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We consider here the precession of a test gyroscope in Kerr spacetimes to distinguish a

naked singularity (NS) from black hole (BH). It is known that when the angular velocity of

the gyro vanishes the spin precession frequency diverged at the ergo-surface. We show that it

is possible to overcome this divergence by moving the gyro to the ergoregion with a non-zero

angular velocity (Ωe) in a definite range. Then the frequency is finite and regular on the

boundary of the ergoregion and inside, for both the BH and NS. Specifically, if we move

the gyro with a non-zero Ωe to an unknown astrophysical object, its precession diverges

on the event horizon for a black hole, but finite and regular for NS. Therefore a genuine

detection for the existence or otherwise of the event horizon becomes possible. We also

show that for a near-extremal (1 < a∗ < 1.1) NS, some special features appear in precession

frequency curves, using which a near-extremal NS can be distinguished from a BH, or NS

with higher angular momentum. We then investigate the Lense-Thirring (LT) precession or

nodal plane precession frequency, and other fundamental frequencies, for the accretion disk

around a BH and NS to show that clear distinctions exist for BH and NS configurations in

terms of radial variation features. The LT precession in equatorial circular orbits increases

closer to BH, but for NS it increases, attains a peak and then decreases. Specifically, for

a∗ = 1.089, it decreases to reach 0 for certain r0, and acquires negative values for a∗ > 1.089.

For 1 < a∗ < 1.089, a peak appears, but vanishing or negative LT frequency are avoided.

Hence there are important differences in accretion disk LT frequencies for BH and NS. As

LT frequencies are intimately related to and can cause the observed QPOs, this may allow

to determine whether a given astrophysical object is BH or NS.
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I. INTRODUCTION

An important issue in relativistic astrophysics and gravitation theory today has been to rule out

the existence of NSs in gravitational collapse of massive matter clouds. Alternatively, if NSs do exist,

even in theory, as endstates of massive stars collapsing under self-gravity towards the end of their

life-cycles, the important physical question would then be, how can one decide whether a particular

astrophysical compact object is a BH or a NS. This is a key issue, really at the heart of making physical

predictions about very strong gravity regions in the universe, which major astrophysical missions are

probing currently [1].

In this connection, it is important to examine, in some detail, the Kerr geometry configurations and

find physical quantities that can be used to differentiate BH from NS. The Kerr spacetime describes

either a rotating black hole or a naked singularity, based on the Kerr spin parameter a, which is the

specific angular momentum (J/M). Every compact rotating object has an ergosphere or an ergoregion

located outside it. This region derives its name from the Greek word ‘ergon,’ which means ‘work,’ to

indicate that it is possible to extract energy from this region. The ergosphere has an oblate spheroidal

shape and touches the event horizon at the pole. As one moves from the pole to equator, the radius

of this region increases and reaches its maximum. In general, a BH possesses two event horizons and

two ergoregions which are the outer and inner event horizons and outer and inner ergoregions. The

region between the outer event horizon and outer ergoradius is called the outer ergoregion or simply the

ergoregion. In this paper, we will be primarily concerned with this region. Similarly, the region between

the inner event horizon and the inner ergoregion is called the inner ergoregion. The inner ergoregion is

often dismissed as being unphysical since we don’t really know reliably what happens behind the outer

event horizon of a rotating BH. The rotational energy of the BH can be extracted by a particle from

the outer ergoregion (henceforth, just ergoregion) and this is called Penrose process. The ergoregion

is responsible for several interesting phenomena. One of these has been recently discussed in Ref.[2]

where the exact Lense-Thirring (LT) precession frequency of a test gyroscope in Kerr spacetime has

been derived and shown that the LT precession frequency diverges on the boundary of the ergoregion

(henceforth, ‘ergosurface’) of a BH (dimensionless Kerr parameter a∗ = J/M2 ≤ 1). In another work

[3], the spin precession frequency has been discussed in detail in the case of NS (a∗ > 1). In the case of

the NS, the region between the inner and outer ergo radii is defined to be the ergoregion. It has been

discussed there that the drastic change in geometry of the ergoregion for a∗ > 1, as opposed to a∗ ≤ 1,

could allow for a differentiation of the two space-times using a physical quantity, which in this case was

the precession frequency of gyroscopes placed around these compact objects. Specifically, for the NS
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configuration, along the pole a finite angle opens up where the ergoregion is absent and r = 0 can be

accessible via this region without passing through the ergoregion. This region broadens with increasing

the value of a∗ beyond 1 and the ergoregion shrinks toward the equator. It was discussed that the

precession frequency always diverges on the ergosurface. Since the ergoregion completely bounds a BH,

on ‘approaching’ it in any direction, one would find a divergence. Whereas, in the case of a NS, the

frequency remains finite and regular in the ‘opening angle’ due to the absence of the ergoregion. We

find this to be a possible experiment to distinguish the two qualitatively distinct Kerr configurations.

Previously, it has been discussed in Ref.[4] how a non-rotating black hole can be distinguished from a

naked singularity. In this article, we discuss how one can distinguish a BH from a NS using the behavior

of the precession frequency of the spin of a test gyro which moves along a non-geodetic orbit around

such a Kerr compact object. In this regard, we find it useful to mention that recently Bini et al. have

analyzed the precession of a test gyroscope along bound [5] and unbound [6] equatorial plane geodesic

orbits around a BH with respect to a static reference frame whose axes point towards ‘fixed stars.’ It

is well known that the paths followed by spinning test particles are not, in general, geodesics [7, 8]. In

our present article, we discuss the precession of a gyroscope both outside and inside the ergoregion of a

BH and NS. We find that the divergence of the spin precession frequency on the ergosurface reported

in Ref.[3] can be avoided if the test gyro moves with a non-zero angular velocity Ωe. In Ref.[3], the

motivation was to study the precession of spins of gyroscopes attached to stationary observers, that

is, to answer physical questions like ‘how will the gyroscope of an astronaut holding his spaceship at

a constant distance from a Kerr compact object behave?’ The four-velocity (u) of ‘stationary gyros’

on the ergosurface satisfies u.u = 0, that is, it becomes null. However, if one introduces an azimuthal

component to the four-velocity, the norm can be made non-zero and also time-like. Now, we can

describe the behavior of a gyro inside the ergoregion. We find that the precession frequency of the gyro

behaves differently inside the ergoregion of a BH versus that of a NS, due to the presence of the event

horizon, therefore rendering it a viable physical quantity that can be used to distinguish a BH from a

NS.

Later, we examine and investigate the Lense-Thirring precession frequency and the fundamental

frequencies of an accretion disk around a Kerr compact object. Stable circular orbits in the equatorial

plane for both the BH and NS cases are investigated, and we show that there are important characteristic

differences which can be used to distinguish the BH and NS configurations from each other.

Specifically, we find that the features of stable circular orbits in the equatorial plane for both the

BH and NS cases are noted. We also show here that the radial and epicyclic frequencies show rather
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distinct features in the BH and NS cases. Further, in observed QPOs from accretion disks, if one finds

a clear peak at some radius, then the existence of NSs could possibly be established.

II. STATIONARY OBSERVERS IN KERR SPACETIME

Observers can remain stationary in a rotating spactime with respect to infinity, only outside the

ergoregion. Once inside, it is impossible to remain stationary without changing all three spatial coor-

dinates (say, r, θ, φ) of their world lines with time. Using large amounts of rocket power or some other

source of thrust, an observer can hover very close to the horizon of a Schwarzschild BH. However, this is

not possible in the case of a BH since its event horizon lies inside its ergosphere. However, it is possible

to remain fixed at a particular r and θ by rotating with respect to infinity. Thus, the four-velocity of

a stationary observer inside the ergoregion can be expressed as

u = uαobs = utobs (1, 0, 0,Ωe) (1)

where t is the time coordinate and Ωe is the angular velocity of the observer. Ωe has a certain range for

which the above velocity describes a time-like observer inside the ergoregion. The range of Ωe can be

determined using the condition that u should be timelike at each point (r, θ) of the ergoregion. Outside

the ergosphere, an observer can remain stationary, with zero angular velocity, and their four-velocity

given as

uαobs = utobs (1, 0, 0, 0). (2)

Also, an observer outside the ergoregion can have any angular velocity, that is they can take the form

of the velocity mentioned in Eq.(1) with no restriction on Ωe.

