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Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance,
for instance for the fabrication of elastic composite materials. We theoretically analyze the following
situation. Rigid spherical inclusions are enclosed by a homogeneous elastic medium under stick
boundary conditions. Forces and torques are directly imposed from outside onto the inclusions, or are
externally induced between them. The inclusions respond to these forces and torques by translations
and rotations against the surrounding elastic matrix. This leads to elastic matrix deformations,
and in turn results in mutual long-ranged matrix-mediated interactions between the inclusions.
Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate
the displacements and rotations of the inclusions from the externally imposed or induced forces and
torques. Analytical expressions are presented as a function of the inclusion configuration in terms of
displaceability and rotateability matrices. The role of the elastic environment is implicitly included
in these relations. That is, the resulting expressions allow a calculation of the induced displacements
and rotations directly from the inclusion configuration, without having to explicitly determine the
deformations of the elastic environment. In contrast to the hydrodynamic case, compressibility of
the surrounding medium is readily taken into account. We present the complete derivation based
on the underlying equations of linear elasticity theory. In the future, the method will, for example,
be helpful to characterize the behavior of externally tunable elastic composite materials, as well as
to improve the quantitative interpretation of microrheological results.

PACS numbers: 82.70.-y,47.15.G-,46.25.-y,82.70.Dd

I. INTRODUCTION

It is safe to say that elastic composite materials are of
huge technological importance. This statement is backed
by the fact that concrete, the most abundant man-made
material on earth [1], is frequently composed of a cement
matrix supported by more rigid particulate inclusions [1–
5]. Understanding the mutual interactions between the
inclusions as well as between the inclusions and the ma-
trix is crucial to understand the overall material perfor-
mance.

While hardened concrete is a relatively rigid substance,
polymeric gel matrices or biological tissue can provide
softer elastic environments. Then, larger-scale displace-
ments and rotations of embedded inclusions can be ob-
served when forces and/or torques are externally imposed
or induced. Magnetic microrheology observes the dis-
placements of probe particles caused by externally ap-
plied magnetic field gradients [6–9]. For instance, the me-
chanical response of the cytoskeleton [6–10] was analyzed
in this way. Similarly, the rotational motion of magnetic
rods under externally imposed magnetic torques can be
used for microrheological purposes [11–13]. The same is
true for tracking the relative displacements between par-
ticles that respond to mutual magnetic forces induced
between them [14].
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Thinking of rigid inclusions embedded in a soft elas-
tic polymeric gel matrix, artificial soft actuators repre-
sent a natural type of application [15–18]. Different ap-
proaches are possible. On the one hand, a net external
force or torque can be imposed onto the inclusions. For
example, magnetic particles are drawn towards external
field gradients [19], while anisotropic particles may ex-
perience a torque under an external electric or magnetic
field [20–23]. In these cases, the externally imposed forces
or torques are transmitted by the inclusions to the em-
bedding matrix and lead to overall deformations. On the
other hand, genuinely electrostrictive or magnetostric-
tive effects can be exploited when external electric or
magnetic fields induce mutual attractions and repulsions
between the embedded inclusions and in total lead to
macroscopic deformations [24–26]. In addition to that,
the overall mechanical properties can be tuned from out-
side by external fields in such materials. This allows,
during application, to reversibly adjust from outside the
elastic properties to a current need. Examples are the
magnitudes of the elastic moduli [15, 27–33], nonlinear
stress-strain behavior [23, 34], or dynamic properties [35–
39], allowing for instance for the construction of tunable
soft damping devices [40–42].

In all these situations, for a theoretical characterization
and quantitative description of the material behavior, it
is necessary to determine the induced displacements and
rotations of the rigid inclusions. This is a coupled many-
body problem. The inclusions are enclosed by the elas-
tic matrix and transmit the forces and torques to their

ar
X

iv
:1

61
1.

08
82

3v
1 

 [
co

nd
-m

at
.s

of
t]

  2
7 

N
ov

 2
01

6

mailto:puljiz@thphy.uni-duesseldorf.de
mailto:menzel@thphy.uni-duesseldorf.de


2

embedding environment. As a consequence, the matrix
gets deformed. The other inclusions are exposed to these
induced deformations of their environment. As a con-
sequence, they are additionally displaced and rotated.
Moreover, the inclusions are rigid and resist deformations
that would result from the induced matrix deformations.
This resistance leads to further stresses on the embed-
ding matrix and in turn to additional matrix-mediated
interactions between the inclusions.

One can address this problem using simplified rep-
resentations of the surrounding matrix, e.g., in elastic-
spring [43] or elastic-rod [44, 45] models. Alternatively,
one can directly perform complete finite-element simu-
lations [46–49] or apply related schemes of simulation
[23, 34] to explicitly cover the matrix behavior.

Here, for rigid spherical particles embedded with stick
boundary conditions in the elastic matrix, we explic-
itly solve the problem analytically. Following the above
cause-and-effect principle, we start from the forces and
torques acting on the embedded particles. We then calcu-
late the resulting coupled displacements and rotations of
all particles, including the described matrix-mediated in-
teractions between them. Our analytical results are given
in terms of displaceability and rotateability matrices that,
when multiplied with the forces and torques, lead to the
caused displacements and rotations. These expressions
solely depend on the configuration of the inclusions and
implicitly contain the role of the elastic environment. As
a strong benefit, the deformations of the elastic environ-
ment do not need to be calculated explicitly any more.
Therefore, in the future, one can directly calculate ana-
lytically the resulting displacements and rotations of the
inclusions, without needing to resolve the induced elastic
matrix deformations any longer. (To avoid confusion, we
note that the term “matrix” is used both for the elastic
environment as well as for the mathematical representa-
tion of second-rank tensors).

Our approach is based on the fact that for the static
linear elasticity equations a Green’s function is avail-
able [50]. We then adapt a method from low-Reynolds-
number hydrodynamics, called the method of reflections
[51, 52]. There, hydrodynamic interactions, i.e. induced
fluid flows for suspended particles, play the role of the
matrix-mediated interactions in our case. In hydrody-
namics, the approach turned out to be extremely suc-
cessful in characterizing the behavior of suspensions of
colloidal particles [53–60], i.e. nano- to micrometer-sized
objects, and of self-propelled microswimmers [61–64]. We
expect similar benefits for the characterization of elastic
composite materials in the future. In contrast to the hy-
drodynamic case, compressible elastic matrices are read-
ily described as well.

Technically, the method corresponds to an iterative
procedure in orders of the inverse separation distance
between the rigid inclusions. We here proceed to the
fourth order in this inverse distance, but in principle
one can proceed to arbitrary order. Parts of our results
were presented before (for instance, the elastic Faxén laws

[65, 66], see below, the derivation of which we here, how-
ever, present by explicit calculation in analogy to the
hydrodynamic procedure in Refs. 52 and 67). Mostly,
in the very few previous approaches on this subject, the
displacements were used as a starting point, and expres-
sions for the forces and torques necessary to achieve these
displacements were then derived [65, 68]. Here, we fol-
low the converse route, i.e., the forces and torques are
used as known input, and we then calculate the result-
ing displacements and rotations. This is in agreement
with the cause-and-effect chain that usually applies in
experiments. Our presentation has two main purposes.
First, we provide more explicitly the steps of derivation
outlined already in Ref. 14 for the displaceability matrix.
Second, we amend this procedure by the rotational com-
ponent, so that now also the influence of imposed torques
and the couplings between translational and rotational
degrees of freedom are included.

We start in Sec. II with a brief overview on the under-
lying equations of linear elasticity theory, including the
corresponding Green’s solution. In Sec. III, we review the
multipole expansion (a Taylor expansion) of the Green’s
solution around a rigid inclusion. Subsequently, the cal-
culation of the displacement field around a finite-sized
sphere subject to an external force or torque is explicitly
described in Secs. IV and V, respectively. In Sec. VI, the
derivation of the translational and rotational Faxén laws
of elasticity is presented explicitly; these expressions de-
scribe how a single spherical inclusion is displaced and
rotated in a given, imposed matrix deformation. The
Faxén laws enable us in Secs. VII–IX to calculate the
mutual matrix-mediated interactions between spherical
inclusions in elastic media. They contribute to the dis-
placeability and rotateability matrices defined in Sec. VII,
which allow to directly calculate from given forces and
torques on all inclusions their coupled displacements and
rotations. We explicitly calculate the components of
these matrices to fourth order in inverse inclusion sep-
aration distance. For this purpose, we first restrict our-
selves to two-sphere interactions in Sec. VIII and after
that include three-sphere interactions in Sec. IX. Brief
conclusions and a short outlook follow in Sec. X, while
several technical details are added in the Appendices to
render the presentation fully self-contained.

