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Recent studies of the analytical and numerical models of neutron stars strongly suggest that
their exterior field can be described by only four arbitrary parameters of the 2-soliton solution of
Einstein’s equations. Assuming that this is the case, we show that there exists an infinite hierarchy
of the universal relations for neutron stars in terms of multipole moments that arises as a series
of the degeneration conditions for generic soliton solutions. The simplest of these relations yields
a correct expression for the mass-hexadecapole moment as a function of the angular momentum,
revealing a need for a more precise definition of this and higher multipole moments in the numerical
models of neutron stars.

Introduction.—In recent years much attention was paid
to the study of the universal properties of neutron stars
(NSs) with the aid of both the numerical and analyti-
cal approaches. A remarkable I-Love-Q relation between
the NS’s moment of inertia, the tidal Love number and
the quadrupole moment was first dicovered by Yagi and
Yunes [1] via a numerical analysis of the Hartle-Thorne
slow-rotation approximation [2] and then extended to ar-
bitrary rotation and some new universal properties by
Pappas and Apostolatos [3] and by Chakrabarti et al. [4].
The exact solutions approach to the analysis of various
phenomena around NSs was introduced by Sibgatullin
and Sunyaev [5] who demonstrated that a 3-parameter
quadrupole solution [6] fitted very well the extensive nu-
merical data of the well-known Cook et al. paper [7]; they
also observed that in terms of the dimensionless multi-
pole moments the properties of NSs independent of the
equations of state (EoSs) can be better seen. Comparison
of the analytical and numerical models of NSs was per-
formed by Berti and Sterligioulas [8] with the aid of the
RNS code [9, 10], and this subsequently led, via Ryan’s
method [11], to the revision of multipole moments in nu-
merical solutions [12]. A better understanding of the mul-
tipole structure of NSs made it possible, on the one hand,
to put the universal relations for NS into the language of
multipole moments and, on the other hand, to establish
[3] that the above structure is generically determined by
only four multipole moments, thus being universal for all
the physically realistic EoSs known in the literature. Fur-
thermore, in the paper [13] Yagi et al. suggested that,
similar to black holes, NSs are likely to have their own
“no-hair” theorem according to which the higher multi-
poles could be inferred from the form of the previous four
multipoles, and they discussed the numerical evaluation
of the NS’s mass-hexadecapole moment in the light of
their conjecture. In [13] it was observed in particular that
the 4-parameter 2-soliton solution of Einstein’s equations
[14–16], regarded by Pappas and Apostolatos as a pos-
sible analytical model describing the geometry around a
universal NS, possesses a hexadecapole moment whose
spin dependence starts at quadratic order, whereas, ac-

cording to Yagi et al., this moment should be strictly
quartic in angular momentum.
The objective of the present letter is to demonstrate

that the Yagi et al. no-hair hypothesis, combined with
the aforementioned 2-soliton solution (henceforth re-
ferred to as the MMR solution), gives rise to a hierar-
chy of the universal relations for NSs in terms of multi-
pole moments, the simplest relation among which yields
the correct expression for the hexadecapole moment M4

of the MMR solution and rigorously proves that, for a
generic NS model, this moment should necessarily con-
tain terms quadratic in spin. As an application, in the
case of two known EoSs, we shall compare the values of
M4 computed by means of our analytical formula and by
the empirical formulas of Ref. [13].
Multipole moments and the universal relations.—The

multipole structure of stationary axially symmetric vac-
uum spacetimes is well known thanks to the fundamental
papers of Geroch [17], Hansen [18] and Thorne [19]. The
technical calculation of the moments, describing the dis-
tributions of mass and angular momentum, is facilitated
by the Fodor-Hoenselaers-Perjés (FHP) procedure [20]
which makes use of the Ernst complex potential formal-
ism [21] in order to find the coefficients mn arising in the
expansion of the function

X(z) ≡ z
1− e(z)

