, the second time
derivative is positive, d2L/d2t > 0, so that
three separate observations of short cadence
(∼ 0.5 days) over this time are mathematically
sufficient to signal a type Ia supernova at least
ten days prior to maximum. A phase plane
diagram is introduced which allows easy iden-
tification of early phases of supernova light

curves. Because of the repeated differences
used in the construction of approximations to
second derivatives, Eq. 6, high quality evalua-
tions of the luminosities are necessary to avoid
a result dominated by observational error, es-
pecially during the almost linear part of the
rise in light. The procedure does not require
bolometric data in principle, but should work
for well-chosen photometry that mirrors the
shape of the pre-maximum bolometric light
curve.

In summary:

1. There is excellent agreement between
the best SNI bolometric data and an-
alytic models.

2. The best very early SNIa data shows the
inadequacy of both the fire-ball and the
coasting approximations (which are not
required for the analytic models).

3. A phase plot analysis, using dL/dt and
d2L/dt2, may be effective for observa-
tional identification of early supernovae
of type Ia. Survey telescopes such as
LSST will discover many more new tran-
sients than can be studied in detail by
followup telescopes (Najita, et al. 2016).
By using these identifiers, supernovae
which best merit detailed followup can
be determined.

4. The phase plot analysis is complicated
for SNIbc by non-homologous flow at
and after shock break-out.

5. Spectrapolarimetry (e.g., Porter, et al.
(2016); Mauerhan, et al. (2015)) can
now provide new and important insight
into the incomplete mixing predicted by
3D simulations to occur in supernovae
(Arnett & Meakin 2016).
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Narayan and Charles Kilpatrick for interest-
ing discussions of their supernova work. We
thank the Theoretical Astrophysics Program
(TAP) at the University of Arizona, and Stew-
ard Observatory for support.
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Table 5
Nuclear physics dataa

Variable Symbol Nucleus Value

Half-life τ 1
2

56Ni 6.075 days
56Co 77.236 days

Total gamma energy Eγ 56Ni 1.750 MeV
56Co 3.610 MeV

Positron KE Eβ+
56Co 0.120 MeV

Energy release rates εNi
56Ni 3.9805 × 1010 erg/g/s

εCo(γ) 56Co 6.4552 × 109 erg/g/s
εCo(β

+)b 56Co 2.1458 × 108 erg/g/s

a Slightly updated and extended version of Nadyozhin (1994), using the NNDC Chart of Nuclides
www.nndc.bnl.gov/chart.
b Mean kinetic energy of positron emission; positrons are assumed to slow before annihilation, and these
gamma rays are assumed to escape.

APPENDIX

NUCLEAR DATA

The data for the nuclear decay of 56Ni and 56Co in the analytic light curves is documented in
Table 5.

VERY EARLY LIGHT CURVES

The development of a supernova explosion may be divided in time by the moment of shock
outburst at the surface. Before that the internal hydrodynamics of instabillity and explosion
occur; after that the ejected matter rearranges itself into a homologous expansion, barring in-
teraction with significant amounts of surrounding plasma (however see Falk & Arnett (1977);
Chatzopoulos, Wheeler & Vinko (2012); Smith (2014)). At a time t shortly after the outburst
at t = 0, the radius of the supernova is approximately

R(t) ≈ R(0) + vsc(0)t+ asc(0)(t2/2). (B1)

The fluid velocity behind the shock is vsc(0), which is non-zero. Supernovae are strongly
radiation-dominated, so we take the acceleration term to be dominated by radiation stress,
giving

asc(0) ∼ −1

ρ

dPrad

dr
. (B2)

For radiative diffusion

Frad = − c

ρκ

dPrad

dr
, (B3)

so

asc(0) ∼ c

κ
Frad =

c

κ

L(0)

4πR(0)2
, (B4)

For a given effective temperature, the luminosity rises as the surface area, 4πR(t)2, which rises
faster than t2, as discussed in §2.1.

Time integration of the analytic light curves can be modified to include a changing acceleration
asc(t), thus avoiding the coasting and the fireball approximations. This acceleration and the
velocity vsc(t) may be used with early observations to infer the size of the progenitor at shock
break-out, as well as solving the L ∼ t2 problem at early times.
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