II. GREEN’S FUNCTION IN LINEAR
ELASTICITY THEORY

Throughout, we consider an isotropic, homogeneous,
and infinitely extended elastic matrix. Displacements of
the volume elements of the elastic matrix are described
by the displacement field u(r). We consider a point force
F acting on the matrix at position r0. If the deformations
are restricted to the linear regime, then u(r) obeys the
Navier-Cauchy equations [69] of linear elasticity theory,

∇2u(r) +
1

1− 2ν
∇∇ · u(r) = − 1

µ
Fδ(r− r0), (1)
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with ν the Poisson ratio connected to the matrix com-
pressibility, µ the shear modulus, and δ(r) the Dirac delta
function.

At positions different from r0, three relations arise
from Eq. (1) that will prove to be useful in subsequent
sections. First, taking the divergence of Eq. (1), we ob-
tain (for r 6= r0)

∇2∇ · u = 0. (2)

Second, working on Eq. (1) with ∇2 therefore leads to

∇4u = 0, (3)

which is referred to as biharmonic equation. The third
relation is obtained by taking the rotation of Eq. (1),
resulting in

∇×∇2u = 0. (4)

The general solution of Eq. (1) can be expressed by a
Green’s function,

u(r) = G(r, r0) · F, (5)

with G(r, r0) a tensor of rank 2 (we mark second-rank
tensors and matrices by an underscore). Due to the ho-
mogeneity and isotropy of the material, G(r, r0) is a func-
tion of the vector r−r0 only. For completeness, we briefly
reproduce its derivation (see, e.g., Ref. 70).

The generalized Hooke’s law [50] of linear elasticity
theory reads

σkp = λkpimuim, (6)

with σkp and uim the components of the stress and strain
tensor, respectively. λkpim summarizes the elastic coeffi-
cients, and the Einstein summation rule is applied. For
isotropic materials, the tensor of elastic coefficients takes
the form [50]

λkpim = λδkpδim + µ(δkiδpm + δkmδpi), (7)

with

λ =
2µν

1− 2ν
, (8)

whereas the linearized strain tensor [50] reads

uim =
1

2
(∇ium +∇mui) . (9)

We assume an arbitrary simply connected volume V of
the elastic material. The only force acting on this mate-
rial is our point force F at position r0. In equilibrium,
this point force is balanced by the forces resulting from
the surface stress:∫

∂V

dSpσkp + Fk = 0. (10)

FIG. 1. Illustration of the displacement field u(r) gener-
ated by a point force F acting on the matrix at position r0.
The displacement field is obtained from Eq. (5) via the elas-
tic Green’s function in Eq. (13). Small arrows, for visibility
rescaled to identical length, indicate the direction of displace-
ment field, whereas the background color represents the local
magnitude of u(r) on a logarithmic scale. The brighter the
color, the higher the magnitude of u(r).

Using the Gaussian divergence theorem, the surface inte-
gral can be converted into a volume integral. Therefore,
inserting Eqs. (5), (6), and (9) yields the expression

∫
V

dV

[
λkpim∇m∇pGij(r− r0) + δjkδ(r− r0)

]
Fj = 0.

(11)
Since the above equation must hold true for any arbi-
trary volume and point of attack r0, the Green’s function
Gij(r− r0) must satisfy the equilibrium condition

λkpim∇m∇pGij(r− r0) + δjkδ(r− r0) = 0. (12)

This equation can be solved by Fourier forth and back
transformation, see Appendix A, resulting in

G(r) =
1

16π(1− ν)µ

[
3− 4ν

r
Î +

rr

r3

]
, (13)

with Î the identity matrix and rr a dyadic product. A
graphical representation of Eqs. (5) and (13) is given in
Fig. 1. For incompressible materials (in the regime of
linear elasticity), ν takes the value 1/2. In this case,
the Green’s function in Eq. (13) has the same form as
the Oseen tensor in low-Reynolds-number hydrodynam-
ics [51, 52, 71], where the hydrodynamic viscosity takes
the position of µ. In general, G(r) used in Eq. (5) solves
Eq. (1) .
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III. MULTIPOLE EXPANSION

Using the elastic Green’s function G(r), we can express
the matrix displacement field u(r) generated by an arbi-
trarily shaped embedded rigid particle centered at the
origin as

u(r) =

∫
∂V

dS′G(r− r′) · f(r′). (14)

Here r′ is located on the particle surface ∂V and f(r′)
is the force per unit area exerted by the rigid particle
onto the matrix. This equation expresses a superposi-
tion of displacement fields generated by point forces on
the particle surface. A similar situation arises in electro-
statics, where a localized continuous charge distribution
can be expressed as a superposition of point charges, each
of which contributing to the overall electric potential.
Moreover, similarly to the electrostatic potential of point
charges, in Eq. (13) we have G(r) ∼ r−1. Therefore, it is
possible to perform a multipole expansion of the Green’s
function. This is well-known for low-Reynolds-number
hydrodynamics [51] and has previously been adapted to
elastostatics [72]. We follow the procedure as described
for the hydrodynamic case in Ref. 51.

In the far field, one has |r| � |r′| in Eq. (14). The
Taylor series of G(r− r′) in r′ around r′ = 0 reads

Gij(r− r′) =

∞∑
n=0

(−1)n

n!
(r′ · ∇)nGij(r). (15)

Inserting Eq. (15) into Eq. (14), we obtain the compo-
nents of the displacement field as

ui(r) =

∞∑
n=0

(−1)n

n!

∫
∂V

dS′fj(r
′) (r′ · ∇)nGij(r)

= Gij(r)Fj −
∂Gij(r)

∂rk
Djk + ... (16)

with

Fj =

∫
∂V

dS′fj(r
′), Djk =

∫
∂V

dS′fj(r
′)r′k. (17)

Here, F can be identified as the total force that the par-
ticle exerts on the matrix. The D-tensor can be split into
an antisymmetric and a symmetric part,

Djk = Tjk + Sjk, (18)

with

Tjk =
1

2

∫
∂V

dS′[fj(r
′)r′k − fk(r′)r′j ], (19)

Sjk =
1

2

∫
∂V

dS′[fj(r
′)r′k + fk(r′)r′j ]. (20)

The symmetric tensor Sjk is called stresslet. Further-
more, we set the components of the torque T that the
particle exerts on the matrix to

Ti := εijk

∫
∂V

dS′r′jfk(r′) = − εijkTjk, (21)

with εijk the Levi-Civita symbol. Therefore, we can ex-
press the corresponding part in Eq. (16) through

Tjk
∂Gij
∂rk

= − 1

2
εjklTl

∂Gij
∂rk

=
1

2
(T×∇)jGij . (22)

In sum, we obtain the following expression for the first
terms of the multipole expansion,

u(r) = G(r) · F−
(

1

2
T×∇+ S · ∇

)
·G(r), (23)

which gives us the displacement field around a rigid par-
ticle in far-field approximation.

IV. DISPLACEMENT FIELD INDUCED BY A
UNIFORMLY TRANSLATED RIGID SPHERICAL

INCLUSION

To facilitate our analytical approach, we now confine
ourselves to rigid spherical particles embedded in the
elastic matrix. The center of such a sphere of volume
V is located at position r0 and a is its radius. If an ex-
ternal force F uniformly translates the sphere, it creates
a displacement field in the surrounding matrix. Assum-
ing that the elastic matrix sticks to the surface ∂V of
the sphere and that the displacement field vanishes at
infinity, the boundary conditions for u(r) follow as

u(r ∈ ∂V ) = U, u(|r| → ∞) = 0. (24)

Here U is the translation of the sphere caused by the
external force, which due to the particle rigidity simulta-
neously applies for all its surface points.

The resulting displacement field can be expressed in
terms of the elastic Green’s function G(r − r0), see
Eq. (14). The integral in Eq. (14), summing over all the
contributions from the point forces on the particle surface
at positions r′ ∈ ∂V , can for a sphere be calculated ex-
plicitly, see Ref. 52 for the case of low-Reynolds-number
hydrodynamics. However, this is a lengthy calculation,
and we follow the elegant approach outlined in Refs. 51
and 72.

Due to the linearity of the Navier-Cauchy equations
Eq. (1), there is only one unique solution satisfying the
prescribed boundary conditions. Assuming F ∼ U in
the linear regime, an ansatz u(r) ∼ G(r − r0) · F ∼
G(r − r0) ·U appears plausible. Moreover, since on ∂V
the displacement field u(r) ∼ G(r− r0) ·U must satisfy
Eq. (24), on ∂V the overall multiplicand of U must be

proportional to Î in this expression. This is accomplished
by an additional differential operator acting on G(r−r0),(

1 +
a2

6
∇2

)
G(r−r0)

∣∣∣∣
|r−r0|=a

=
5− 6ν

24π(1− ν)µa
Î. (25)

Altogether,

u(r) =
24π(1− ν)µa

5− 6ν

(
1 +

a2

6
∇2

)
G(r− r0) ·U (26)
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satisfies the boundary conditions Eq. (24) as well as
Eq. (1) and thus, due to the uniqueness of the solution,
is the desired result.