1 + e(z)
=

∞
∑

n=0

mnz
−n (1)

when z → ∞. The above e(z) denotes the axis (ρ = 0)
value of the Ernst complex potential E(ρ, z) of a particu-
lar solution, ρ and z being the Weyl-Papapetrou coordi-
nates. The first four quantities mn coincide with the
Geroch-Hansen (GH) complexified multipole moments
Pn, n = 0, 3, while other mn, n ≥ 4, are equal to Pn only
up to certain combinations of the lower-order ml, l < n
(see Ref. [20] for the explicit form of those combinations).
It is important to note that the equilibrium models of
NSs are described by the solutions which, in addition to
being stationary and axisymmetric, are also symmetric
about the equatorial plane [10], and the latter symme-
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try imposes restrictions on the form of the corresponding
axis data e(z) and coefficients mn in (1). As was shown
in [22, 23], the function e(z) of an equatorially symmet-
ric spacetime satisfies the condition e(z)e∗(−z) = 1 (the
star symbol denotes complex conjugation); consequently,
all even quantities mn of such a spacetime are real, and
all odd mn are pure imaginary [22]. The same is true
for the corresponding multipoles Pn: in the reflection-
symmetric case we have P2k = M2k and P2k+1 = iJ2k+1,
k = 0, 1, . . ., where M2k and J2k+1 are, respectively, the
mass and angular momentum GH multipole moments.
Noteworthily, the general class of the extended vacuum

soliton solutions admits parametrization exclusively in
terms of the “multipoles” mn [24]:

e(z) =
e−
e+

, e± = (LN )−1 (2)

×
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where the n× n determinant Ln has the form

Ln =

∣

∣

∣
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∣
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∣
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mn−1 mn . . . m2n−2

mn−2 mn−1 . . . m2n−3

...
...

. . .
...

m1 m2 . . . mn

m0 m1 . . . mn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3)

Restricting ourselves to the equatorially symmetric con-
figurations, we see that the Kerr solution [25] is contained
in (2) as the N = 1 case, with m0 = M and m1 = iJ ,
M being the total mass and J the total angular momen-
tum [26]. The next, N = 2 specialization of formulas
(2), determines the MMR solution that was recently re-
garded and advocated as describing the exterior field of a
universal NS [3, 15, 27]; it has four arbitrary parameters
corresponding to four arbitrary multipole moments:

m0 = M0 ≡ M, m1 = iJ1 ≡ iJ,

m2 = M2, m3 = iJ3, (4)

where M2 is the mass quadrupole moment and J3 is the
angular momentum octupole moment (the explicit form
of the MMR solution in two different parametrizations
can be found in Ref. [16]). If we now assume that the re-
sults of Pappas and Apostolatos [3] obtained on the basis
of a variety of very convincing arguments are correct and
the geometry around NSs is indeed determined by only
four multipole moments (4), then, bearing in mind the
no-hair hypothesis for NSs put forward by Yagi et al.

[13], we inevitably arrive at the MMR spacetime as the
simplest and hence most suitable model for the exterior
of a NS complying with the conditions of papers [3, 13].
The fact that the MMR solution is the simplest one pos-
sessing the required four moments is very important in

itself because it makes this solution in a sense similar to
the Kerr spacetime whose unique property is that it is the
simplest possible solution among infinite number of the
2-parameter solutions defined by the parameters of mass
and angular momentum. Clearly, the higher GH multiple
moments of the MMK solution will then be some well-
defined functions of the above four parameters that can
be found from the corresponding axis data by means of
the FHP procedure.
The explicit expressions of the multipoles M2n and

J2n+1, n ≥ 2, as functions of the moments (4), in the case
of the MMR solution would give us the simplest hierar-
chy of the universal relations for NSs. Obviously, each
relation from this hierarchy determines how the higher
multipole M2n or J2n+1, with a specific n, depends on
the first four lower moments (4); however, since such rela-
tions involve only one higher multipole, they do not actu-
ally provide any information about possible interrelations
between the higher multipole moments themselves. So it
is remarkable that there does exist a more sophisticated
hierarchy of the universal relations for NSs that directly
connect different higher multipoles with each other. This
new hierarchy arises in (2) as a series of the degeneration
conditions of the solitonic solutions with N > 2 to the
N = 2 case. Indeed, as was shown in [24], the general
N -soliton solution degenerates to the (N−1)-soliton case
when the determinant LN defined by (3) becomes equal
to zero; then further degeneration would require zero val-
ues of the determinants LN−1, LN−2 and so on, until we
finally arrive at the 2-soliton solution by means of the
conditions L3 = 0, L2 6= 0, the latter nonequality being
needed to stop the degeneration process. By inverting
this reasoning, we can say that the higher multipole mo-
ments of the MMR 2-soliton solution must be such that
the conditions