III. SPIN PRECESSION OF A TEST GYROSCOPE : FORMALISM

The spin precession frequency of a test gyro in any stationary spacetime can be expressed in the

notation of Ref. [9] as

Ω̃ =
1

2K2
∗ (K̃ ∧ dK̃) (3)

where K is the timelike Killing vector field and Ω is the spin precession frequency in coordinate basis.

K̃ and Ω̃ are the one-forms of K and Ω respectively and ∗ represents the Hodge star operator or Hodge
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dual. In any stationary spacetime, K can be chosen to be K = ∂0 for which Eq.(3) becomes the

Lense-Thirring (LT) precession frequency (ΩLT). This can be expressed as [2, 9],

ΩLT =
1

2

εijl√−g

[

g0i,j

(

∂l −
g0l
g00

∂0

)

− g0i
g00

g00,j∂l

]

. (4)

In a static spacetime, LT precession vanishes since g0i = 0. On the other hand, it does not vanish in

a stationary spacetime. Moreover, due to the presence of K2 = g00 in the denominator, Eq.(3) and

Eq.(4) diverge if g00 vanishes. In a stationary and axisymmetric spacetime, this happens only on the

ergosurface, which makes K a null vector there. Inside the ergoregion, K is no longer timelike but

becomes spacelike. Thus, Eq.(4) is invalid inside the ergoregion as well as on its boundary.

To find how precession behavior is modified on entering the ergoregion, one can introduce an az-

imuthal component to the four-velocity, as mentioned in Sec.II and choose K = Ke inside the ergoregion

for which K2
e is non-zero on the ergosurface, that is we can choose Ke such that it is timelike on and

inside the ergosurface. We can write this timelike Killing vector Ke inside the ergoregion as:

Ke = ∂0 +Ωe∂c. (5)

where ∂c is a spacelike Killing vector in that stationary and axisymmetric spacetime. This means

that this particular spacetime is independent of x0 and xc coordinates. Therefore, the corresponding

co-vector of Ke can be written as

K̃e = g0νdx
ν +Ωegγcdx

γ (6)

where γ, ν = 0, c, 2, 3 in 4-dimensional spacetime. Separating space and time components we can write

K̃e as

K̃e = (g00dx
0 + g0cdx

c + g0idx
i) + Ωe(g0cdx

0 + gccdx
c + gicdx

i) (7)

where i = 2, 3. Since we are mainly interested in the ergoregion of a stationary and axisymmetric

spacetime, we can abolish g0i and gic terms. Finally, we obtain

K̃e = (g00dx
0 + g0cdx

c) + Ωe(g0cdx
0 + gccdx

c) (8)

and

dK̃e = (g00,kdx
k ∧ dx0 + g0c,kdx

k ∧ dxc) + Ωe(g0c,kdx
k ∧ dx0 + gcc,kdx

k ∧ dxc). (9)

Now, Eq.(3) can be modified as

Ω̃p =
1

2K2
e

∗ (K̃e ∧ dK̃e). (10)
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Substituting the expressions of K̃e and dK̃e in Eq.(10), we obtain the one-form of the precession

frequency 1 as:

Ω̃p =
εcklglµdx

µ

2
√−g

(

1 + 2Ωe
g0c
g00

+Ω2
e
gcc
g00

) .

[(

g0c,k −
g0c
g00

g00,k

)

+Ωe

(

gcc,k −
gcc
g00

g00,k

)

+Ω2
e

(

g0c
g00

gcc,k −
gcc
g00

g0c,k

)]

(11)

where we have used ∗(dx0∧dxk∧dxc) = η0kclglµdx
µ = − 1√

−g
εkclglµdx

µ and K2
e = g00+2Ωeg0c+Ω2

egcc.

Corresponding vector (Ωp) of the co-vector Ω̃p is

Ωp =
εckl

2
√−g

(

1 + 2Ωe
g0c
g00

+Ω2
e
gcc
g00

) .

[(

g0c,k −
g0c
g00

g00,k

)

+Ωe

(

gcc,k −
gcc
g00

g00,k

)

+Ω2
e

(

g0c
g00

gcc,k −
gcc
g00

g0c,k

)]

∂l. (12)

In a stationary and axisymmetric spacetime with coordinates 0, r, θ, φ, Eq.(12) reduces to

Ωp =
1

2
√−g

(

1 + 2Ωe
g0φ
g00

+Ω2
e
gφφ
g00

) .

[[(

g0φ,r −
g0φ
g00

g00,r

)

+Ωe

(

gφφ,r −
gφφ
g00

g00,r

)

+Ω2
e

(

g0φ
g00

gφφ,r −
gφφ
g00

g0φ,r

)]

∂θ

−
[(

g0φ,θ −
g0φ
g00

g00,θ

)

+Ωe

(

gφφ,θ −
gφφ
g00

g00,θ

)

+Ω2
e

(

g0φ
g00

gφφ,θ −
gφφ
g00

g0φ,θ

)]

∂r

]

. (13)

In polar coordinates, we can write the expression as

~Ωp =
1

2
√−g

(

1 + 2Ωe
g0φ
g00

+Ω2
e
gφφ
g00

) .

[

−√
grr

[(

g0φ,θ −
g0φ
g00

g00,θ

)

+Ωe

(

gφφ,θ −
gφφ
g00

g00,θ

)

+Ω2
e

(

g0φ
g00

gφφ,θ −
gφφ
g00

g0φ,θ

)]

r̂

+
√
gθθ

[(

g0φ,r −
g0φ
g00

g00,r

)

+Ωe

(

gφφ,r −
gφφ
g00

g00,r

)

+Ω2
e

(

g0φ
g00

gφφ,r −
gφφ
g00

g0φ,r

)]

θ̂

]

. (14)

For Ωe = 0, Eq.(14) reduces to

~Ωp|Ωe=0 =
1

2
√−g

[

−√
grr

(

g0φ,θ −
g0φ
g00

g00,θ

)

r̂ +
√
gθθ

(

g0φ,r −
g0φ
g00

g00,r

)

θ̂

]

(15)

which is applicable to outside of the ergoregion to obtain the LT precession frequency of a test gyro

due to the rotation of any stationary and axisymmetric spacetime [10].

1 Ωp is not the LT precession frequency of the gyro. Since the gyro has a non-zero angular velocity Ωe, the precession

frequency Ωp is modified. If we set Ωe = 0, we have Ωp = ΩLT. In this work, the expression of Ωp describes the overall

precession which includes the LT effect as well as some other effects (for eg., geodetic precession) which we will discuss

as we proceed.