For a → 0 and |r − r0| > a, the contribution a2

6 ∇
2

becomes negligible and we must reproduce Eq. (5). In
this way, we find

F =
24π(1− ν)µa

5− 6ν
U (27)

or, equivalently,

u(r ∈ ∂V ) = U =
5− 6ν

24π(1− ν)µa
F. (28)

As a consequence, we may rewrite Eq. (26) as

u(r) =

(
1 +

a2

6
∇2

)
G(r− r0) · F. (29)

This is the elastic analogue to the hydrodynamic Stokes
flow [52].

Since, as we just argued, the solution Eq. (29) is exact,
we can for a spherical particle insert it into Eq. (14) to
find for |r− r0| ≥ a the relation∫

∂V

G(r− r′) · f(r′)dS′ =

(
1 +

a2

6
∇2

)
G(r− r0) · F,

(30)
which we will need later.

V. DISPLACEMENT FIELD INDUCED BY A
UNIFORMLY ROTATED RIGID SPHERICAL

INCLUSION

In a similar way, we can ask for the displacement field
generated in an elastic matrix by a uniformly rotated
rigid spherical inclusion at position r0. For this purpose,
we consider an external torque T acting on the inclusion
(see Refs. 51 and 52 for the low-Reynolds-number hydro-
dynamic and Ref. 72 for the elastic case). The rotation of
the particle is quantified by the absolute (static) rotation
vector Ω. Then the boundary conditions on the surface
∂V of the particle and at infinity read

u(r ∈ ∂V ) = Ω× (r− r0), u(|r| → ∞) = 0. (31)

Inserting the displacement field

u(r) =

(
a

|r− r0|

)3
Ω× (r− r0) (32)

into these boundary conditions as well as into Eq. (1)
confirms that it is the unique solution of the problem.
As will be shown in Sec. VI, see Eq. (53), the torque that
is externally imposed on the inclusion is related to the
rotation vector Ω via

T = 8πµa3Ω, (33)

with a the radius of the sphere.

VI. FAXÉN’S LAWS

In low-Reynolds-number hydrodynamics, Faxén’s laws
describe how a spherical particle is translated, rotated,
and which stresses act onto it in an imposed fluid flow
[51, 52, 67]. The fluid is typically considered as incom-
pressible.

Due to the similarities of the underlying equations, the
procedure can be transferred to the elastic case. That is,
we now consider an (externally) imposed deformation of
our elastic matrix as described by a displacement field
u(r). We then calculate how a rigid spherical particle
embedded in the elastic matrix and exposed to this dis-
placement field is translated, rotated, and which stresses
act onto it. A possible compressibility of the elastic ma-
trix is readily included. Such elastic Faxén laws have
been outlined before [65, 66]. Here, we present an explicit
derivation by direct calculation. We adapt the hydrody-
namic approach in Refs. 52 and 67 by transferring it to
the elastic case.

We consider a rigid spherical inclusion of radius a em-
bedded in the elastic matrix at position r0. In addition
to the displacement field imposed onto the matrix, the
embedded particle may still be subject to external forces
or torques. Moreover, its rigidity resists the imposed ma-
trix deformations. Therefore, its surface elements exert
additional forces onto the matrix, summarized again by
the surface force density f(r′) with r′ ∈ ∂V and ∂V the
surface of the particle. The additional displacement field
resulting from f(r′) is calculated according to Eq. (14).
Due to the linearity of Eq. (1), the different contribu-
tions to the overall displacement field simply superim-
pose. Describing again translations and rotations of the
sphere by a translation vector U and a (static) rotation
vector Ω, respectively, we obtain in total for the surface
points r ∈ ∂V the stick boundary condition

Ui + [Ω× (r− r0)]i =

∫
∂V

Gij(r− r′)fj(r
′)dS′ + ui(r).

(34)
On the left-hand side of this equation, we find the dis-

placements of the surface points of the sphere by the rigid
translation U and the rigid rotation Ω. For each point
r ∈ ∂V , these displacements must be identical to the dis-
placements of the matrix stuck to the sphere surface. The
total matrix displacement on the surface is given on the
right-hand side. There, the first term, i.e. the integral, in-
cludes all contributions to the matrix displacements due
to the surface force density f(r′) exerted by the parti-
cle onto the matrix. The second term, i.e. u(r), corre-
sponds to the (externally) imposed deformation field. At
this point, one may be concerned with the validity of the
equation, as the Green’s function G was derived for an
infinitely extended matrix. This seems to contradict the
presence of a finite-sized rigid embedded sphere. How-
ever, for our calculation it is irrelevant whether we con-
sider the sphere to be rigid inside, or whether it is filled
with deformable elastic matrix material as well. The only
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important point is that the surface shell, which may be
considered as infinitely thin, is rigidly translated and ro-
tated as one rigid object.

Integration of both sides of Eq. (34) over ∂V gives

4πa2Ui =

∫
∂V

∫
∂V

Gij(r−r′)fj(r
′)dS′dS+

∫
∂V

ui(r)dS.

(35)
Using Eq. (30), the first term on the right-hand side can
be connected to the displacement of the sphere due to
an external force F. On ∂V , the resulting expression is
further simplified using Eqs. (28) and (29).

For the evaluation of the second term on the right-hand
side, we insert the Taylor expansion of ui(r) around the
particle center at r = r0,

ui(r) = ui(r0) + (r− r0)j

[
∇jui(r)

]
r=r0

+
1

2
(r− r0)j(r− r0)k

[
∇j∇kui(r)

]
r=r0

+
1

3!
(r− r0)j(r− r0)k(r− r0)l

[
∇j∇k∇lui(r)

]
r=r0

+ ... (36)

Since there are no body forces generating the imposed
field u(r) at r = r0, Eq. (3) must hold, i.e. ∇4u(r =
r0) = 0. Thus, under the integral, terms of fourth and
higher even order in ∇ must vanish due to isotropy. Fur-

thermore, all odd terms in (r − r0) of the Taylor series
must vanish during integration due to symmetry. Taking
this into account, the second term on the right-hand side
of Eq. (35) can be evaluated as

∫
∂V

ui(r) dS = 4πa2ui(r0) +
1

2

∫
∂V

(r− r0)j(r− r0)k

[
∇j∇kui(r)

]
r=r0

dS

= 4πa2

(
1 +

a2

6
∇2

)
ui(r)

∣∣∣∣
r=r0

. (37)

Here, in the step from the first to the second line, we
have used that ∫

∂V

rjrk dS =
4πa4

3
δjk. (38)

Collecting all results, Eq. (35) leads to

U =
5− 6ν

24π(1− ν)µa
F +

(
1 +

a2

6
∇2

)
u(r)

∣∣∣∣
r=r0

. (39)

In this expression, the first contribution to the rigid
translation is caused by the external force F, see our
previous result in Eq. (28). The second contribution is
due to the imposed matrix displacement field u(r). As

we can see, the sphere is not simply advected by the im-
posed displacement. Due to its finite size, the additional

contribution a2

6 ∇
2 arises.

In the absence of an external force on the sphere, i.e.
for F = 0, we obtain what is referred to as Faxén’s first
law in hydrodynamics [67]:

UFaxén =

(
1 +

a2

6
∇2

)
u(r)

∣∣∣∣
r=r0

. (40)

This relation describes the rigid translation of a rigid
sphere in an imposed deformation of the surrounding ma-
trix.

To obtain corresponding expressions for the rotation
vector and for the stresslet, we multiply both sides of
Eq. (34) with (r− r0)k and integrate over ∂V ,

∫
∂V

(r− r0)k[Ω× (r− r0)]i dS =

∫
∂V

∫
∂V

(r− r0)kGij(r− r′)fj(r
′) dSdS′ +

∫
∂V

(r− r0)kui(r) dS. (41)

The integral on the left-hand side is easily evaluated using Eq. (38) and reads

4πa4

3
εilkΩl. (42)
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In order to calculate the inner integral of the first term
on the right-hand side, we substitute r′′ = r − r0 and
express the integral in terms of the Fourier transform of

the Green’s function,∫
∂V

Gij(r− r′) (r− r0)k dS

=

∫
∂V

Gij(r
′′ − r′ + r0)r′′k dS′′

=
1

(2π)3

∫
∂V

dS′′
∫

d3k G̃ij(k)r′′ke
ik·(r′′−r′+r0). (43)

Now the integral with respect to r′′ can be evaluated as∫
∂V

dS′′eik·r
′′
r′′k = −i∇k,k

∫
∂V

dS′′eik·r
′′

= −4πia2k̂k
d

dk

sin(ka)

ka
. (44)

The integral
∫

d3k in Eq. (43) can be split into∫
dS(k̂)