Ln = 0 for all n > 2 (5)

are satisfied. It is easy to see from (3) that the above
conditions (5) establish how the moments m2n−2 depend
on the moments m2n−3, or, roughly speaking and taking
into account the equatorial symmetry of the MMR solu-
tion, how the GH mass multipoles M2n−2 depend on the
spin multipoles J2n−3.
The simplest of the relations (5), accounting for (4),

takes the form

L3 =

∣

∣

∣

∣

∣

∣

M2 iJ3 m4

iJ M2 iJ3
M iJ M2

∣

∣

∣

∣

∣

∣

= 0, (6)

whence we get

m4 =
M3

2 + 2JJ3M2 −MJ2
3

MM2 + J2
. (7)

This formula is of importance because it permits us
to establish the correct dependence of the hexadecapole
moment M4 on the angular momentum J in the solutions
for NSs. In the paper [13] it was assumed, by analogy
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with the Kerr solution, that the multipoles M2, J3 and
M4 of NSs are proportional, respectively, to J2, J3 and
J4, so that, according to Yagi et al., the hexadecapole
moment M4 should not contain any term proportional to
J2. Supposing that M2 ∝ J2 and J3 ∝ J3, one can read-
ily see that the quantity m4 in (7) is proportional to J4.
Nonetheless, the relation of m4 to the GH hexadecapole
moment M4 is defined by the formula [20]

m4 = M4 +
1

7
M(J2 +MM2), (8)

and it is clear that the second term on the right-hand
side of (8) is proportional to J2, so that the general ex-
pression of M4 should necessarily contain terms propor-
tional both to J2 and J4. Moreover, the condition for M4

to be proportional strictly to J4 implies M2 = −J2/M ,
which is exactly the value of the mass-quadrupole mo-
ment of the Kerr solution. Mention that the situation
will be the same if we opt to use the multipole moments
constructed according to Thorne’s definition [19], since
these are known [29] to be proportional to the GH mul-
tipoles. Therefore, the extrapolation of the behavior of
Kerr’s higher moments to the corresponding multipole
moments of the generic NS spacetime made in the pa-
per [13] should be considered as an unfortunate mistake
that springs from overlooking the non-vanishing terms
proportional to J2 in the definition of M4.
As was remarked in [3], the universality of the relations

for NSs discovered in recent years consists in particular
in their non-dependence on the total mass M when these
are rewritten in terms of the rescaled, dimensionless mo-
ments. Then, bearing this in mind and introducing the
rescaled moments via the formulas

J = jM2, M2 = qM3, J3 = sM4, M4 = µM5,
(9)

it is possible, taking into account (8), to rewrite formula
(7) in the ‘M free’ form

µ = −
1

7
(j2 + q) +

q3 + 2jqs− s2

j2 + q
, (10)

thus demonstrating the universal character of the relation
L3 = 0.
Note that the next relation from the hierarchy (5),

L4 = 0, which involves the multipoles M6 and J5, can
be also shown to be universal in the sense that, written
in terms of the dimensionless moments, it does not con-
tain the massM ; however, here we do not write down this
universal relation explicitly because of its rather compli-
cated form. In principle, it is not difficult to show that,
after an appropriate rescaling,M always cancels out from
the generic relation Ln = 0 in the equatorially symmetric
case under consideration.
An application.—Let us compare now the values of the

hexadecapole moment M4 calculated, for some available
numerical models of NSs, with the aid of the Yagi et al.

approach [13] based on Ryan’s method [11], on the one
hand, and our formula (7) after the substitution in it of
(8), on the other hand. To obtain the values of the first

type, which we denote as M
(n)
4 , we used the hints left in

[13] for the evaluation of M4 in the case of EoSs AU and
L; the concrete models were taken from tables II and VI
of the Supplement to the paper [3]. For the same models

we then estimated the mass-hexadecapole moments M
(a)
4

by means of our analytical formula. The results are sum-
marized in Tables I and II, which also include the ratios