6



A. Application to Kerr Spacetime

Now, we can apply the above formalism to the Kerr spacetime to describe the behavior of a test

gyro inside the ergoregion as well as the outside of it. The Kerr metric in Boyer-Lindquist coordinates

can be written as

ds2 = −
(

1− 2Mr

ρ2

)

dt2−4Mar sin2 θ

ρ2
dφdt+

ρ2

∆
dr2+ρ2dθ2+

(

r2 + a2 +
2Mra2 sin2 θ

ρ2

)

sin2 θdφ2 (16)

where a is the Kerr parameter, defined as a = J/M . It measures the angular momentum per unit mass

of the central object and,

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2. (17)

For convenience, we define the dimensionless Kerr parameter a∗ = a/M = J/M2, which we shall use

almost exclusively. The various metric components can be read off from Eq. (16). Likewise,

√−g = ρ2 sin θ (18)

Now, substituting the metric components of Kerr spacetime in Eq.(14), we obtain the spin precession

rate of the gyro as

~Ωp =
A

√
∆cos θ r̂ +B sin θ θ̂

ρ3
[

(ρ2 − 2Mr) + 4ΩeMar sin2 θ − Ω2
e sin

2 θ[ρ2(r2 + a2) + 2Ma2r sin2 θ]
] (19)

where,

A = 2aMr − Ωe

8

[

8r4 + 8a2r2 + 16a2Mr + 3a4 + 4a2(2∆ − a2) cos 2θ + a4 cos 4θ
]

+ 2Ω2
ea

3Mr sin4 θ,

B = aM(r2 − a2 cos2 θ) + Ωe

[

a4r cos4 θ + r2(r3 − 3Mr2 − a2M(1 + sin2 θ))

+a2 cos2 θ(2r3 −Mr2 + a2M(1 + sin2 θ))
]

+Ω2
eaM sin2 θ[r2(3r2 + a2) + a2 cos2 θ(r2 − a2)]. (20)

B. Range of Ωe

We have already stated that we can apply Eq.(19) both inside and outside of the ergoregion. Outside

of the ergoregion Ωe can take any value (with the additional requirement : u should always be timelike

for it) but Ωe cannot take an arbitrary value inside the ergoregion. We can calculate the range of Ωe

by requiring that Ke be timelike inside the ergoregion and hence, its norm be negative,

K2
e = gφφΩ

2
e + 2gtφΩe + gtt < 0 (21)
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Therefore, the allowed values of Ωe at any point inside the ergoregion are,

Ω−(r, θ) < Ωe(r, θ) < Ω+(r, θ) (22)

with,

Ω± =
−gtφ ±

√

g2tφ − gφφgtt

gφφ
. (23)

In the Kerr spacetime,

Ω± =
2Mar sin θ ± ρ2

√
∆

sin θ[ρ2(r2 + a2) + 2Ma2r sin2 θ]
(24)

which shows that the range of allowed values for Ωe becomes increasingly limited as the observer is

located closer and closer to the horizon (located at r = r+) and is eventually limited to the single value

ΩH =
a

2Mr+
(25)

at the horizon of the BH. This is true even in the equatorial plane. In the equatorial plane, that is for

θ = π/2, Eq.(24) becomes

Ω±|θ=π/2 =
2Ma± r

√
∆

r(r2 + a2) + 2Ma2
. (26)

We can see from Panel (a) of FIG.1 that Ω+|θ=π/2 and Ω−|θ=π/2 matches at r → r+ in the case of BH

and the value of Ωe becomes ΩH ≈ 0.31 for a∗ = 0.9. Panel (b) of the same figure shows that a small

gap appears between the two curves at r ≈ M in case of the near-extremal NS with a∗ = 1.001 and

the two curves match with one another at r → 0 with the value of Ωe = 1/a∗. In the case of NS with

higher angular momentum, say, for a∗ = 2 (see Panel (c)), the small gap disappears but the two curves

match at r → 0 as well.

To compare the behavior of the gyro inside the ergoregion of a BH and a NS, one can now plot

Ωp = |~Ωp| (the modulus of Eq.(19)) with r for different angles. For this, a suitable value of Ωe must be

chosen. For this purpose, we introduce the parameter q to scan the range of allowed values for Ωe as

follows,

Ωe = q Ω+ + (1− q) Ω− =
2Mar sin θ + (2q − 1) ρ2

√
∆

sin θ[ρ2(r2 + a2) + 2Ma2r sin2 θ]
(27)

where 0 < q < 1. In principle, the values of q between 0 and 1 covers the whole range of Ωe from Ω+

to Ω−. For an example, one can choose a characteristic value - the median of Ω+ and Ω− for Ωe as,

Ωe =
Ω+ +Ω−

2
=

2Mar

ρ2(r2 + a2) + 2Ma2r sin2 θ
. (28)
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(a)a∗ = 0.9 (b)a∗ = 1.001

(c)a∗ = 2

FIG. 1. Here we plot the boundary of the allowed range of Ωe (in the unit of M−1) of a gyroscope inside the

ergoregion at the equatorial plane (using Eq.(26)) as a function of r (in the unit of M) for different values of

Kerr parameter a∗. Gyro can take any value in the range : Ω− < Ωe < Ω+ inside the ergoregion.

Now, using expression Ωe (Eq.(27)) we can simplify the denominator of Eq.(19) and obtain the final

expression of spin precession frequency of a test gyro which is expressed as

~Ωp =
ρ2(r2 + a2) + 2Ma2r sin2 θ

ρ7∆ [1− (1− 2q)2]
.
[

A
√
∆cos θ r̂ +B sin θ θ̂

]

(29)

where 0 < q < 1 and A and B can be extracted from Eq.(20).
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IV. SPECIAL CASES

A. Behavior of gyro frequency at r = 0

For NS, the region r = 0 is approachable from all directions except the equator, that is, 0 ≤ θ < 900

and we can study the behavior of the precession frequency of a test gyro in this region. At r = 0,

Eq.(19) becomes

~Ωp|r=0 =
−a2Ωe[3 + 4 cos 2θ + cos 4θ]r̂ − 4M sin 2θ[1− aΩe(1 + sin2 θ) + a2Ω2

e sin
2 θ]θ̂

8a2 cos4 θ[1− a2Ω2
e sin

2 θ]
(30)

since Eq.(20) becomes

A|r=0 = −a4Ωe

8
[3 + 4 cos 2θ + cos 4θ] ,

B|r=0 = −Ma3 cos2 θ
[

1− aΩe(1 + sin2 θ) + a2Ω2
e sin

2 θ
]

. (31)

where the range of Ωe is

− 1

a sin θ
< Ωe <

1

a sin θ
. (32)

For Ωe = 0, Eq.(30) reduces to

|~Ωp| =
M

a2
tan θ sec2 θ (33)

which can be seen from Eq.(6) and (7) of Ref.[3]. The above equation shows that Ωp varies from

0 ≤ Ωp < ∞ for 0 ≤ θ < 900 at r = 0. Thus, it is finite inside the ring singularity (x2+ y2 < a2, z = 0)

but diverges only on it (which is at x2 + y2 = a2, z = 0).

It is useful to mention here that one can smoothly, in principle, go over to the region with ‘negative r’

(i.e., r < 0) in Kerr spacetime, which is tantamount to passing through the ring singularity but we stop

at r = 0 and avoid probing negative values of r. The reason behind stopping at r = 0 is that it is fairly

widely accepted that quantum gravity will resolve the singularity resulting in a compact overspinning

object with boundary at a positive value of r, which is referred to as ‘superspinar’ [11]. Thus the region

with negative values of r will be excised and pathological features such as closed timelike curves which

occur in r < 0 region will not arise. Thus we restrict our probe of the Kerr spacetime to r ≥ 0.

B. Behavior of gyro frequency in the equatorial plane, θ = π/2

The gyro precession frequency along the equatorial plane is given as,

~Ωp|θ=π/2 =
aM +Ωe(r

3 − 3Mr2 − 2Ma2) + aMΩ2
e(3r

2 + a2)

r2 [(r − 2M) + 4ΩeMa− Ω2
e[r(r

2 + a2) + 2Ma2]]
(34)
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with the range Ωe determined from Eq.(26).

In the equitorial plane, at the ergosurface (r = 2M) the precession frequency becomes

~Ωp|θ=π/2,r=2M =
a− 2Ωe(a

2 + 2M2) + aΩ2
e(a

2 + 12M2)

16ΩeM2[a− Ωe(a2 + 2M2)]
(35)

where, we obtain the range of Ωe as (see FIG.1 also)

0 < Ωe <
a

a2 + 2M2
. (36)

That is, if the mass and/or the angular momentum of the spacetime increases, Ωe decreases.