∫∞
0
k2dk. Inserting Eq. (A.3), Eq. (43) becomes

2π2µ

a2

∫
∂V

Gij(r− r′) (r− r0)k dS

= −i
∫
∂V

dS(k̂)

(
δij −

1

2(1− ν)
k̂ik̂j

)
k̂k

∞∫
0

dk eikk̂·(r0−r
′) d

dk

sin(ka)

ka

= −i
∫
∂V

dS(k̂)

(
δij −

1

2(1− ν)
k̂ik̂j

)
k̂k

(
sin(ka)

ka
eikk̂·(r0−r

′)

∣∣∣∣∞
0

− ik̂l(r0 − r′)l

∞∫
0

dk
sin(ka)

ka
eikk̂·(r0−r

′)

)

=

∫
∂V

dS(k̂)

(
δij −

1

2(1− ν)
k̂ik̂j

)
k̂kk̂l(r

′ − r0)l

∞∫
0

dk
sin(ka)

ka
eikk̂·(r0−r

′). (45)

In the last line, the imaginary part is odd in k̂ and therefore vanishes upon integration. The remaining real part is
an even function in both k̂ and k, so that, under the

∫
dS(k̂)-integral, we may rewrite the dk-integral as

1

2

∞∫
−∞

dk
sin(ka)

ka
eikk̂·(r0−r

′) =

{
π
2a , for − 1 < k̂·(r′−r0)

a < 1,

0, otherwise,
(46)

see Appendix B. We obtain∫
∂V

Gij(r− r′) (r− r0)k dS =
a

4πµ
(r′ − r0)l

∫
∆S

dS(k̂)

(
δij −

1

2(1− ν)
k̂ik̂j

)
k̂kk̂l, (47)

where the surface of integration ∆S is given by

∆S =

{
k̂

∣∣∣∣− 1 <
k̂ · (r′ − r0)

a
< 1

}
. (48)

Since r′ is located on the surface of the inclusion, i.e. |r′ − r0| = a, ∆S corresponds to the surface of the unit sphere.

Using Eq. (38) (for k̂ instead of r) and∫
∆S

k̂ik̂j k̂kk̂l dS(k̂) =
4π

15
(δijδkl + δikδjl + δilδjk) (49)

finally leads to ∫
∂V

(r− r0)kGij(r− r′)fj(r
′) dS

=
a

15µ

[
5(r′ − r0)kfi −

1

2(1− ν)

(
(r′ − r0)kfi + (r′ − r0)ifk + (r′ − r0)lflδik

)]
. (50)
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The second term on the right-hand side of Eq. (41) can be evaluated by inserting the Taylor expansion of u(r) from
Eq. (36), ∫

∂V

(r− r0)kui(r) dS =

∫
∂V

(r− r0)k(r− r0)j

[
∇jui(r)

]
r=r0

dS

+
1

6

∫
∂V

(r− r0)k(r− r0)j(r− r0)l(r− r0)m

[
∇j∇l∇mui(r)

]
r=r0

dS

=
4πa4

3

(
1 +

a2

10
∇2

)
∇kui(r)

∣∣∣∣
r=r0

, (51)

where again we have used Eqs. (38) and (49) (for (r−r0) instead of k̂ in the latter). The other terms in the expansion
again vanish due to isotropy and symmetry upon integration.

Altogether, combining Eqs. (41), (42), (50), and (51), we find

4πa4

3
εilkΩl =

a

15µ

∫
∂V

dS′

[
5(r′ − r0)kfi −

1

2(1− ν)

(
(r′ − r0)kfi + (r′ − r0)ifk + (r′ − r0)lflδik

)]

+
4πa4

3

(
1 +

a2

10
∇2

)
∇kui(r)

∣∣∣∣
r=r0

. (52)

This tensor equation can be split into a symmetric
and an antisymmetric part. First, we calculate the an-
tisymmetric part by multiplying Eq. (52) by εijk. Since
there are no body forces generating the imposed field
u(r) at r = r0, Eq. (4) most hold for the last term,

i.e. ∇ × ∇2u(r = r0) = 0. Therefore the a2

10∇
2-term in

Eq. (52) vanishes. Using the definition of the torque from
Eq. (21), we obtain

Ω =
1

8πµa3
T +

1

2
∇× u(r)

∣∣∣∣
r=r0

. (53)

T corresponds to an external torque acting onto the
sphere, which is transmitted by the sphere onto the sur-
rounding matrix (with the reference point of the torque

at the center of the sphere).

Similarly to the previous case of rigid translations, in
the absence of an external torque acting on the sphere,
i.e. for T = 0, we obtain a relation referred to as Faxén’s
second law in hydrodynamics [67]:

ΩFaxén =
1

2
∇× u(r)|r=r0 . (54)

This relation quantifies the (static) rigid rotation of a
rigid sphere in an imposed deformation of the surround-
ing matrix.

Finally, we calculate the symmetric part of Eq. (52).
The Ω-term vanishes because of its antisymmetry. Thus,
we find

0 =
a

15µ

1

2(1− ν)

∫
∂V

dS′
[
(4− 5ν)

(
(r′ − r0)ifk + (r′ − r0)kfi

)
− (r′ − r0)jfjδik

]
+

4πa4

3

(
1 +

a2

10
∇2

)
1

2

(
∇iuk(r) +∇kui(r)

)∣∣∣∣
r=r0

=:
1

2
(Aik +Aki). (55)

To obtain an expression solely for the stresslet as defined in Eq. (20), we add a vanishing trace term

1

5(1− 2ν)
Ajjδik =

a

15µ

1

2(1− ν)

∫
∂V

dS′(r′ − r0)jfjδik +
4πa4

15

(
1 +

a2

10
∇2

)
1

1− 2ν
∇juj(r)δik

∣∣∣∣
r=r0

, (56)

leading to

0 =
1

2
(Aik +Aki) +

1

5(1− 2ν)
Ajjδik. (57)

Then, the definition of Sik appears in Eq. (57). Solving for Sik, we find the stresslet as

S = − 4π(1− ν)µa3

4− 5ν

(
1 +

a2

10
∇2

)[
1

1− 2ν
Î∇ · u(r) +

5

2

(
∇u(r) +

(
∇u(r)

)T)]∣∣∣∣∣
r=r0

. (58)
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Eq. (58) expresses the stress that a rigid spherical in-
clusion exerts onto the surrounding matrix in the im-
posed displacement field u(r) of the matrix. The matrix
deformation is imposed from elsewhere, that is, not by
the spherical inclusion itself. However, the inclusion due
to its rigidity resists this deformation. This resistance
leads to the described stresslet.

Vice versa, the stresslet that the matrix exerts onto
the particle is given by

SFaxén = − S, (59)

which together with Eq. (58) may be referred to as
Faxén’s third law and was derived by Batchelor in the
hydrodynamic case [67].

VII. DISPLACEABILITY AND
ROTATEABILITY MATRIX

Now we have all the ingredients to consider the coupled
displacements and rotations of N spherical inclusions em-
bedded in the infinitely extended homogeneous elastic
medium. For simplicity, we consider identical spheres of
radius a, labeled by 1, ..., N .

We here adhere to the following cause-and-effect chain.
Each spherical inclusion j is subject to an external force

Fj and an external torque Tj , j = 1, ..., N . As a con-
sequence of these forces and torques, the inclusions are
displaced and rotated by rigid translation vectors Ui and
rigid rotation vectors Ωi, respectively, i = 1, ..., N . In ad-
dition to that, the spheres transmit the forces and torques
to the surrounding elastic medium, causing additional
deformations in their environment. Other inclusions are
exposed to these induced deformations and counteract
due to their rigidity. This leads to further distortions,
acting back on all other rigid spheres that likewise re-
sist induced deformations, resulting in mutually coupled
particle translations and rotations. In the following, we
derive analytical expressions for these translations and
rotations, using the external forces and torques as an in-
put.

In formal analogy to the hydrodynamic mobility ma-
trices [52, 73], we can define elastic displaceability and
rotateability matrices. Given the external (quasi)static
forces Fj and (quasi)static torques Tj , j = 1, ..., N , ap-
plied to the spherical inclusions, these matrices directly
express the caused displacements Ui and rotations Ωi in
the resulting situation of new (quasi)static equilibrium,
i = 1, ..., N :



U1

...
UN

Ω1

...
ΩN


=



Mtt
11 · · · Mtt

1N Mtr
11 · · · Mtr

1N
...

. . .
...

...
. . .

...
Mtt

N1 · · · Mtt
NN Mtr

N1 · · · Mtr
NN

Mrt
11 · · · Mrt

1N Mrr
11 · · · Mrr

1N
...

. . .
...

...
. . .