M
(a)
4 /M

(n)
4 for convenience. One can see that the corre-

spondence betweenM
(n)
4 andM

(a)
4 for all three sequences

of EoS AU from Table I is quite reasonable. We are sure
the discrepancy will be further diminished after a correct
way of reading off the GH mass-hexadecapole moment
from Ryan’s expansions will be found. We recall in this
respect that for years some not very accurate definitions
of the mass-quadrupole and spin-octupole moments were
used in the numerical models of NSs, until Pappas and
Apostolatos have been able recently to rectify those def-
initions [12]. The situation with the hexadecapole mo-
ment M4 in the numerical models of NSs is analogous:
the present definition introduced by Yagi et al. has in-
trinsic problems since it reproduces (and we do not really
know how well) only one of the two parts of the genuine
GH expression for M4. As for Table II, it seems that the

disagreement between the values M
(n)
4 and M

(a)
4 calcu-

lated for the models with the EoS L is rather substantial,
whence we draw a tentative conclusion that the latter
EoS is not really a good one for modeling the interior of
NSs.
It is worth noting in conclusion that the scope of ap-

plicability of the universal relations considered in the
present letter actually goes beyond the NSs only. Thus,
for instance, the whole hierarchy (5) is eligible in the
case of the Kerr solution too, and besides should be sup-
plemented with the relation L2 = 0 ⇔ M2 = −J2/M
which shows that a NS collapses to a black hole when
its quadruple moment becomes that of the Kerr solution,
independently of the value of its spin-octupole moment
J3. Moreover, other stellar objects with a richer struc-
ture than that of NSs and hence requiring more than
four arbitrary real parameters for its description, could
be analytically approximated by the N = 3, 4, . . . ex-
tended soliton solutions, in which case the inequality in
(5) starts, respectively, from 3, 4, . . . The degeneration
conditions then would reflect in particular the evolution
of stars from one type to another.

Acknowledgments

We are thankful to Georgios Pappas for a very interest-
ing and useful correspondence. This work was partially
supported by the CONACYT of Mexico, and by Project
FIS2015-65140-P (MINECO/FEDER) of Spain.



4

[1] K. Yagi and N. Yunes, Science 341, 365 (2013); Phys.
Rev. D 88, 023009 (2013).

[2] J. B. Hartle and K. S. Thorne, Astrophys. J. 153, 807
(1968).

[3] G. Pappas and T. A. Apostolatos, Phys. Rev. Lett. 112,
121101 (2014).

[4] S. Chakrabarti, T. Delsate, N. Gurlebeck, and J. Stein-
hoff, Phys. Rev. Lett. 112, 201102 (2014).

[5] N. R. Sibgatullin and R. A. Sunyaev, Astron. Lett. 24,
774 (1998); ibid. 26, 699 (2000).

[6] V. S. Manko, J. Mart́ın, E. Ruiz, N. R. Sibgatullin, and
M. N. Zaripov, Phys. Rev. D 49, 5144 (1994).

[7] G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Astro-
phys. J. 424, 823 (1994).

[8] E. Berti and N. Stergioulas, Mon. Not. R. Astron. Soc.
350, 1416 (2004).

[9] N. Stergioulas and J. L. Friedman, Astrophys. J. 444,
306 (1995).

[10] N. Stergioulas, Living Rev. Relativ. 6, 3 (2003).
[11] F. D. Ryan, Phys. Rev. D 52, 5707 (1995), ibid. 55, 6081

(1997).
[12] G. Pappas and T. A. Apostolatos, Phys. Rev. Lett. 108,

231104 (2012).
[13] K. Yagi, K. Kyutoku, G. Pappas, N. Yunes, and T. A.

Apostolatos, Phys. Rev. D 89, 124013 (2014).

[14] V. S. Manko, J. Mart́ın, and E. Ruiz, J. Math. Phys. 36,
3063 (1995).