Specifically, for extremal BHs (a∗ = 1), the precession frequencies at the outer ergoregion and at

the outer event horizon can be obtained as

~Ωp|θ=π/2,r=2M,a∗=1 =
1− 6ΩeM + 13Ω2

eM
2

16ΩeM2[1− 3ΩeM)]
; ~Ωp|θ=π/2,r=M,a∗=1 = − 1

M
(37)

respectively.

C. Non-zero precession frequency of the test gyro in the Schwarzschild spacetime

Now, if we set a = 0, the Kerr spacetime reduces to the Schwarzschild spacetime, which is non-

rotating. Substituting a = 0 in Eq.(19), we obtain

~Ωp|a=0 = Ωe
(r − 3M) sin θ θ̂ − (r2 − 2Mr)

1

2 cos θ r̂

r − 2M − r3Ω2
e sin

2 θ
(38)

where Ωe can take any value (provided u should be timelike) and always be timelike. Since the

Schwarzschild spacetime is spherically symmetric, we can write Eq.(38) for θ = π/2 as

Ωp|a=0 = Ωe
r − 3M

r − 2M − r3Ω2
e

. (39)

This implies that a gyro which is moving in spherically symmetric spacetime, will in fact precess. If

the gyro moves along a circular geodesic Ωe should be the Kepler frequency, i.e., Ωe = (M/r3)1/2.

Therefore, Eq.(39) reduces to

Ωp

∣

∣

∣

a=0, Ωe=
(

M

r3

) 1
2
= Ωe =

(

M

r3

)
1

2

. (40)

The expression above which gives the precession frequency is expressed in the Copernican frame and

is the rate which is computed with respect to the proper time τ . The proper time τ measured in
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the Copernican frame is related to the coordinate time t via dτ =
√

1− 3M
r dt. Thus the precession

frequency Ω
′
in the coordinate basis is given by

Ω
′

=

(

M

r3

)
1

2

√

1− 3M

r
. (41)

Now, we ask what the frequency associated with the change in the angle of the spin vector over, say, one

complete revolution around the central object is. As mentioned above Ωe =
√

M/r3. This becomes one

purely of kinematics and using the formalism outlined in [12], one can then write down the frequency

of precession, which is actually just the geodetic precession frequency (Ωgeodetic). This frequency turns

out simply to be the difference between the Kepler frequency and rotation frequency and is given by,

Ωgeodetic =

(

M

r3

)
1

2

(

1−
√

1− 3M

r

)

. (42)

This agrees with the results quoted in the literature [13].

V. DISTINGUISHING KERR NAKED SINGULARITIES FROM KERR BLACK HOLES

USING THE PRECESSION OF A TEST GYRO

In this section, we point out the characteristic differences in the behavior of the spin precession

frequency (Ωp) of test gyroscopes for BHs and NSs. We show that the value of Ωp diverges for gyroscopes

with r ∼ r+ in the case of a BH, for all values of q except q = 0.5. Whereas, for a NS, Ωp always

remains finite upto r = 0. We obtain distinguishing characteristic features in the radial profile of Ωp

for both BH and NS cases, which we will discuss as we proceed. Moreover, we also obtain features

in the radial profile of Ωp that could help distinguish near-extremal NS from higher spin NSs (for eg,

near extremal NSs have more than one local maxima and/or local minima and/or plateaus between

0.5M . r . M). We explore the details of such features and argue that they provide us with a possible

distinguishing criterion to separate out near-extremal NS (1 < a∗ < 1.1) from those with higher spins

(a∗ ≥ 1.1) (Sec.VI).

Now, substituting the value of Ωe for different q (see Eq.27) in Eq.(19) and Eq.(20), we can obtain

the final expression (Eq.(29)) of Ωp = |~Ωp| and plot the gyro precession frequency. For BHs, we can see

from all the Panels (a)-(i) of FIG.2 that the precession frequency diverges close to the horizon in all

directions for all values of a∗ and for all values of q except q = 0.5. For q < 0.5 (Panels (a) and (b)),

the nature of the plots are almost same but for q > 0.5, a ‘kink’ appears at some intermediate angles.

For very low values of a∗, the ‘kink’ starts to appear close to the equatorial plane and if the value of
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a∗ is increased the kink starts to appear at a lower angular value. As an example, for a∗ = 0.2, the

kink starts to appear at θ = 650 (Panel(e)) and it is very prominent at θ = 800 (Panel(f)) whereas for

a∗ = 0.9, kink starts to appear at θ = 400 (Panel(h)) and it is more prominent than the previous case

at θ = 650 (Panel(i)). Thus, we can state that the spin precession frequency is finite both inside and

outside of the ergoregion and there is no discontinuity at all but it diverges near the horizon.

Remarkably, for q = 0.5, the precession frequency remains finite (see Panel(c) and (d) of FIG.2) for

gyros orbiting close to the horizon, with the velocity of the gyro proportional to ∂t+Ωe∂φ, where Ωe is

obtained from Eq.(28). For all other choices of q in the allowed range, the precession frequency shows

a divergence for gyros with r ∼ r+.

We have plotted the spin precession frequencies in Panels (a)-(g) of FIG.3 for the NS case (a∗ = 2).

As can be seen from these plots, the spin precession frequencies do not diverge like the BH case but

remain finite and regular even as one approaches r = 0 for all angles 0 < θ < 900, irrespective of the

presence of the ergoregion, as opposed to [3], where it was shown that the spin precession frequency

diverges on the ergosurface for NSs. At θ = 900, the precession frequency diverges because of the

presence of the ring singularity. This is also in stark contrast to the BH case in the present paper,

for which a divergence is exhibited by the precession frequency close to the event horizon, as discussed

earlier. One also finds that a local minima and a local maxima appear for q ≥ 0.5 in some intermediate

angles. As an example, for q = 0.5, local minima appears very close to the pole (> 00) and disappears

at ∼ 600 whereas for q = 0.8 local maxima-minima starts to appear at ∼ 550 and disappears ∼ 860.

Thus, for higher q value local maxima-minima lasts for shorter angular range. The above mentioned

characteristics is not only applicable for a∗ = 2 but also applicable for all the NS cases of a∗ > 1.1.

We now detail our experiment to distinguish a NS from a BH. We study the precession of spins

of gyros attached to observers with a non-zero azimuthal component (Ωe(r, θ)) to their four-velocities,

that is u = (1, 0, 0,Ωe). These are observers moving along circles at constant r and θ. As discussed

earlier, there are no restrictions on Ωe outside the ergoregion. However, not all values of Ωe are allowed

inside the ergoregion since we want the four-velocities Ke to be time-like. For every curve with fixed

(r, θ) inside the ergoregion, we can find the range of allowed Ωe(r, θ) by finding Ω−(r, θ) and Ω+(r, θ).

One characteristic feature of the ergoregion is that as one allows Ωe to approach the bounding values,

Ωe → Ω±, the precession frequency Ωp exhibits a sharp rise. Now, we consider a set of observers (say,

at different r), equipped with gyroscopes, moving on constant r, θ curves around an unknown rotating

compact astrophysical object. There are two possible observations one can make when one measures the

precession frequency of the spins of gyroscopes attached to such observers, with progressively decreasing
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(a)q = 0.3, a∗ = 0.9, θ = 100 (b)q = 0.3, a∗ = 0.9, θ = 800 (c)q = 0.5, a∗ = 0.9, θ = 100

(d)q = 0.5, a∗ = 0.9, θ = 800 (e)q = 0.6, a∗ = 0.2, θ = 650 (f)q = 0.6, a∗ = 0.2, θ = 800

(g)q = 0.6, a∗ = 0.9, θ = 100 (h)q = 0.6, a∗ = 0.9, θ = 400 (i)q = 0.6, a∗ = 0.9, θ = 650

FIG. 2. Variation of Ωp (in the unit of M−1) versus r (in the unit of M) in the case of BHs with different

Kerr parameters a∗. Gyros approach the BHs from different direction θ with different angular velocity which is

parametrized by q. It is seen from the plots that the gyro precession frequency Ωp becomes arbitrarily high in

the limit of approach to the event horizon, thus diverging on the horizon in case of a BH for q ≶ 0.5 but Ωp

becomes finite only for q = 0.5.

