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Abstract

Motivated by the qualitative picture of Canonical Typicality, we propose a refined formula-

tion of the Eigenstate Thermalization Hypothesis (ETH) for chaotic quantum systems. The new

formulation, which we refer to as subsystem ETH, is in terms of the reduced density matrix of sub-

systems. This strong form of ETH clarifies which set of observables defined within the subsystem

will thermalize. We discuss the limits when the size of the subsystem is small or comparable to its

complement. Finally, we provide numerical evidence for the proposal in case of one-dimensional

Ising spin-chain.
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I. INTRODUCTION AND MAIN RESULTS

During the last two decades there has been significant progress in understanding how

quantum statistical physics emerges from the dynamics of an isolated quantum many-body

system in a pure state. An important recent development was the realization that a typical

pure state, when restricted to a small subsystem, is well approximated by the microcanonical

ensemble [1, 2]. More explicitly, for a system comprising of a sufficiently small subsystem A

and its complement Ā, for any random pure state Ψ from an energy shell (E,E + δE),

|Ψ〉 =
∑
a

ca|Ea〉, Ea ∈ (E,E + δE), (1)

the corresponding reduced density matrix ρAΨ ≡ TrĀ|Ψ〉〈Ψ| is almost microcanonical. Taking

the average 〈· · ·〉Ψ over all states (1) with respect to the Haar measure one finds [2],

〈
||ρAΨ − ρAmicro||

〉
Ψ
≤ 1

2

dA√
d∆E

, ||O|| = 1

2
Tr
√
OO† . (2)

Here ρAmicro = TrĀ ρmicro is the reduction of the microcanonical density matrix ρmicro associ-

ated with the same energy shell (E,E + ∆E), d∆E is the number of energy levels inside it,

and dA = dimHA is the dimension of the Hilbert space of A.

Equation (2) implies that, when the system is sufficiently large, i.e. log d∆E � log dA, the

subsystem of a typical pure state is well approximated by that of the microcanonical ensemble

with an exponential precision. We refer to this mechanism as “Canonical Typicality” (CT).

It is important to note that CT is a purely kinematic statement, and provides no insight

into whether or how a non-equilibrium initial state thermalizes [3].

Heuristically, Canonical Typicality can be understood as a consequence of the entangle-

ment between a sufficiently small subsystem and its complement [2]. While the full system

evolves unitarily, a small subsystem can behave thermally as its complement plays the role

of a large bath.

Another important development was the so-called Eigenstate Thermalization Hypothesis

(ETH) [4–6] which conjectures that a chaotic quantum system in a finitely excited energy

eigenstate behaves thermally when probed by few-body operators. More explicitly, for a

few-body operator O, ETH postulates that [7, 8]

〈Ea|O|Eb〉 = fO(E)δab + Ω−1/2(E)rab , E = (Ea + Eb)/2 , (3)
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where |Ea〉 denotes an energy eigenstate, fO(E) is a smooth function of E, Ω(E) = eS(E) is

the density of states of the full system, and the fluctuations rmn are of order one.

Canonical typicality applies to all systems independent of the Hamiltonian, as opposed

to ETH which only concerns chaotic systems, and does not apply to integrable or many-

body localized systems. It is a stronger statement, as ETH implies the emergence of the

microcanonical ensemble not only for random Ψ, but also for a wider class of states, including

the linear combination of a few energy eigenstates.

The fact that ETH applies only to chaotic systems can be heuristically understood from

the general picture of CT; only for chaotic systems energy eigenstates are “random enough”

to be typical. This perspective thus motivates us to study the properties of the reduced

density matrix of a subsystem in an energy eigenstate.

Now consider a chaotic many-body system in an energy eigenstate |Ea〉 reduced to a

subsystem A which is smaller than its complement Ā. We postulate the subsystem ETH:

(i) The reduced density matrix ρAa = TrĀ|Ea〉〈Ea| for region A in state |Ea〉 is expo-

nentially close to some universal density matrix ρA(E), which depends smoothly on

E,

||ρAa − ρA(E = Ea)|| ∼ O
(

Ω−
1
2 (Ea)

)
(4)

(ii) The “off-diagonal” matrices ρAab = TrĀ|Ea〉〈Eb| are exponentially small,∣∣∣∣ρAab∣∣∣∣ ∼ O
(

Ω−
1
2 (E)

)
, Ea 6= Eb, E =

1

2
(Ea + Eb) (5)

The pre-exponential factors in (4,5) could depend on the size of subsystem A. Importantly,

these factors should remain bounded for the fixed A. In next section, we will give numerical

support for the exponential suppression of (i) and (ii) using a spin system. Recently support

for (4,5) was given in the context of CFTs in [12].