[15] G. Pappas, Mon. Not. R. Astron. Soc. 422, 2581 (2012).
[16] V. S. Manko and E. Ruiz, Phys. Rev. D 93, 104051

(2016).
[17] R. Geroch, J. Math. Phys. 13, 394 (1972).
[18] R. O. Hansen, J. Math. Phys. 15, 46 (1974).
[19] K. S. Thorne, Rev. Mod. Phys. 52, 299 (1980).
[20] G. Fodor, C. Hoenselaers, and Z. Perjés, J. Math. Phys.

30, 2252 (1989).
[21] F. J. Ernst, Phys. Rev. 167, 1175 (1968).
[22] P. Kordas, Class. Quantum Grav. 12, 2037 (1995).
[23] R. Meinel and G. Neugebauer, Class. Quantum Grav. 12,

2045 (1995).
[24] V. S. Manko and E. Ruiz, Class. Quantum Grav. 15,

2007 (1998).
[25] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[26] A. Komar, Phys. Rev. 79, 084024 (2009).
[27] G. Pappas and T. A. Apostolatos, Mon. Not. R. Astron.

Soc. 429, 3007 (2013).
[28] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravi-

tation (W. H. Freeman, San Francisco, 1973).
[29] Y. Gürsel, Gen. Relativ. Grav. 15, 737 (1983).



5

TABLE I: Multipole moments for three sequences of numer-
ical models constructed with EoS AU from table II of [12].

The procedure for evaluating M
(n)
4 is given in Ref. [13], while

the values of M
(a)
4 have been obtained with the aid of formula

(7) of the present paper.

M J/M2 M2 J3 M
(n)
4 M

(a)
4 M

(a)
4 /M

(n)
4

2.072 0.201 -1.45 -1.14 2.217 1.947 0.878

2.087 0.414 -6.08 -10.0 40.21 25.51 0.634

2.097 0.529 -9.96 -21.2 107.7 71.38 0.662

2.108 0.616 -13.6 -34.1 199.1 121.0 0.608

2.112 0.661 -15.7 -42.7 264.4 161.4 0.610

3.164 0.194 -1.68 -1.37 2.202 1.825 0.829

3.207 0.406 -8.08 -14.5 41.97 30.23 0.720

3.253 0.550 -16.1 -41.4 140.3 116.2 0.828

3.291 0.645 -23.9 -75.1 263.7 253.1 0.960

3.318 0.706 -30.3 -107. 376.7 403.0 1.07

3.388 0.510 -12.9 -28.1 101.2 65.81 0.650

3.393 0.520 -13.7 -31.1 109.2 75.78 0.694

3.422 0.587 -19.1 -51.6 176.3 148.6 0.843

3.458 0.659 -26.0 -82.7 277.9 277.6 0.999

3.487 0.713 -32.5 -115. 378.4 428.8 1.133

TABLE II: Multipole moments for three sequences of numer-
ical models constructed with EoS L from table VI of [12].

M J/M2 M2 J3 M
(n)
4 M

(a)
4 M

(a)
4 /M

(n)
4

2.071 0.194 -2.76 -2.28 7.405 5.730 0.774

2.080 0.417 -12.2 -22.0 159.3 90.39 0.567

2.087 0.543 -20.3 -47.9 460.9 243.6 0.529

2.095 0.650 -28.6 -81.3 952.9 478.5 0.502

2.097 0.698 -32.9 -100. 1269. 628.6 0.495

4.012 0.178 -3.80 -4.23 16.8 8.943 0.532

4.051 0.375 -18.5 -45.4 338.5 138.6 0.410

4.098 0.528 -40.3 -144. 1367. 599.8 0.439

4.139 0.635 -62.6 -279. 2930. 1415. 0.483

4.167 0.700 -79.8 -401. 4399. 2276. 0.518

4.321 0.479 -29.5 -90.2 1059. 308.0 0.291

4.325 0.489 -31.9 -101. 1153. 358.4 0.311

4.355 0.555 -45.2 -170. 1950. 709.4 0.364

4.396 0.641 -66.0 -299. 3560. 1488. 0.418

4.420 0.686 -79.4 -394. 4742 2140. 0.451