r: (i) Ωp(r) continually increases (we may also see features like those in Panels (f) and (i) of FIG.2) and

after crossing a certain distance it diverges eventually; or (ii) it increases and after crossing a certain

distance it decreases continuously and remains finite throughout (we may also see features like those

in Panels (c) and (f) of FIG.3). Then we can conclude that in a Kerr spacetime, Case (i) signals that

the spacetimes is that of a BH whereas, Case (ii) implies that we have a NS instead.
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(a)q = 0.3, θ = 100 (b)q = 0.3, θ = 650 (c)q = 0.5, θ = 100

(d)q = 0.5, θ = 650 (e)q = 0.8, θ = 100 (f)q = 0.8, θ = 650

(g)q = 0.95, θ = 650

FIG. 3. Variation of Ωp (in the unit of M−1) versus r (in the unit of M) in the case of NS with a∗ = 2. Gyros

approach the NSs from different direction θ with different angular velocity which is parametrized by q. It is seen

from the plots that the gyro precession frequency Ωp is finite in all the way as the gyro approaches r = 0 from any

angular direction : 0 < θ < π/2. Moreover, Ωp remains finite even at r = 0 for all the values of q : 0 < q < 1.

VI. DISTINGUISHING A NEAR-EXTREMAL KERR NAKED SINGULARITY (1 < a∗ < 1.1)

FROM A KERR NAKED SINGULARITY WITH HIGHER ANGULAR MOMENTUM

(a∗ ≥ 1.1)

A. Behavior of gyro frequency for q values close to 0.5 (q ∼ 0.5)

A near-extremal NS (a∗ < 1.1) exhibits characteristically different features as compared to NSs with

higher spins, that is we do not observe trends like those in FIG.3 for near-extremal NSs. Moreover,

observed features are extremely dependent on q values. Two minima occur for intermediate values of θ

when spin parameter is close to one and q close to 0.5. We can see from FIG.4 that two minima occur
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(a)a∗ = 1.00001, θ = 100 (b)a∗ = 1.00001, θ = 400 (c)a∗ = 1.00001, θ = 700

(d)a∗ = 1.001, θ = 400 (e)a∗ = 1.1, θ = 400

FIG. 4. Variation of Ωp (in the unit of M−1) versus r (in the unit of M) in the case of near-extremal NSs. Gyros

approach the NSs from different direction θ with a fixed angular velocity which is parametrized by q = 0.47.

It is seen from the plots that the gyro precession frequency Ωp is finite in all the way as the gyro approaches

r = 0 from any angular direction : 0 < θ < π/2. Moreover, Ωp remains finite even at r = 0 for all the values of

q : 0 < q < 1. It is also seen from the plots that an interesting interplay between the local maxima and/or local

minima go on in all the curves, which lasts only for 1 < a∗ < 1.1.

at the angle 400 (Panel(b) and Panel(d)) and its nearby angles for q = 0.47. One minima disappears

around ∼ 700 and another one still remains (Panel(c)). These all ‘peculiarities’ go away when we

increase the spin parameter further, i.e., a∗ ≥ 1.1.

Similarly, we can see from Panels (a)-(c) of FIG.5 that the two minima occur at some intermediate

angles for q = 0.51 and start to disappear at θ = 600 (Panel (d)). The one minima also disappears if

a∗ possesses a value further away from 1 (a∗ ≥ 1.1), which can be seen from Panels(f)-(g).

When spin is close to one, there is a also sharp rise in frequency very close to r = M , for intermediate

values of θ when q is slightly larger than 0.5 and sharp decline when q is slightly below 0.5. Such sharp

increase/decrease in absent when a∗ is larger than 1.01. So, there are two peculiar features associated

with the near-extremal geometries in this case: (i) presence of two minima, and (ii) sharp rise or fall of

frequencies close to r = M . The second feature is due to ‘phantom effects’ of the horizon, something

we will try to address in a later section on near extremal NS.
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(a)a∗ = 1.00001, θ = 100 (b)a∗ = 1.00001, θ = 150 (c)a∗ = 1.00001, θ = 300

(d)a∗ = 1.00001, θ = 600 (e)a∗ = 1.00001, θ = 700 (f)a∗ = 1.001, θ = 150

(g)a∗ = 1.1, θ = 150

FIG. 5. Same as FIG.4 but has been plotted for q = 0.51.

B. Behavior of gyro frequency for q < 0.5

For q < 0.5, a small kink appears in the radial profile of the gyro precession frequency, which can

be seen from Panels(a)-(c) of FIG.6. The kink disappears for higher values of spin parameter. In this

case, we can also see that the kink is basically a sharp rise in frequency close to r = M . Similar trends

in the radial profiles of these frequencies can be observed for all values of q < 0.5 but not for values

close to 0.5 like in FIG.4.
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(a)a∗ = 1.00001, θ = 300 (b)a∗ = 1.00001, θ = 600 (c)a∗ = 1.00001, θ = 900

(d)a∗ = 1.001, θ = 600 (e)a∗ = 1.1, θ = 600

FIG. 6. Same as FIG.4 but has been plotted for q = 0.3.

C. Behavior of gyro frequency for q > 0.5

1. q = 0.7

For q > 0.5, we can see from Panel (a) of FIG. 7 that a kink starts to appear at θ = 200 and it

becomes a sharp rise (Panels (b)-(c)) at r = M , on increasing the value of the angle. Three peaks

appear at θ = 800 (Panel (d) and Panel (h)) with a plateau between two peaks. This special feature

disappears at θ = 880. It also disappears for higher values of the spin parameter a∗ which can be seen

from Panels (g) and (i). The spin precession frequency value at the third peak (which is very close to

r = 0), is much higher than at the other two. All these special features go away for a∗ > 1.1 (Panel

(i)) for intermediate angles.

2. q = 0.9

For very high values of q, say q = 0.9, we can see from all the Panels (a)-(e) of FIG.8 that the ‘third

peak’ (which appeared for q = 0.7) near r = 0 disappears but the ‘sharp rise’ at r = M still remains

there for some intermediate range of angles (Panel(b)-(d)). At θ = 800 (Panel (c)), there exists ‘two

peaks’ with the plateau. Only one peak remains for a ≥ 1.1 as usual, which is generally seen in the
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(a)a∗ = 1.00001, θ = 200 (b)a∗ = 1.00001, θ = 400 (c)a∗ = 1.00001, θ = 600

(d)a∗ = 1.00001, θ = 800 (e)a∗ = 1.00001, θ = 880 (f)a∗ = 1.001, θ = 600

(g)a∗ = 1.1, θ = 600 (h)a∗ = 1.001, θ = 800 (i)a∗ = 1.1, θ = 800

FIG. 7. Same as FIG.4 but has been plotted for q = 0.7.

cases of the NSs which possesses higher angular momentum (see FIG.3).

D. Behavior of gyro frequency for near-extremal Superspinars

We replace a everywhere in Eq.(19) with M(1 + ǫ) and drop terms containing order ǫ2 or higher.