...
Mrt

N1 · · · Mrt
NN Mrr

N1 · · · Mrr
NN


·



F1

...
FN

T1

...
TN


(60)

Here, the sub-matrices Mtt
ij express how the particles

are translated due to the forces acting on all the par-
ticles (translation–translation coupling, i, j = 1, ..., N).
Their components have been derived already in a pre-
vious work [14]. The sub-matrices Mtr

ij include contri-
butions to the translations due to the torques acting on
the inclusions (translation–rotation coupling). Similarly,
the sub-matrices Mrt

ij determine how forces acting on the
particles lead to their rotations (rotation–translation cou-
pling). The cause of rotations by torques is given by the
sub-matrices Mrr

ij (rotation–rotation coupling).
We stress that the role of the surrounding elastic

medium is implicitly contained in these matrices. Their
components will solely depend on the configuration of
the rigid inclusions. Therefore, they significantly facili-
tate the problem of calculating the coupled displacements
and rotations described above. It is not necessary any
longer to explicitly calculate the displacement field u(r)

of the surrounding medium once the expressions for these
matrices have been derived.

Below, we shall explicitly perfom this derivation for the
components Mtt

ij , Mtr
ij , Mrt

ij , and Mrr
ij as an expansion in

the inverse separation distance of the inclusions. Here, we
proceed up to (including) fourth order. This comprises
pairwise interactions mediated by the surrounding elastic
medium, see Sec. VIII, and three-body interactions, see
Sec. IX.

VIII. TWO-BODY INTERACTIONS

In the following, we start from the forces and torques
acting on the inclusions, which as a consequence lead
to the coupled particle translations and rotations. Our
approach adapts the method of reflections from the hy-
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drodynamic literature as presented in Ref. 52. In addi-
tion to that, we here explicitly include the role of im-
posed torques as for instance exerted by external mag-
netic fields on magnetically anisotropic inclusions. More-
over, we take into account the rigidity of the inclusions
directly via the stresslets that follow from their resistance
to deformations [51, 67].

The initial forces and torques acting on the inclusions
are either imposed externally, or they are induced be-
tween the inclusions from outside. These are not the
forces and torques exerted by the elastic matrix onto the
inclusions. For clarity, we consider the influence of the
imposed or induced forces and torques separately in two
steps. Due to the linearity of the governing equations,
the results of these two steps can in the end simply be
added/superimposed.

A. Forces imposed on or induced between the
inclusions

In the following, we consider two rigid spherical in-
clusions i and j, both of radius a. They are located at
positions ri and rj , respectively. The forces Fi and Fj
are externally applied to the spheres i and j, respectively,
or induced between them. As indicated before, we will
proceed below by an expansion in the inverse separation
distance between the two spheres.

To zeroth order, the spheres are thus effectively con-
sidered to be infinitely far away from each other. Con-
sequently, the interactions between the two spheres via
the surrounding elastic matrix do not enter. The actual

translations of the spheres, U
(0)
i and U

(0)
j , respectively,

are then given by the solution for isolated spherical in-
clusions, see Eq. (28), and read

U
(0)
i = u

(0)
i (r ∈ ∂Vi) =

5− 6ν

24π(1− ν)µa
Fi, (61)

U
(0)
j = u

(0)
j (r ∈ ∂Vj) =

5− 6ν

24π(1− ν)µa
Fj . (62)

Furthermore, to zeroth order, the induced displacement
field of the elastic matrix around each sphere i and j has
been calculated in Eq. (29), i.e.

u
(0)
i (r) =

(
1 +

a2

6
∇2

)
G(r− ri) · Fi, (63)

u
(0)
j (r) =

(
1 +

a2

6
∇2

)
G(r− rj) · Fj . (64)

In Fig. 2, u
(0)
j (r) is indicated by the small arrows.

Next, we take into account the mutual interactions be-
tween the two spheres mediated by the surrounding elas-
tic matrix. For example, we consider particle i that is
embedded in the elastic matrix. Thus it is exposed to the

displacement field u
(0)
j (r) that results from the force Fj

acting on sphere j. An additional translation U
(1)
i and

rotation Ω
(1)
i of sphere i are induced in this way, which

FIG. 2. Illustration of the immediate effect that the dis-
placement of sphere j has on the translation and rotation of
another sphere i. A force Fj is externally imposed on sphere
j. As a consequence, sphere j gets rigidly translated as given

by U
(0)
j , see Eq. (62). Moreover, the surrounding matrix is

distorted, as described by the displacement field u
(0)
j (r), see

Eq. (64). The local directions of u
(0)
j (r) are indicated by

the small arrows that, for visibility, are rescaled to identical

length. We indicated the local magnitude of u
(0)
j (r) by back-

ground color, where brighter color represents higher magni-
tude and the color values follow an arc-tangent scale. Sphere i

is exposed to the induced displacement field u
(0)
j (r) and there-

fore gets translated as denoted by U
(1)
i and rotated as denoted

by Ω
(1)
i . These quantities can be calculated from u

(0)
j (r) via

Eqs. (65) and (66), respectively, leading to Eqs. (72) and (73).
Overall, in this way we obtain the corresponding contributions
to the displaceability and rotateability matrices Mtt

i=j , Mtt
i 6=j ,

Mrt
i=j , and Mrt

i 6=j in Eqs. (78), (79), (81), and (82), respec-
tively, up to inverse quartic order in the particle distances.

we can calculate from the Faxén relations, Eqs. (40) and
(54). They read

U
(1)
i =

(
1 +

a2

6
∇2

)
u

(0)
j (r)

∣∣∣∣
r=ri

, (65)

Ω
(1)
i =

1

2
∇× u

(0)
j (r)

∣∣∣∣
r=ri

. (66)

That is, u
(0)
j (r) now plays the role of the imposed matrix

displacement field u(r) in Eqs. (40) and (54).

In general, the displacement field u
(0)
j (r) would tend

to deform sphere i. In other words, a stress is exerted on
particle i. Yet, because of its rigidity, sphere i resists this
deformation. As a consequence, the overall displacement

field induced by sphere j, i.e. u
(0)
j (r), is disturbed via

the presence of sphere i. We can find this disturbance
from the stress that the rigid sphere i itself exerts back
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FIG. 3. Illustration of the rigidity-based reflection of an induced displacement field by another sphere. (a) As in Fig. 2, an

externally imposed force Fj acts onto the spherical particle j. This directly results in the particle translation U
(0)
j and in the

displacement field u
(0)
j (r) in the surrounding elastic matrix, see Eqs. (62), (64), and Fig. 2. The small arrows indicate the

local direction of the induced displacement fields. (b) Particle i is exposed to the displacement field u
(0)
j (r) and is therefore

translated by U
(1)
i , see Eq. (65). Rotations are not considered here for simplicity. Simultaneously, the displacement field tends

to deform particle i as given by the stresslet −S
(1)
i , see Eqs. (58) and (59). (c) However, the rigid particle i resists deformation

and imposes the stresslet S
(1)
i onto the surrounding elastic matrix, see Eq. (67). S

(1)
i induces yet another displacement field

u
(1)
i (r) in the elastic environment, see Eq. (68), which overlays the initial field u

(0)
j (r). In this way, the initial field u

(0)
j (r) gets

partially reflected by the rigid particle i, leading to u
(1)
i (r). (d) Now, particle j is exposed to u

(1)
i (r). Its initial translation

U
(0)
j thus gets corrected by a translation U

(2)
j , see Eq. (75) after swapping indices i and j. Altogether, this leads to the quartic

contribution in the inverse particle separation distance to the displaceability matrices Mtt
i=j in Eq. (78) switching i ↔ j. In

analogy, we may consider instead of the initial particle j a different, third particle exposed to the reflected field. Following the

same scheme and calculating its induced translation, we obtain the three-body interaction included by the contribution M
tt(3)
i 6=j

in Eq. (104). (For the latter purpose, the first, second, and third particle are referred to as j, k, and i, respectively.)

onto the matrix. The corresponding stresslet follows from Eq. (58) and here takes the form

S
(1)
i = − 4π(1− ν)µa3

4− 5ν

(
1 +

a2

10
∇2

)[
1

1− 2ν
Î∇ · u(0)

j (r) +
5

2

(
∇u

(0)
j (r) +

(
∇u

(0)
j (r)

)T)]∣∣∣∣∣
r=ri

. (67)

Analogous expressions for sphere j are obtained by
swapping the indices i↔ j in Eqs. (65)–(67).

We now proceed to improve our solution by itera-
tion. For this purpose, we calculate the mentioned dis-

turbances u
(1)
i (r) and u

(1)
j (r) that the stresslets S

(1)
i and

S
(1)
j cause in the matrix, respectively. We find corre-

sponding expressions from Eq. (23):

u
(1)
i (r) = −(S

(1)
i · ∇) ·G(r− ri), (68)

u
(1)
j (r) = −(S

(1)
j · ∇) ·G(r− rj). (69)

We should remark that Eq. (23) also contains the forces
imposed on the inclusions. However, at this stage of it-
eration, they do not contribute. The direct influence of
the forces has already been determined in Eqs. (61)–(64).
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The spheres simply follow the resulting induced displace-
ment fields, without any additional extra net force or
torque resistance, see Eqs. (65) and (66). Their only re-
sistance is due to their rigidity as described above, which
now enters Eqs. (68) and (69) in the form of the stresslets.
Due to the linearity of the Navier-Cauchy equations,
Eq. (1), the disturbances in Eqs. (68) and (69) can in
the end simply be added/superimposed to the displace-
ment fields in Eqs. (63) and (64).