In the thermodynamic limit, i.e. with the system size taken to infinity, V → ∞, while

keeping the size of A and the energy density E/V finite and fixed, it can be readily seen

from (i) and (ii) that ∣∣∣∣ρAa − ρAmicro

∣∣∣∣ ∼ O(δE/E) . (6)

An implicit assumption here is that ρA(E) is well-defined in the thermodynamic limit, i.e. it

is a function of E/V 1 and the prefactor in (4,5) remains bounded in the limit V →∞. Note

1 In (6) it is assumes the energy of ground state is taken to be zero.
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that while the suppressions in (4)–(5) are exponential in the system size, (6) are only power

law suppressed.

Using ||ρ|| = maxO Tr(Oρ)/2, where maximum is taken over all Hermitian operators of

unit norm ||O|| = 1, we conclude from (i) and (ii) that the matrix elements of ρAa and

ρA(E = Ea) are exponentially close,

(ρAa )ij = (ρA)ij +O
(

Ω−
1
2

)
, (ρAab)ij = O

(
Ω−

1
2

)
. (7)

The formulation in (4)–(5) is stronger than the conventional form of ETH. In particular,

for systems with an infinite-dimensional local Hilbert space (e.g. with harmonic oscillators at

each lattice site) or continuum field theories it specifies the class of observables which should

satisfy ETH. In particular, subsystem ETH implies the exponential proximity between ex-

pectation values in an eigenstate 〈Ea|O|Ea〉 and the universal value fO(Ea) = Tr(OρA(Ea))

for any observable O with the support in A. This immediately follows from the Cauchy-

Schwarz inequality,2

Tr((ρAa − ρA(Ea))O) ≤ 21/2
√

Tr ((ρAa + ρA(Ea))O2)
∣∣∣∣ρAa − ρA(Ea)

∣∣∣∣1/2 . (8)

Moreover, the subsystem ETH can be applied directly to nonlocal measures which are

defined in terms of reduced density matrices, such as entanglement entropy, Renyi entropies,

negativity and so on. See e.g. [13] for a recent discussion. In particular, in case of finite-

dimensional models it immediately leads to a natural interpretation of thermal entropy

as the volume part of the entanglement entropy of a subsystem (see [10, 11] for recent

discussions). We should caution that when dimHA is infinite, arbitrarily close proximity

of density matrices does not automatically imply equality for nonlocal observables. For

example, in such cases, higher Renyi entropies for ρAa may be different from those of the

microcanonical or other thermal ensembles [12].

In the case of spin model, for all matrix elements (ρA)ij, we find strong evidence that raa

of (3) are normally distributed . This is consistent with the heuristic picture of typical |Ea〉

and rab being a Gaussian random matrix.

It is tempting to ask whether one could further refine pre-exponential factors in (4)–(5),

especially when the subsystem A is macroscopic. Motivated by the A-dependent prefactor

2 For any physically sensible observable O the fluctuations of vev Tr(ρAaO), which are given by Tr(O2ρAa ),

must be finite.
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in (2), it is natural to postulate that the pre-factor in (4)–(5) should also be given by∣∣∣∣ρAa − ρA(E = Ea)
∣∣∣∣ ∼ O

(
eNA−S(E)

2

)
,
∣∣∣∣ρAab∣∣∣∣ ∼ O

(
eNA−S(E)

2

)
(9)

where NA denotes the number of effective degrees of freedom in A. For a system of finite

dimensional Hilbert space, such as a spin system, eNA simply corresponds to dA = dimHA,

but for a system with an infinite dimensional Hilbert space at each lattice site or a continuum

field theory we may view (9) as a definition of effective number of degrees of freedom. For

a spin system we will give some numerical evidence for (9) in the next section.

In addition to (6) it is interesting to compare ρAa with the reduced density matrices for

other statistical ensembles. Of particular interest are the reduced state on the canonical

ensemble for the whole system

ρAC =
TrĀ e

−βH

Tr e−βH
, (10)

and the local canonical ensemble for the subsystem A,

ρAG =
e−βHA

TrA e−βHA
. (11)

Here, the Hamiltonian of the subsystem is the restriction of the Hamiltonian HA = TrĀH.