We introduce the dimensionless variables y = r/M and ωe = MΩe and write the components of the
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(a)a∗ = 1.00001, θ = 200 (b)a∗ = 1.00001, θ = 600 (c)a∗ = 1.00001, θ = 800

(d)a∗ = 1.001, θ = 600 (e)a∗ = 1.1, θ = 600

FIG. 8. Same as FIG.4 but has been plotted for q = 0.9.

spin precession frequency as

Ωp r̂ =
1

M

(y − 1) cos θ

(y2 + cos2 θ)3/2
A1

D1

[

1 + ǫ

(

A2

A1

+
1

(y − 1)2
− 3 cos2 θ

y2 + cos2 θ
− D2

D1

)]

r̂ ,when (y − 1)2 >> ǫ

=
ǫ

M

(y − 1) cos θ

(y2 + cos2 θ)3/2
A1

D1

r̂, otherwise

and,

Ωp θ̂ =
1

M

sin θ

(y2 + cos2 θ)3/2
B1

D1

[

1 + ǫ

(

B2

B1

− 3 cos2 θ

y2 + cos2 θ
− D2

D1

)]

θ̂ (43)

where,

A1 = −ωey
4 − 2ωe cos

2 θy2 + 2(1 − ωe sin
2 θ)2y − ωe

8
(3 + 4 cos 2θ + cos 4θ),

A2 = −4ωe cos
2 θy2 + 2(1− ωe sin

2 θ)(1− 3ωe sin
2 θ)y − ωe

2
(3 + 4 cos 2θ + cos 4θ),

B1 = ωey
5 − 3ωe(1− ωe sin

2 θ)y4 + 2ωe cos
2 θy3 + (1− ωe sin

2 θ)(1− ωe(1 + cos2 θ)y2

+ ωe cos
4 θy − cos2 θ(1− ωe),

B2 = 3ω2
e sin

2 θy4 + 4ωe cos
2 θy3 + (1− 4ωe + 3ω2

e − 3ω2
e cos

4 θ)y2 + 4ωe cos
4 θy

− cos2 θ(3− 4ωe(1 + sin2 θ) + 5ω2
e sin

2 θ),

D1 = −ω2
e sin

2 θy4 + [1− ω2
e sin

2 θ(1 + cos2 θ)]y2 − 2[1− ωe sin
2 θ]2y + cos2 θ[1− ω2

e sin
2 θ],

D2 = −2ω2
e sin

2 θ(1 + cos2 θ)y2 + 4ωe sin
2 θ(1− ωe sin

2 θ)y + 2cos2 θ(1− 2ω2
e sin

2 θ). (44)
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The above expressions simplify greatly for the equitorial plane θ = π/2 as

A1= −ωey
4 + 2(1− ωe)

2y

A2= 2(1 − ωe)(1− 3ωe)y

B1= ωey
5 − 3ωe(1− ωe)y

4 + (1− ωe)
2y2

B2= 3ω2
ey

4 + (1− 4ωe + 3ω2
e)y

2

D1= −ω2
ey

4 + (1− ω2
e)y

2 − 2(1 − ωe)
2y

D2= −2ω2
ey

2 + 4ωe(1− ωe)y (45)

and a simple but qualitative analytic treatment of the problem is admitted. We can then discuss the

number of poles and peaks of the spin precession frequency of near extremal superspinars inside the

ergoregion, confining ourselves to the equatorial plane.

From the above expressions it is clear that the radial part of this frequency vanishes everywhere in

the equatorial plane of the ergoregion except at the ring singularity, for all allowed frequencies Ωe. The

angular part of this gyro frequency in the equatorial plane is

~Ωp =
1

M

1

y3
B1

D1

[

1 + ǫ

(

B2

B1

− D2

D1

)]

θ̂ (46)

M~Ωp =
ωey

3 − 3ωe(1− ωe)y
2 + (1− ωe)

2

−ω2
ey

5 + (1− ω2
e)y

3 − 2(1− ωe)2y2
θ̂ + ǫ

ωey
3 − 3ωe(1 − ωe)y

2 + (1− ωe)
2

−ω2
ey

5 + (1− ω2
e)y

3 − 2(1− ωe)2y2
.

(

3ω2
ey

2 + (1− 4ωe + 3ω2
e)

ωey3 − 3ωe(1− ωe)y2 + (1− ωe)2
− −2ω2

ey + 4ωe(1− ωe)

−ω2
ey

3 + (1− ω2
e)y − 2(1 − ωe)2

)

θ̂ (47)

Preliminarily, we find that the derivative of the above expression for the gyro frequency vanishes at a

maximum of six radial values, that is, for near extremal superspinars, depending on the two parameters

Ωe and a, we can have six local extrema. To further rule a few of these six out, more numerical work

needs to be done and this is currently under progress.

E. Behavior of gyro frequency in near-extremal overspinning Kerr geometry and ultra-high

energy collisions

Many interesting physical processes occur in near-extremal Kerr geometry at r = M . These pro-

cesses include ultra-high energy particle collisions and collisional Penrose process with extremely large

efficiency of energy extraction.

In [14, 15], we considered two particles which follow geodesic motion on the equatorial plane of

overspinning Kerr geometry starting from rest at infinity and undergo a collision at r = M . One of the
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particles that is initially ingoing, turns back at radial coordinate 0 < r < M and appears at r = M as

an outgoing particle, while the second particle is ingoing. We showed that the center of mass energy of

collision between the radially ingoing and outgoing particles shows divergence in the near-extremal limit

where Kerr spin parameter transcends the extremal value by an infinitesimal amount, i.e., a = M(1+ǫ)

with ǫ → 0+. This process overcomes many limitations and finetunings involved in an analogous high-

energy collision process between the two ingoing particles which occurs close to the event horizon of

the maximally spinning BH [16, 17].

We further showed that the particles which are produced in the ultra-high energy particle collisions in

the overspinning Kerr spacetime can escape to infinity with divergent energies [18]. This is a consequence

of the collisional Penrose process which allows us to extract rotational energy from the ergoregion of the

Kerr spacetime. The efficiency of the collisional Penrose shows divergence in the near-extremal limit

for the collisions which occur at r = M , making it possible to extract large amount of energy from the

overspinning Kerr geometry. This is in the stark contrast with the BH case where efficiency is shown

to be always finite with an upper bound of 14 [19]. Thus near-extremal NS spacetime can possibly be

the source of the ultra-high energy cosmic rays and neutrinos.

Interestingly, as we showed earlier in this section, gyro precession frequency shows a sharp increase or

decline close to r = M in near-extremal overspinning Kerr spacetime as we decrease its radial coordinate

along the constant value of θ. This is precisely the location where ultra-high energy collisions and

collisional Penrose process with divergent efficiency occurs. Thus a thought experiment to lower gyro

which we described in this paper kills two birds with the same bullet. Firstly it allows us to identify

the spacetime geometry which is conducive to the high-energy processes as it can tell us whether the

geometry is overspinning and near-extremal. Secondly it also helps us to locate region in space which

can host high-energy processes as gyro frequency exhibits peculiar trend exactly at this location. This

coincidence is quite remarkable.

VII. FRAME-DRAGGING EFFECT IN ACCRETION DISKS IN A KERR GEOMETRY

In order to study the accretion disk around a spinning BH, one needs to study the stable circular

orbits in the Kerr space-time. The last or innermost stable circular orbit (ISCO) marks the inner

boundary of this disk. The ISCO radius depends on the Kerr parameter a∗, as shown in FIG. 9. This

is a key underlying physical feature that can distinguish BHs from NSs, as we will see in this section.

The three fundamental frequencies for the accretion disk, namely the Keplerian frequency Ωφ, verti-

cal epicyclic frequency Ωθ, and the radial epicyclic frequency Ωr are derived for the Kerr metric [20, 21]
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(in geometrized units) as,

Ωφ= ± M
1

2

(r
3

2 ± aM
1

2 )
(48)

Ωr= Ωφ

(

1− 6M

r
± 8aM

1

2

r
3

2

− 3a2

r2

)
1

2

(49)

Ωθ= Ωφ

(

1∓ 4aM
1

2

r
3

2

+
3a2

r2

)
1

2

(50)

where the upper sign is applicable for direct orbit and the lower one for retrograde orbit. These

frequencies are related to the precession of the orbit and orbital plane. Precession of the orbit is

measured by the periastron precession frequency (Ωper), and orbital plane precession is measured by

the nodal plane precession or Lense-Thirring precession frequency (Ωnod) [22]. These two frequencies

are defined as [23]

Ωper = Ωφ − Ωr, (51)

Ωnod = Ωφ − Ωθ. (52)

Orbital plane precession arises only due to the rotation of the spacetime. In a non-rotating space-

time, Ωφ is always equal to Ωθ, and hence the Lense-Thirring precession is entirely absent. However,

periastron precession occurs both in rotating and non-rotating spacetimes. We note that the square of

the radial epicyclic frequency Ω2
r vanishes at the ISCO, and is negative for smaller radii, which shows a

radial instability for such orbits. Outside the ISCO, Ω2
r is always positive and Ω2

θ is always non-zero and

positive in a rotating spacetime. The same cannot be said about Ωnod. For example, the LT precession

frequency (Eq.(52)) can be zero at r = r0 given by,

Ωnod(r0) = 0 ⇒ r0 =
9

16
a2∗M = 0.5625 a2∗M. (53)

Since r0 is always less than rISCO (6M ≥ rISCO ≥ M [24]) and even inside the event horizon for a

BH (0 ≤ a∗ ≤ 1), the LT precession frequency never becomes zero for a BH spacetime. We now discuss

the location of the ISCO in a NS spacetime and argue that its relation with r0 has implications for

distinguishing BH and NS spacetimes.