In the next step, each sphere is now additionally ex-
posed to one of these rigidity-induced displacement fields

u
(1)
i (r) and u

(1)
j (r) created by the other sphere. This

leads to yet another contribution to the translation (U
(2)
i

and U
(2)
j ) and rotation (Ω

(2)
i and Ω

(2)
j ) of each sphere.

Again, we can calculate these contributions from the

Faxén laws, see Eqs. (40) and (54), now taking u
(1)
j (r)

and u
(1)
i (r) as the imposed displacement fields, respec-

tively:

U
(2)
i =

(
1 +

a2

6
∇2

)
u

(1)
j (r)

∣∣∣∣
r=ri

, (70)

Ω
(2)
i =

1

2
∇× u

(1)
j (r)

∣∣∣∣
r=ri

, (71)

with U
(2)
j and Ω

(2)
j obtained by swapping the indices

i ↔ j. The overall situation resulting in the displace-

ment U
(2)
j is illustrated in Fig. 3 and has already been

considered in Ref. 14.

Altogether, one can say that parts of the displacement

fields u
(0)
i (r) and u

(0)
j (r), initially generated by the first

sphere, are reflected by the respectively other sphere in

the form of u
(1)
j (r) and u

(1)
i (r). This is due to the rigidity

of the spheres. Then these fields are felt again by the
corresponding first sphere.

In principle, one can continue this iteration by consid-
ering further reflections. Also the first sphere is rigid and
will resist deformations in the reflected field, etc. We can
use the same formulae summarized above to continue this
iteration. Accordingly, this approach was called method
of reflections in the hydrodynamic literature [52]. Over-
all, it turns out that this iterative procedure corresponds
to an expansion in the inverse particle separation dis-
tance r−1

ij , with rij = |ri − rj |. Here, we proceed up to

(including) the fourth order r−4
ij . Counting of factors r−1

ij
and gradients shows that we may stop at the presented
stage.

To find the resulting explicit analytical expressions for
the matrix-mediated particle interactions, let us now ex-
plicitly calculate the contributions in Eqs. (65), (66),
(70), and (71). From Eqs. (13), (64), and (65), using
Eq. (3), we find for the first correction of the translation
of sphere i

U
(1)
i =

(
1 +

a2

3
∇2

)
G(r− rj) · Fj

∣∣∣∣
r=ri

=
1

16π(1− ν)µ

1

rij

[(
4(1− ν)− 4

3

(
a

rij

)2
)

r̂ij r̂ij +

(
3− 4ν +

2

3

(
a

rij

)2
)

(̂I− r̂ij r̂ij)

]
· Fj , (72)

with r̂ij = (ri− rj)/rij the unit vector pointing from sphere j to sphere i, see Fig. 2. Similarly, using Eqs. (13), (64),
(66), and ∇×∇2G(r) = 0, which follows from Eq. (4), we find for the corresponding rotation of sphere i

Ω
(1)
i =

1

2
∇×

(
1 +

a2

6
∇2

)
G(r− rj) · Fj

∣∣∣∣
r=ri

= − 1

8πµr2
ij

r̂ij × Fj , (73)

see Fig. 2.

To determine U
(2)
i and Ω

(2)
i , we first have to calculate the stresslet induced by sphere j and acting onto the matrix

as given by Eq. (67) with switched indices i↔ j,

S
(1)
j =

1

4(4− 5ν)

a3

r2
ij

[
5(1− 2ν)(Fir̂ij + r̂ijFi)− 3Îr̂ij · Fi + 15r̂ij r̂ij r̂ij · Fi

]
+O(r−4

ij ). (74)

It is sufficient to calculate S
(1)
j to this order because ∇G(r − rj) in Eq. (69) is already of order r−2

ij at r = ri. The

additional translation of sphere i induced by the stresslet S
(1)
j can now be calculated from Eqs. (69) and (70). To our

desired order, we may omit the a2

6 ∇
2-term and obtain

U
(2)
i = − 1

32π(1− ν)(4− 5ν)µ

a3

r4
ij

[
5(1− 2ν)2(̂I + r̂ij r̂ij) + (37− 44ν)r̂ij r̂ij

]
· Fi. (75)

This expression for U
(2)
i corresponds to the lowest-order correction to the displacement of sphere i resulting from
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a reflection of the displacement field u
(0)
i from sphere j.

As for the contribution to the rotation Ω
(2)
i of sphere i,

since u
(1)
j (ri) in Eq. (69) is already of order r−4

ij , Eq. (71)

would yield an expression of higher order O(r−5
ij ).

As indicated above, to obtain the next-order contribu-

tions, we would have to calculate the stresslet S
(2)
i that

results from the rigidity-caused resistance of sphere i in

the displacement field u
(1)
j (r). This can be achieved again

via Eq. (67) by switching the indices ((0),(1) )→ ((1),(2) ).
In analogy, the resulting additional displacement field

u
(2)
i (r) follows via Eq. (68) by replacing (1) → (2), and the

additional contribution U
(3)
j to the translation of sphere

j via Eq. (70) by ((1),(2) , i, j) → ((2),(3) , j, i). Also the
O(r−4

ij )-terms in Eq. (74) then need to be taken into ac-

count, and the rotations Ω
(2)
i contribute as well. This

scheme can basically be continued up to an arbitrary it-
eration level.

Up to (including) order r−4
ij , the total translation of

sphere i is given by Ui = U
(0)
i + U

(1)
i + U

(2)
i and reads

Ui =

{
5− 6ν

24π(1− ν)µa
Î− 1

32π(1− ν)(4− 5ν)µ

a3

r4
ij

[(
37− 44ν + 10(1− 2ν)2

)
r̂ij r̂ij + 5(1− 2ν)2(̂I− r̂ij r̂ij)

]}
· Fi

+
1

16π(1− ν)µ

1

rij

[(
4(1− ν)− 4

3

(
a

rij

)2
)

r̂ij r̂ij +

(
3− 4ν +

2

3

(
a

rij

)2
)

(̂I− r̂ij r̂ij)

]
· Fj . (76)

Similarly, the total rotation of sphere i accurate up to (including) order r−4
ij is given by

Ωi = − 1

8πµr2
ij

r̂ij × Fj . (77)

So far, we have only considered two particles i and j. However, since the governing Navier-Cauchy equations Eq. (1)
are linear, we can linearly superimpose the influence of additional inclusions. That is, we simply add contributions of
identical form to the right-hand sides of Eqs. (76) and (77) caused by each additional particle j.

Up to (including) order r−4
ij , the individual terms on the right-hand side of Eq. (76) then identify the components

of the displaceability matrices Mtt
ij in Eq. (60) resulting from one- and two-body interactions [14] illustrated in Figs. 2

and 3:

Mtt
i=j = M t

0

{
Î−

N∑
k=1
k 6= i

3

4(4− 5ν)(5− 6ν)

(
a

rik

)4
[(

37− 44ν + 10(1− 2ν)2

)
r̂ikr̂ik + 5(1− 2ν)2(̂I− r̂ikr̂ik)

]}
, (78)

Mtt
i 6=j = M t

0

3

2(5− 6ν)

a

rij

[(
4(1− ν)− 4

3

(
a

rij

)2
)

r̂ij r̂ij +

(
3− 4ν +

2

3

(
a

rij

)2
)

(̂I− r̂ij r̂ij)

]
+ M

tt(3)
i6=j , (79)

with i, j ∈ {1, 2, ..., N} and

M t
0 =

5− 6ν

24π(1− ν)µa
. (80)

The contribution M
tt(3)
i 6=j represents three-body interac-

tions and will be separately derived in Sec. IX.
Furthermore, from Eq. (77) we find for the components

of the rotateability matrices Mrt
ij up to (including) order

r−4
ij

Mrt
i=j = 0, (81)

Mrt
i6=j = −M r

0

r̂ij
r2
ij

×, (82)

see Fig. 2, with

M r
0 =

1

8πµ
. (83)

B. Torques externally imposed on or induced
between the inclusions

Instead of forces Fi and Fj , let us now consider torques
Ti and Tj externally imposed on or induced between two
rigid spherical inclusions i and j. The treatment of this
situation follows along the same lines, therefore we will
be significantly briefer here.