In (10), β is to be chosen so that the average energy of the total system is Ea. In (11), β can

be interpreted as a local temperature of A (see also [14, 15]). There is no canonical choice for

β in this case. Below, we choose it to be the same as in (10). In the thermodynamic limit,

V →∞ with the subsystem A and E/V kept fixed, the standard saddle point approximation

argument provides equality between the canonical and the microcanonical ensembles leading

to ∣∣∣∣ρAmicro − ρAC
∣∣∣∣ = O(V −1) ⇒

∣∣∣∣ρAa − ρAC∣∣∣∣ = O(V −1) , (12)

where we have also used (6). The reduced states ρAC and ρAG always remain different at the

trace distance level, including thermodynamic limit [14]. Hence,

ρAa 6= ρAG, V →∞ . (13)

Finally, it is interesting to investigate whether (4)–(5) remain true in an alternative

thermodynamic limit when the size of subsystem A scales proportionally with the full system.

In this limit both the system volume V and the volume VA for A go to infinity, but we keep

the ratio fixed

0 < p =
VA
V

<
1

2
. (14)
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Note that for any fixed ratio p < 1/2 scaling (9) would imply the validity of ETH (4)–(5). In

what follows we discuss a weaker version of this statement, which does not rely on (9). When

A is scaled to infinity, we expect ρAa to have a semi-classical description. We conjecture that

in this limit ρAa will be approaching ρA(Ea) at the level of individual matrix elements,

(ρAa )ij = (ρA(Ea))ij . (15)

Although individual matrix elements will scale as d−1
A and go to zero, (15) is meaningful as it

is satisfied with a precision controlled by Ω−1/2 ∼ d−1/2 � d−1
A for all p < 1/2. Furthermore,

to the leading order in 1/V , ρA will be diagonal in the eigenbasis |Ei〉 of HA, with the

diagonal elements given by3

〈Ei|ρA|Ei〉 = 〈Ei|ρAmic|Ei〉 =
ΩĀ(Ea − Ei)

Ω(Ea)
, (16)

where ΩĀ is the density of states of HĀ = TrAH. The expression (16) reflects the quasi-

classical expectation that the probability to find the subsystem in a state with energy Ei is

proportional to the number of such states. Also for Hamiltonians with local interactions,

H = HA +HĀ up to boundary terms, and in this limit we expect at the level of individual

matrix elements

(ρAC)ij = (ρAG)ij . (17)

As a self-consistency check, using the expression of (ρAa )ij following from (15) and (16), one

can calculate (ρAC)ij using saddle point approximation to find that it is indeed equal to (ρAG)ij.

Finally note, that in the limit V → ∞ with p fixed, ρAmicro 6= ρAC and thus we have at the

level of individual matrix elements

ρAa = ρAmicro 6= ρAC = ρAG . (18)

Curiously the leading volume-proportional behavior of the entanglement entropy of ρAa and

ρAG is still the same.

In the second part of the paper we provide numerical supports for (4), (5), as well as (3)

and (16) in a one-dimensional spin chain model.

3 The following form of ρAa was previously observed and theoretical justified in [17] in the context of a

particular model.
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II. NUMERICAL RESULTS

Now we examine the hypothesis (4) and (5) of the subsystem formulation of ETH by

numerically simulating an Ising spin chain with a transverse and longitudinal magnetic field

H = −
n−1∑
k=1

σkz ⊗ σk+1
z + g

n∑
k=1

σkx + h

n∑
k=1

σkz . (19)

This system is known to be non-integrable unless one of the coupling constants g or h is zero.

We solve the system by exact diagonalization for g = 1.05 and various values of h ranging

from h = 0 to h = 1. For this model, the range of the energy spectrum is roughly from

−n to n, where n is the total number of spins. The density of states is well approximated

by a binomial function, see supplementary materials. We will focus on the behavior of |Ea〉

for Ea near the central value Ea ' 0 of the spectrum, which correspond to highly excited

states.

We denote by m the number of leftmost consecutive spins which we take to be the

subsystem A. We introduce the difference between the reduced density matrices for two

consecutive energy eigenstates ∆ρa = (ρAa+1 − ρAa )/
√

2, and define an average variance

σ2
m,n =

1

d∆E

∑
a

Tr(∆ρ2
a) . (20)

Here the sum is over all energy eigenstates inside the central band |Ea| ≤ ∆E, which is

taken to be ∆E = 0.1n and d∆E is the total number of states within it. The exponential

suppression of σm,n with n is a necessary condition for (4), as follows from the second

inequality below

Tr(∆ρ2) ≤ 4||∆ρ||2 ≤ dA Tr(∆ρ2) , (21)

valid for any Hermitian ∆ρ supported on HA. Numerical results for log(σm,n) for different

m as a function of total system size n are shown in the left panel of Fig. 1. The numerical

values are well approximated by a linear fit log(σm,n) = −αmn + βm, with βm increasing

with m and the slope αm for all m being numerically close (within 5% accuracy) to the

theoretical value log(2)/2 suggested by (4).