FIG. 9 shows that the ISCO radius decreases with increasing a∗ for prograde orbits for both BHs

and NSs up to a∗ =
√

32/27 ≈ 1.089, and then increases [25]. Therefore, the minimum ISCO radius,

having the value rISCO = 2M/3, occurs for a∗ = 1.089. As seen from FIG. 9, the ISCO lies on or

inside the ergosurface for 0.943 ≤ a∗ ≤ 2.838. For each a∗ value, there exists a radius (r0) at which

there is no frame-dragging effect, and hence the LT precession vanishes. This radius is less than the
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FIG. 9. Three radial quantities (in units ofM) for prograde orbits, namely the ISCO radius (black), the ergoradius

(dashed gray), and the radius (r0) at which the precession frequency (Ωnod) vanishes (blue), plotted as functions

of the dimensionless Kerr parameter a∗ = a/M . The ISCO radius lies outside the ergoregion for all a∗ except

0.943 ≤ a∗ ≤ 2.838. r0 meets the ISCO radius at a∗ = 1.089. This has the implication that for smaller values of

a∗, the LT frequency is always positive and does not vanish for any radius. For larger values, there is a domain

of r for which this frequency becomes negative, signifying that the LT effect switches sign. Since this feature is

exhibited for a∗ = 1.089 > 1, the LT frequency in a BH spacetime never vanishes. We point out that NSs with

a∗ < 1.089 also do not display vanishing LT frequency.

ISCO radius for a∗ < 1.089 (FIG. 9), but this may not be observationally important, as the accretion

disk extends up to rISCO. FIG. 9 also shows that r0 equals rISCO for a∗ = 1.089 [26], and is greater

than rISCO for a∗ > 1.089. These make 1.089 a special value of a∗.

In case of BHs, the LT frequency increases with decreasing r up to the inner edge of the accretion

disk (see FIG. 10 and Panel (a) of FIG. 11. But for NSs, the LT frequency attains a maximum at r = rp

which occurs always at r(r = rp) > rISCO (see TABLE I), and then decreases as r decreases (FIG. 10

and Panel(b) of 11). As shown in FIGs. 9, 10 and Panel (b) of 11, the LT precession frequency becomes

negative for rISCO ≤ r < r0, in case of a∗ > 1.089. This means that the direction of LT precession is

reversed. The maximum value of Ωnod (= 1/2M) occurs for a∗ = 1 at r = rISCO. We also note that

dΩnod

dr
|rISCO

< 0 for BH, (54)

dΩnod

dr
|rISCO

> 0 for NS, (55)

and hence Ωnod decreases (increases) with r at rISCO for BHs (NSs).
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(a)BH ISCO and NS ISCO are located at 2.32 M and

0.67 M respectively

(b)ISCO is located at 1.26 M

FIG. 10. Variation of Ωnod (in units of M−1) versus r (in units of M). It is seen from the plots that nodal plane

precession frequency Ωnod always increases as one approaches to a BH but in case of a NS, we obtain a peak value

of Ωnod for all a∗ > 1. Ωnod vanishes in a particular orbit of radius r0 for a∗ ≥ 1.089 and it becomes negative

(which means that the LT precession reverses direction) in all the orbits which are in the range r0 > r ≥ rISCO

for a∗ > 1.089.

The profiles of other frequencies, i.e., Ωφ, Ωr, Ωθ and Ωper, can also show differences between BHs

and NSs. FIG. 12 shows that Ωφ behaves similarly for BHs and NSs, but much larger values are possible

for the latter, simply because the disk can extend up to much lower radii. FIG. 13 shows that a small

additional peak appears in the plot of Ωr profile for the near extremal value of a∗ in the case of a NS.

Such a peak appears at small radius values, where an accretion disk cannot exist in case of a BH. As a∗

increases, this peak becomes more prominent for a∗ = 1.01 and it becomes the only peak for a∗ ∼ 1.05.

Such an additional peak does not appear for the case of a BH. Similarly, a minimum occurs in the Ωθ

profiles for NSs with 1 < a∗ . 1.1 near the radius r = M (FIG. 14). Such a minimum does not occur

for a BH. Besides, Ωθ for a∗ roughly above 1.01 can attain a much higher value than that for BHs.

Finally, the periastron precession frequencies for NSs can attain values much higher than those for BHs

(FIG.15).

Observational aspects

BH X-ray binary (BHXB) sources show a plethora of timing features in X-rays [27]. Most no-

table among them are high-frequency (HF) quasi-periodic oscillations (QPOs) and three types of low-

frequency (LF) QPOs. Sometimes two HF QPOs are seen together. Their frequencies are observed to
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(a)BH case (b)NS case

FIG. 11. We show the radial variation of the precession frequency (Ωnod) (in units of M−1) for different a∗ BHs

in the left panel and NSs on the right panel. For BHs, we plot Ωnod between their respective ISCO radii and

r = 6M . We have used a∗ =1 (black), .9999 (large dashing, magenta), .9 (dotted, purple), .5 (dot-dashed, blue)

and .2 (tiny dashing, green). Ωp decreases with increasing r always for BHs. For NSs, we plot Ωnod between

their respective ISCO radii and r = 6M . We have included also the extremal BH case to demonstrate the clear

change in characteristic features. We have used a∗ = 1 (black), 1.05 (tiny dashed, gray), 1.089 (dotted, brown),

2 (dot-dashed, orange), 4 (medium dashing, red). For NSs, as we increase r, Ωnod always increases initially at

the ISCO radius, reaches a peak value and decreases. Negative Ωnod implies that the sense of precession has

changed. These are characteristic features of NSs.

FIG. 12. Variation of Ωφ (in units of M−1) versus r (in units of M). BH ISCO and NS ISCO are located at

2.32 M and 0.67 M respectively. The plots show that Kepler frequency Ωφ for a NS is much higher than for a

BH at their respective ISCOs for ǫ = ±0.1, i.e., a∗ = 0.9 and a∗ = 1.1. The difference between the values of

Kepler frequencies of a NS and a BH decreases with decreasing the value of ǫ.
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a∗ rISCO νφ νθ νnod at rISCO νnod (in Hz)

(in M) (in Hz) (in Hz) (in Hz) at rp (mentioned in parentheses)

0.1 5.67 234 231 3

0.2 5.32 255 247 8

0.3 4.98 279 265 14

0.4 4.61 309 287 22

0.5 4.23 346 312 34

0.6 3.82 395 342 53

0.7 3.39 458 378 80

0.8 2.91 552 421 131

0.9 2.32 718 472 246

0.98 1.61 1053 462 590

0.99 1.45 1163 420 743

0.999 1.18 1395 252 1142

0.9999 1.07 1510 118 1392

0.99999 1.03 1556 54 1502

0.999999 1.016 1572 30 1542

1.0 1 1591 0 1591

1.000001 0.98 1615 40 1575 1586 (.998)

1.00001 0.96 1640 84 1556 1584 (.994)

1.0001 0.93 1677 157 1520 1571 (.992)

1.001 0.86 1769 370 1399 1528 (.976)

1.01 0.75 1918 900 1017 1367 (.952)

1.02 0.71 1967 1199 768 1261 (.962)

1.04 0.68 1988 1538 450 1104 (.976)

1.06 0.67 1979 1745 234 1004 (.984)

1.08 0.667 1959 1894 65 886 (1.04)
√

32/27 2/3 1949 1949 0 847 (1.05)

≈ 1.089

1.1 0.67 1935 2013 -77 804 (1.07)

2 1.26 932 1588 -655 49 (3.2)

4 3.17 330 566 -236 2 (12.3)

6 5.38 172 288 -116 0.25 (27.7)

TABLE I. An object of mass M = 10M⊙(= 15 km) has been considered to calculate νφ (Kepler frequency),

νθ (vertical epicyclic frequency) and νnod (nodal plane precession frequency) using Eq.(48) and Eq.(50). For an

example, the conversion factor between νφ and Ωφ is as follows : νφ (in kHz)= Ωφ (in km−1). 300
2πM

and so on.