To zeroth order, where matrix-mediated interactions
between the two spheres are ignored, the torques cause

rotations Ω
(0)
i and Ω

(0)
j of the particles, respectively,

which follow via Eq. (33) as

Ω
(0)
i =

1

8πµa3
Ti, (84)

Ω
(0)
j =

1

8πµa3
Tj . (85)
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FIG. 4. Illustration of the immediate effect that the rotation
of sphere j has on the translation and rotation of another
sphere i. A torque Tj is externally imposed onto sphere

j that, as a consequence, gets rigidly rotated by Ω
(0)
j , see

Eq. (85). Moreover, the surrounding matrix is distorted, as

described by the displacement field u
(0)
j (r), see Eq. (87). The

local directions of u
(0)
j (r) are marked by the small normal-

ized arrows. We indicated the local magnitude of u
(0)
j (r) by

the background color, where brighter color represents higher
magnitude and the color values follow an arc-tangent scale.

Sphere i is exposed to the induced displacement field u
(0)
j (r)

and therefore gets translated by U
(1)
i and rotated by Ω

(1)
i , see

Eqs. (88) and (89), respectively. Explicit results are given in
Eqs. (92) and (93). Overall, in this way we obtain the corre-
sponding contributions to the displaceability and rotateability
matrices Mtr

i=j , Mtr
i 6=j , Mrr

i=j , and Mrr
i 6=j in Eqs. (94)–(97),

respectively, up to inverse quartic order in the particle dis-
tances.

Due to the stick boundary conditions, the rotated spheres
drag the surrounding matrix along and therefore generate
displacement fields as given by Eq. (32),

u
(0)
i (r) =

(
a

|r− ri|

)3

Ω
(0)
i × (r− ri), (86)

u
(0)
j (r) =

(
a

|r− rj |

)3

Ω
(0)
j × (r− rj), (87)

see Fig. 4.

Similarly to the case of translated spheres, the dis-

placement field u
(0)
j (r) resulting from the rotation of

sphere j affects the total displacement and rotation of
sphere i. Moreover, due to its rigidity, additional stresses
occur when sphere i resists deformations that would be

induced by the displacement field u
(0)
j (r). The induced

translation U
(1)
i , additional rotation Ω

(1)
i , and rigidity-

based stresslet S
(1)
i exerted by sphere i can be calcu-

lated using Eqs. (40), (54), and (58), respectively. There,

u
(0)
j (r) is inserted as the imposed displacement field. We

find

U
(1)
i =

(
1 +

a2

6
∇2

)
u

(0)
j (r)

∣∣∣∣
r=ri

, (88)

Ω
(1)
i =

1

2
∇× u

(0)
j (r)

∣∣∣∣
r=ri

, (89)

S
(1)
i = −4π(1− ν)µa3

4− 5ν

(
1 +

a2

10
∇2

)[
1

1− 2ν
Î∇ · u(0)

j (r) +
5

2

(
∇u

(0)
j (r) +

(
∇u

(0)
j (r)

)T)]∣∣∣∣∣
r=ri

. (90)

Analogously to Eq. (68), the displacement field result-
ing from the rigidity-based resistance of sphere i against
deformation is given by

u
(1)
i (r) = − (S

(1)
i · ∇) ·G(r− ri). (91)

Since the stresslet S
(1)
i here yields an expression of order

r−3
ij , u

(1)
i (rj) is already of order r−5

ij . Therefore, we can
stop our iteration due to reflections at this point, con-
fining ourselves to contributions up to (including) order
r−4
ij . Again, all corresponding expressions for sphere j

are obtained by simply switching all indices i↔ j.

To derive explicit analytical expressions, we insert
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Eqs. (85) and (87) into Eqs. (88) and (89). We obtain

U
(1)
i = − 1

8πµr2
ij

r̂ij ×Tj , (92)

Ω
(1)
i =

1

16πµr3
ij

[
3r̂ij r̂ij − Î

]
·Tj , (93)

as illustrated in Fig. 4. From Eq. (92), we see that an
additional translation of sphere i only occurs, if r̂ij is not
(anti)parallel to Tj . Moreover, sphere i is translated in
the same direction as the nearest surface point of sphere

j. The sense of the additional rotation Ω
(1)
i that only

vanishes at infinite particle separation rij depends on the
relative angular configuration according to Eq. (93). For
instance, if r̂ij ‖ Tj , i.e. both spheres and the imposed
torque Tj align along a common axis, then the zero-order

rotation Ω
(0)
j and the additional rotation Ω

(1)
i have the

same sense. For r̂ij ⊥ Tj , i.e. the imposed torque Tj

is perpendicular to the plane that contains both spheres,
these two rotations have opposite sense.

Overall, the total translation of sphere i to our de-

sired order is given by U
(1)
i in Eq. (92). The total ro-

tation up to (including) order r−4
ij equals Ω

(0)
i + Ω

(1)
i ,

see Eqs. (84) and (93). Therefore, with the same reason-
ing as in Sec. VIII A, we can read off the components of
the corresponding displaceability matrices Mtr

ij and ro-
tateability matrices Mrr

ij from Eqs. (84), (92), and (93)
as

Mtr
i=j = 0, (94)

Mtr
i 6=j = −M r

0

r̂ij
r2
ij

×, (95)

Mrr
i=j = M r

0

1

a3
Î, (96)

Mrr
i 6=j = M r

0

1

2r3
ij

[
3r̂ij r̂ij − Î

]
, (97)

where M r
0 was introduced in Eq. (83). See also the illus-

tration in Fig. 4. Based on the linearity of the governing

Navier-Cauchy equations in Eq. (1), we may sum up the
influence of imposed or induced forces in Sec. VIII A and
the ones just derived for imposed or induced torques and
combine them in an overall matrix equation as given in
Eq. (60).

IX. THREE-BODY INTERACTIONS

Following the same strategy as in Sec. VIII, we now de-
rive similar expressions for the three-body interactions.
In this way, we determine the components of the ma-

trix M
tt(3)
i 6=j in Eq. (79). Again, we adapt the proce-

dure for low-Reynolds-number hydrodynamics presented
in Ref. 52.

For this purpose, we now consider three rigid spherical
inclusions of radius a, located at positions ri, rj , and
rk. They are acted on by externally imposed or induced
forces Fi, Fj , and Fk, respectively. To zeroth order,
i.e. not taking into account matrix-mediated interactions
between the inclusions, sphere i creates a displacement
field as given by Eq. (63). Corresponding expressions
follow for spheres j and k by switching indices i→ j and
i→ k, respectively.

In analogy to Eq. (65), we can calculate from the
first Faxén law Eq. (40) the translation that sphere i
acquires within the linearly superimposed displacement

fields u
(0)
j (r) and u

(0)
k (r). Using u

(0)
j (r) + u

(0)
k (r) as the

imposed field on the right-hand side of Eq. (40), we ob-
tain

U
(1)
i =

(
1 +

a2

6
∇2

)[
u

(0)
j (r) + u

(0)
k (r)

]∣∣∣∣
r=ri

. (98)

According expressions follow for spheres j and k by
switching in this equation i↔ j and i↔ k, respectively.

Again, sphere i resists any deformation that would be

implied by the matrix deformations described by u
(0)
j (r)

and u
(0)
k (r). The resulting stresslet that sphere i thus

exerts onto the matrix can be calculated in analogy to
Eq. (67) and using Eq. (58),

S
(1)
i = −4π(1− ν)µa3

4− 5ν

(
1 +

a2

10
∇2

)[
1

1− 2ν
Î∇ ·

(
u

(0)
j (r) + u

(0)
k (r)

)
+

5

2

(
∇
(
u

(0)
j (r) + u

(0)
k (r)

)
+
(
∇
(
u

(0)
j (r) + u

(0)
k (r)

))T)]∣∣∣∣
r=ri

. (99)

It produces the displacement field

u
(1)
i (r) = − (S

(1)
i · ∇) ·G(r− ri), (100)

see Eq. (23), due to the resistance of sphere i to deforma-

tions implied by u
(0)
j (r) and u

(0)
k (r). Once more, expres-

sions for spheres j and k are obtained from this equation

by replacing i→ j and i→ k, respectively.

Next, we use the sum of the resulting displacement

fields u
(1)
j (r) + u

(1)
k (r) as the imposed field on the right-

hand side of Faxén’s first law, Eq. (40). In this way, we

can calculate the additional translation U
(2)
i that sphere i
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experiences in these rigidity-induced displacement fields,

U
(2)
i =

(
1 +

a2

6
∇2

)[
u

(1)
j (r) + u

(1)
k (r)

]∣∣∣∣
r=ri

. (101)

At first glance, this expression is of identical shape as
Eq. (70) for the two-sphere interaction. The only differ-
ence seems to be that here we take into account the two
contributions from the two spheres j and k, instead of
only one. Indeed, we here recover all contributions that
we have already identified in Sec. VIII A. However, there
is now more to that.