To confirm that (4) for each individual Ea is exponentially small, we examine the maximal

value of Tr(∆ρ2
a) for all Ea within the central band,

Mm,n ≡ max
a

Tr(∆ρ2
a) . (22)
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FIG. 1: Left: Values of log(σm,n) with superimposed linear fit functions −αmn+βm for m = 1 . . . 8,

n = 12 . . . 17 and ∆E = 0.1n, g = 1.05, h = 0.1. The slope of linear functions αm for all m is

within 5% close to the theoretical value log(2)/2. Right: The maximum value of Tr(∆ρ2
a) over all

eigenstates inside the central band |Ea| ≤ ∆E = 0.1n.

The dependence of Mm,n for different m,n is shown in the right panel of in Fig. 1. We

observe that indeed Mm,n is also exponentially suppressed in n.

Now let us examine (5). Similar to (20), we consider the mean variance, averaged over

all states Ea. It can be calculated in full generality for any quantum system,

1

d

∑
b

Tr
(
(ρAab)

†ρAab
)

=
dA
d

, (23)

where d is the total dimension of the Hilbert space. In the case of spin-chain dA/d =

e−(n−m) log 2. This shows that the averaged
∣∣∣∣ρAab∣∣∣∣ is always exponentially small, but there

remains a possibility that a small number of Tr(ρ2
ab) for a 6= b are actually not suppressed.

This is the case for integrable systems. To eliminate this possibility, we further examine the

following quantity

Mm ≡ max
|Ea|<∆E

max
b

Tr((ρAab)
†ρAab), (24)

where for a given Ea we first scan all Eb to find the maximal value LA(a) ≡

maxb Tr((ρAab)
†ρAab), and then find MA = maxa LA(a) by scanning all values of Ea within

the window |Ea| < ∆E = 0.1n. The restriction to |Ea| < ∆E is necessary as ETH is only

expected to apply to the finitely excited states, not to the states from the edges of the

spectrum. This is manifest in the left plot of Fig. 2. The right plot of Fig. 2 indicates that

MA decreases exponentially with n. This provides a strong numerical support for (5).
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FIG. 2: Left: Plot of LA(E) v.s. ε = E/N for n = 15 and n = 17. Right: Mm=1,2,3 all decrease

exponentially with n. Here ∆E is chosen to be equal 0.1n and h = 0.1.

To study the fluctuations raa of individual matrix elements of ρAE around the mean value

we introduce eigenstates Eã of the local Hamiltonian HA and define

∆Rij
a =

1√
2
〈Ei|ρAa+1 − ρAa |Ej〉 . (25)

In terms of the fluctuations Rab = Ω−1/2rab of (3), ∆Ra is simply the difference (R(a+1)(a+1)−

Raa)/
√

2. In Fig. 3, we show the distribution (histogram) P (∆R) for Ea from the central

band |Ea| < ∆E and one particular choice of i, j and A consisting of m = 1 spin. The plot

also contains a superimposed normal distribution (in blue) that is fitted to have the same

variance (and the mean value, which is of order d−1
∆E i.e. exponentially small)

σijn =
1

d∆E

∑
a

(∆Rij
a )2 . (26)

The left plot at Fig. 3 shows that P (∆R) is well approximated by the normal distribution.

The situation for all other matrix elements for m = 1, 2, 3 is very similar.

Numerically, the standard deviation σn shows a robust independence of the width of the

energy shell ∆E that includes a large number of states. We plot log(σn) as a function of n

in the right panel of Fig. 3. We find that σn decreases exponentially with the system size n

for all matrix elements of ρAa for m = 1, 2, 3 and values of h which are not too close to the

integrable point h = 0. The exponential suppression of ∆Ra follows from the exponential

suppression of ||∆ρ||. But (4) does not guarantee that different matrix elements of ρa

would converge to those of ρ(Ea) with the same rate. Numerics show that the convergence

9



FIG. 3: Left: Probability distribution P (∆R) for the deviation ∆R11
a corresponding to the matrix

element 〈E1|ρm=1
a |E1〉 for ∆E = 0.1n and h = 0.1. It is superimposed with a Gaussian distribution

fit. The vertical axis is the number of energy eigenstates within the energy shell |Ea| < ∆E with

a particular value of ∆R. All matrix elements of ρm=1,2,3
E show almost identical behavior. Right:

Linear behavior of log(σn) as a function of system size n for two matrix elements ∆R11 and ∆R12

for m = 1 and h = 0.1. Because of the approximate equality ρC ≈ ρG the typical magnitude of the

diagonal terms of ρa is much larger than the off-diagonal ones. There is no qualitative difference

between different matrix elements. Results for m = 2, 3 are similar.

rate α = d log σn/dn is approximately the same, fluctuating around the numerical value

− log(2)/2, for all matrix elements of ρm=1
a , see the right panel of Fig. 3. The behavior for

all matrix elements of ρm=2,3
a is very similar. The numerical proximity of α to − log(2)/2

provides a strong numerical support for the form of the exponentially suppressed factor

in (3), which was originally introduced in [7]. Provided that P (∆R) is well described by

normal distribution, the probability of a given Raa to be of order R or larger is given by

1−Erf(R/
√

2σn) ∼ e−2nR2/R2
0 , where R0 is some constant. If the total number of eigenstates

grows as 2n, the probability of finding an energy eigenstate Ea which does not satisfy ETH

and has large Raa is given by 2ne−2nR2/R2
0 . This probability quickly goes to zero with n,

which explains the strong version of ETH recently discussed in [18].

Next, we investigate the pre-factor in (4) to test the bound behavior outlined in (9).

Namely, we are interested in the dependence of the exponential suppression factor on the

subsystem size m. To illustrate this behavior we plot log σm,n for a fixed value of n = 17 and

different m in the left panel of Fig. 4. In terms of the spin-chain, the bound (9) means the

10



FIG. 4: Left: Dependence of log σm,17 on the subsystem size m with the superimposed linear

fit −4.455 + 0.219m. Right: Comparison of matrix elements of ρAa , ρ
A
C , ρ

A
G and the quasiclassical

result (16) which we refer to as ρAQ. Blue dots are matrix elements 〈E1|ρm=8
a |E1〉 as a function of

energy per site ε = Ea/n for h = 0.1 and n = 17. We see that 〈E1|ρm=8
a |E1〉 follows the semi-

classical result 〈E1|ρm=8
Q |E1〉 as given by (16) well, while differs significantly from 〈E1|ρm=8

C |E1〉 ≈

〈E1|ρm=8
G |E1〉, which lie on top of each other. Quasiclassical result (16) is calculated using density

of states Ω specified in supplementary materials. Other matrix elements show similar behavior.

trace distance
∣∣∣∣ρAa − ρA(Ea)

∣∣∣∣ should not grow faster than O
(
em log(2)−n log(2)/2

)
. This follows

from (21) if the second norm
√

Tr(ρAa − ρA(Ea))2 is bounded by O
(
em log(2)/2−n log(2)/2

)
. The

actual slope of the linear fit of log(σm,n) as a function of m is ∼ 0.219. This is substantially

smaller than log(2)/2 ' 0.347, providing numerical support for (9).

Finally, we consider the behavior of ρAa when A becomes comparable to Ā to probe the

validity of (16) in the regime of fixed p. This is numerically more challenging. Nevertheless,

our numerical results are still quite suggestive. We consider subspace A consisting of 8

left-most consecutive spins with n = 17 and h = 0.1. The numerical results comparing one

diagonal matrix element 〈E1|ρAa |E1〉, corresponding to the lowest energy level of HA is given

in the right panel of Fig. 4. It shows that ρAa follows (16) pretty well while it differs from

ρAC ≈ ρAG significantly.
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III. SUPPLEMENTARY MATERIALS

A. Density of States

A spin-chain without nearest neighbor interactions exhibits a degenerate spectrum with

the level spacing of order 1. In this case the density of states is given by the binomial dis-

tribution. Once the nearest neighbor interaction term is introduced, the spectrum becomes

non-degenerate with the exponentially small level spacing. In this case the density of states

can be described by a smooth function Ω(E), which would be reasonably approximated by

the binomial distribution. For the spin-chain in question

H = −
n−1∑
i=1

σiz ⊗ σi+1
z + g

n∑
i=1

σix + h
n∑
i=1

σiz , (27)

we start with the binomial distribution

Ωn(E) =
κn!