For other values of M , the values of νφ, νθ, νnod (column no. 3, 4, 5 & 6) of the table have to be multiplied by

10M⊙/M . The values in the parentheses of Column no. 6 show the position of the peak of νnod.
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(a) (b)

(c) (d)

FIG. 13. Variation of Ωr (in units of M−1) versus r (in units of M). The plots show that Ωr vanishes at their

respective ISCOs of a BH and a NS, which is expected but it can be seen that a small ‘kink’ appears in some of

these near-extremal NS cases. This feature is quite clear for a∗ & 1.001 and it disappears for a∗ = 1.05.

be in the range of several tens to several hundreds of Hz. For example, while XTE 1650–500 has shown

HF QPOs in the range of 50 − 270 Hz, 4U 1630-47 has shown such QPOs in 150 − 450 Hz [28]. The

three LF QPOs are denoted with types ‘A’, ‘B’ and ‘C’, and their frequencies are typically in the ranges

6.5 − 8 Hz, 0.8 − 6.4 Hz and 0.01 − 30 Hz respectively. While several models exist to explain these

QPOs, they are often associated with the relativistic precession (RP) of the accretion disk, and hence

with the frequencies Ωφ, Ωr, Ωθ, Ωper and Ωnod. The RP model was originally conceived to explain the

twin kilo-Hertz (kHz) QPOs and a low-frequency QPO of neutron star low-mass X-ray binaries [29, 30].

Following this idea, frequencies of the C-type LF QPO, the lower frequency HF QPO and the higher

frequency HF QPO of BHXBs are identified with Ωnod, Ωper and Ωφ respectively [31]. This can be

useful to measure both the mass (M) and a∗ of the compact object, as demonstrated by [32]. Table I
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(a)BH ISCO and NS ISCO are located at 1.18 M and

0.86 M respectively

(b)BH ISCO and NS ISCO are located at 1.45 M and

0.75 M respectively

(c)BH ISCO and NS ISCO are located at 2.32 M and

0.67 M respectively

FIG. 14. Variation of Ωθ (in units of M−1) versus r (in units of M). The plots show that a local minima is

always appeared outside of the ISCO for 1 < a∗ < 1.1 in Ωθ curves, in principle. This feature is completely

absent in the case of a BH.

shows that the observed LF QPOs could be identified with Ωnod only for a∗ < 0.5 and a∗ ∼ 1.089 (see

also [33]). In fact, Ωnod could have a much higher value for a∗ closer to 1 for both BH and NS, and

it could be possible to identify an HF QPO with Ωnod (Table I). If a∗ is very close to 1, Ωnod value is

quite high (Table I), and such high frequency QPOs could be detected in future for BH and NS with

a∗ ≈ 1. While there are uncertainties in the specific identifications of observed frequencies with the

theoretical ones, the recent discovery of the C-type quasi-periodic variation of the broad relativistic iron

line energy from the BHXB H1743–322 strongly suggests that the inner accretion disk of this source is

indeed tilted and precessing [34]. Therefore, the theoretical dependencies of various frequencies on a∗,

as discussed in this section, have potential to distinguish between a BH and a NS.
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FIG. 15. Comparison between the periastron precession frequencies (Ωper in units of M−1) of a BH and a NS at

their respective ISCOs for ǫ = ±0.1. BH ISCO and NS ISCO are located at 2.32 M and 0.67 M respectively.

How could this be done? Here we give some examples. Note that most of the BHXBs are transient

sources, and an accretion disk is formed only during an outburst. Even for the persistent BHXBs,

source state often changes, which implies changes in accretion components. So it is expected that the

accretion disk of a given BHXB sometimes advances towards the central object, and sometimes recedes,

depending on the source intensity and spectral states. If QPOs are connected to the natural frequencies

mentioned above, then such a dynamics of the disk would mean changes in QPO frequencies, as these

frequencies depend on the radial distance. And we do observe evolution of QPO frequencies. As a BH

and a NS have significantly different theoretical radial profiles of frequencies, it could be, in principle,

possible to distinguish them by tracking the evolution of QPO frequencies as the disk advances or

recedes. For example, Ωnod for a BH will monotonically increase, and will attain the maximum value, if

the disk advances up to the ISCO radius. But Ωnod for a NS will first increase, will attain the maximum

value, and then will decrease, as the disk advances up to rISCO, which can be quite different from the

rISCO of BHs. In fact, in case of a NS, the absolute value of Ωnod can become zero and then increase

again. Whether this will happen, and radial locations of the maximum and zero values of Ωnod depend

on a∗. Therefore, the Lense-Thirring precession can provide a way to distinguish between a BH and

a NS. Similarly, the maximum possible value of Ωφ depends on a∗. Finally, according to the above

mentioned model, Ωr is interpreted as the separation between two HF QPO frequencies. Therefore, the

qualitatively different Ωr radial profiles for NSs with a∗ . 1.05 can be useful to distinguish them from

BHs.
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VIII. CONCLUSION

The spin precession precession frequency of test gyros, in the BH case, are finite inside and outside

of the ergoregion but diverge as one considers a gyro close to the horizon, r ∼ r+, for any direction

(0 < θ ≤ π/2). This feature can also help us to detect the horizon of a BH. In case of the NS, spin

precession frequency of gyros remain finite and regular even if one considers gyros close to r = 0, for

all θ in the range: 0 < θ < π/2, with a suitable value of Ωe. Maxima/minima in the radial profile of

the precession frequency (for eg., two local maxima or two local minima or two peaks or three peaks

with a plateau) would indicate a ‘near-extremal NS’ with (a∗ < 1.1) since such features are completely

absent in a BH or a NS with higher angular momentum (a∗ ≥ 1.1).

In case of the nodal plane precession, related to the accretion disc, we can summarize here the

distinctive features of the LT frequency in both BH and NS spacetimes, using which one can make a

conclusive statement regarding the existence of a NS:

(i) We obtain a peak value of Ωnod at rp(a∗) for all a∗ > 1.

(ii) Ωnod vanishes in a particular orbit of radius r0 for a∗ ≥ 1.089.

(iii) Ωnod becomes negative (which means that the LT precession reverses direction) in all the orbits

which are in the range r0 > r ≥ rISCO for a∗ > 1.089.

(iv) Additionally, Ωnod shows an ‘adverse’ effect : Ωnod ∝ rn (where n & 0, see FIG.10) in the

region r0 ≤ r < rp. This curve does not follow the inverse cube law of distance like other astrophysical

objects. All these features are completely absent in the case of BH and this would be reflected in the

observation of frequencies of QPOs.

Finally, it can be seen from FIG.13 and FIG.14 that Ωr and Ωθ also have some characteristic

differences in the cases of BH and NS by which it may be possible to detect a NS if Ωr and Ωθ are the

observationally measurable quantities.
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