(n/2− κE)!(n/2 + κE)!
, (28)

for some κ, and notice that it is properly normalized for any value of κ with an exponential

precision,
∫
dE Ωn(E) ' 2n. We fix the parameter κ using the value of the second moment∫

dE E2 Ωn(E) ' 2n−2nκ−2 = TrH2. (29)

The latter could be calculated exactly from (27) yielding κ = 1
2

(g2 + h2 + 1− 1/n)
−1/2

.

The resulting density of states provides a very accurate fit for the exact numerical result as

depicted in Fig. 5. The expression for density of states (28) is used to calculate 〈Ei|ρA|Ei〉

from (16) in the plot on the right panel of figure Fig. 4.

B. Variance

Consider the variance

Σ2
a =

1

d

∑
b

Tr
(
(ρAab)

†ρAab
)

(30)

12
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FIG. 5: The density of states of the spin chain system for g = 1.05, h = 0.1, n = 17. The horizontal

axis is energy per site ε = E/n. The yellow bars which fill the plot are the histogram for the

density of states calculated using direct diagonalization. The blue solid line is a theoretical fit by

the binomial distribution function (28) with κ ≈ 0.3489, see section III A.

for some fixed a and d being the dimension of the full Hilbert space. Since |Ea〉 is a complete

basis, ∑
b

〈Eb|Ψ1〉〈Ψ2|Eb〉 = 〈Ψ2|Ψ1〉. (31)

Now let us introduce a basis in the Hilbert space |i, j̄〉 = |i〉 ⊗ |j̄〉 associated with the

decomposition H = HA ⊗HĀ. Then

(ρAab)ij =
〈
i|ρAab|j

〉
=
∑
k̄

〈
i, k̄|Ea

〉〈
Eb|j, k̄

〉
(32)

and

Σ2
a =

1

d

∑
b

∑
i,j

∑
k̄,¯̀

〈
i, k̄|Ea

〉〈
Eb|j, k̄

〉〈
j, ¯̀|Eb

〉〈
Ea|i, ¯̀

〉
.

Now we use (31) to get

Σ2
a =

dA
d

∑
i

∑
j̄

〈Ea|i, j̄〉〈i, j̄|Ea〉 =
dA
d
. (33)

C. Semi-classical expression

We now discuss the properties of (16)

〈Ei|ρAa |Ei〉 = 〈Ei|ρAmicro|Ei〉 =
ΩĀ(Ea − Ei)

Ω(E)
, (34)

13



in the limit when

0 < p =
VA
V

<
1

2
(35)

is kept fixed and volume V → ∞. In particular we show that at the leading order in 1/V

the Von Neumann entropy associated with ρAa , which is given by (34), is the same as for ρAG,

despite the inequality

ρAa = ρAmicro 6= ρAC = ρAG . (36)

In the limit VA → ∞ we can treat the energy levels Ei of A as a continuous variable E ,

in terms of which

Ω(E) =

∫
dE ΩA(E)ΩĀ(E − E) (37)

where ΩA is the density of states for A. Now introduce

log ΩA ≡ SA, log ΩĀ ≡ SĀ, log Ω ≡ S, (38)

with the conventional expectation that the density of states grows exponentially with the

volume,

SA ∝ VA, SĀ ∝ VĀ, S ∝ V . (39)

Since both SA and SĀ are proportional to V we can use the saddle point approximation

in (37) to obtain

S(E) = SA(ĒA) + SĀ(ĒĀ) (40)

where ĒA and ĒĀ are determined by

ĒA + ĒĀ = E,
∂SA
∂E

∣∣∣∣
ĒA

=
∂SĀ
∂E

∣∣∣∣
ĒĀ

. (41)

Using saddle point approximation for the canonical ensemble of the whole system we we

recover the conventional relation between the inverse temperate β and the mean energy E,

β =
∂S(E)

∂E
. (42)

Together with (40)–(41) this implies

β =
∂SA
∂E

∣∣∣∣
ĒA

=
∂SĀ
∂E

∣∣∣∣
ĒĀ

. (43)

Then it follows in a standard way that the entropy SAG associated with

ρAG(E) ' e−β(E−ĒA)−SA(ĒA) (44)
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is simply SAG = SA(ĒA).

With help of (40) one can rewrite (16) as follows,

ρAE(E) ' eSĀ(E−E)−SĀ(E−ĒA)−SA(ĒA) (45)

and the corresponding entropy SAE is then given by

SAE = −Tr
A
ρAE log ρAE = SA(ĒA) = SAG . (46)

From (44) and (45) one can readily see the Renyi entropies for ρAE are different from those

of ρAG.
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