For simplicity, let us for the moment only consider

in Eq. (101) the effect of the displacement field u
(1)
k (r),

where the latter according to Eq. (100) is given by

u
(1)
k (r) = − (S

(1)
k · ∇) ·G(r− rk). (102)

Here, S
(1)
k is the stresslet that sphere k exerts onto the

surrounding matrix due to its rigidity. It arises as sphere

k opposes to deformations implied by u
(0)
i (r) and u

(0)
j (r).

The latter displacement fields directly result from the
external forces Fi and Fj acting onto spheres i and j,
respectively. These two forces lead to two different sce-
narios.

The first scenario has already been described in
Sec. VIII A. A force Fi acting onto sphere i generates

the displacement field u
(0)
i (r). This field is reflected by

sphere k. Then it acts back onto sphere i in the form of

u
(1)
k (r), contributing to U

(2)
i in Eq. (101). We abbreviate

this chain of matrix-mediated interactions as i← k ← i.

In the second scenario, a force Fj acting onto a third

sphere j induces a displacement field u
(0)
j (r). This field

is then reflected by sphere k due to its rigidity in the

form of u
(1)
k (r). However, in the present three-body con-

figuration, the reflected field also affects sphere i and

contributes to its displacement U
(2)
i in Eq. (101). This

three-body interaction thus defines a further contribu-
tion in addition to the pairwise interactions derived in
Sec. VIII A. We abbreviate the corresponding chain of
matrix-mediated interactions as i← k ← j.

Altogether, we find two such three-body interactions

contributing to U
(2)
i in Eq. (101) in addition to the

pairwise interactions. The first one works as described,

i ← k ← j, and we denote it as U
(2)
ikj . The second one

works via i← j ← k, which would then be termed U
(2)
ijk.

Explicit calculation yields

U
(2)
ikj = −

(
1 +

a2

6
∇2

)
(S

(1)
k · ∇) ·G(r− rk)

∣∣∣∣
r=ri

=
1

64π(1− ν)(4− 5ν)µ

a3

r2
ikr

2
jk

[
− 10(1− 2ν)

(
(1− 2ν)

(
(r̂ik · r̂jk )̂I + r̂jkr̂ik

)
+3(r̂ik · r̂jk)(r̂ikr̂ik + r̂jkr̂jk)− r̂ikr̂jk

)
+ 3
(

7− 4ν − 15(r̂ik · r̂jk)2
)
r̂ikr̂jk

]
· Fj +O

(
(rik, rjk)−5

)
. (103)

U
(2)
ijk is readily obtained from this expression by switching indices j ↔ k.

In summary, to our desired order, i.e. up to (including) quartic order in the inverse particle separation distances,

two- and three-body interactions contribute to U
(2)
i . Corresponding expressions follow from Eq. (103) for i 6= j. For

i = j, Eq. (103) exactly reproduces the two-body contributions listed already in Eq. (75). Again due to the linearity

of the governing elasticity equations Eq. (1), we may simply add the additional contributions U
(2)
ijk and U

(2)
ikj to our

previous explicit analytical expression for the overall displacement of sphere i.
Superimposing all contributions that result for the coupled displacements and rotations of N identical spherical

inclusions, we return to our formalism in terms of the displaceability and rotateability matrices in Eq. (60). We can

now read off from Eq. (103) the additional three-body contribution M
tt(3)
i 6=j to the displaceability matrix in Eq. (79) [14],

M
tt(3)
i 6=j = M t

0

3

8(4− 5ν)(5− 6ν)

N∑
k=1
k 6= i,j

(
a

rik

)2(
a

rjk

)2[
− 10(1− 2ν)

(
(1− 2ν)((r̂ik · r̂jk )̂I + r̂jkr̂ik)

+3(r̂ik · r̂jk)(r̂ikr̂ik + r̂jkr̂jk)− r̂ikr̂jk

)
+ 3
(

7− 4ν − 15(r̂ik · r̂jk)2
)
r̂ikr̂jk

]
(104)

where M t
0 was introduced in Eq. (80). This expression is

exact up to (including) order (rik, rjk)−4.
It can readily be seen that rotations caused by three-

body interactions are of higher order than (rik, rjk)−4.
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The additional rotation Ω
(2)
i of sphere i due to the re-

flected displacement fields u
(1)
j (r) and u

(1)
k (r) follows

from Faxén’s second law Eq. (54) and reads

Ω
(2)
i =

1

2
∇×

[
u

(1)
j (r) + u

(1)
k (r)

]∣∣∣∣
r=ri

. (105)

This expression is already of order (rik, rjk)−5, because

both u
(1)
j (ri) and u

(1)
k (ri) are of order (rik, rjk)−4, which

is obtained by combining Eqs. (13), (63), (99), (100), and
(102). Therefore, to our desired order, we find

M
rt(3)
i 6=j = 0. (106)

Similarly, we do not obtain any three-body contri-
bution to the remaining displaceability and rotateabil-
ity matrices up to our desired order. Reconsidering the

above derivation of M
tt(3)
i 6=j , we find that solely the lowest-

order parts of all contributing expressions finally enter
Eq. (104). When torques are externally imposed on or in-
duced between the individual spheres, already the result-
ing zero-order displacement fields are one order higher in
the inverse separation distances. This follows by com-
paring Eqs. (84)–(87) to the case of imposed or induced
forces, see Eqs. (13), (63), and (64). Therefore, the re-
flected displacement fields due to the rigidity of the spher-
ical inclusions, see Eqs. (99) and (100), already yield ex-
pressions of order (rik, rjk)−5. Thus we find to our de-
sired order

M
tr(3)
i 6=j = 0, (107)

M
rr(3)
i 6=j = 0. (108)

These results complete our derivation of the displace-
ability and rotateability matrices up to (including) in-
verse quartic order in the separation distances between
the individual spherical particles.

X. CONCLUSIONS AND OUTLOOK

In summary, we have presented the derivation of ex-
plicit analytical expressions to calculate from given forces
and torques acting on rigid spherical inclusions in an elas-
tic matrix their resulting coupled displacements and ro-
tations. The surrounding elastic matrix is assumed to
be an infinitely extended, homogeneous, isotropic elastic
medium with stick boundary conditions on the inclusion
surfaces. Matrix deformations are induced by the forces
and torques acting on the inclusions. These deforma-
tions lead to mutual, long-ranged, matrix-mediated in-
teractions between the rigid inclusions. The role of such
matrix-mediated interactions is implicitly contained in
our resulting analytical expressions. Technically, to per-
form the derivation, the well-known approach in terms
of Faxén’s theorems and the method of reflections is
adapted from the field of low-Reynolds-number hydro-
dynamics [52]. Throughout, we have included the case

of compressible elastic environments. We summarize our
results in terms of displaceability and rotateability matri-
ces that are functions of the given inclusion configura-
tion only. These matrices express how given forces and
torques on the inclusions lead to their coupled displace-
ments and rotations. In the considered static, linearly
elastic case of non-touching inclusions, these expressions
replace the need for finite-element simulations that ex-
plicitly calculate the matrix deformations between the
inclusions.

As a next step, more complex inclusion geometries
can be addressed. Of particular interest are elongated
particles that can more directly be exposed to external
torques and are also used for microrheological purposes
[11–13]. Theoretically, it should be possible to derive
expressions for ellipsoidal inclusions [51, 65], but due to
the significantly more complicated structure of such ex-
pressions they may already be of limited use for practi-
cal applications. Long thin rods could be approximated
by long chains of spheres [52]. Recent experiments ob-
served a buckling of chains of spherical magnetic par-
ticles in soft gel matrices under perpendicular magnetic
fields [74]. Possibly, such behavior could likewise be inter-
preted more quantitatively in terms of our formalism. As
in low-Reynolds-number hydrodynamics, more complex
inclusion objects should become accessible by the rasp-
berry model, i.e. collections of rigidly connected identical
spheres that as an entity represent more complex objects
[75–77]. Moreover, similarly to low-Reynolds-number hy-
drodynamics, the effect of system boundaries should be
analyzed [78, 79]. Possibly, also hydrodynamic meth-
ods to describe more concentrated colloidal suspensions
[80, 81] could be transferred to the case of elastic envi-
ronments.

Our results will be helpful in the quantitative interpre-
tation of microrheological experiments, as already indi-
cated in our previous work [14]. In principle, they should
apply to different sorts of elastic matrix environments,
as long as the material appears sufficiently homogeneous
and isotropic on the scale of the probe particle. Another
field of application is to further characterize the tunabil-
ity of composite materials by externally imposed fields
[15, 27–33]. For example, the change in the linear elastic
moduli of magnetorheological elastomers when applying
an external magnetic field could be addressed using our
formalism. The method could be combined with statis-
tical descriptions that use a probability distribution to
characterize the arrangement of the inclusions in an elas-
tic matrix. One strength is that larger numbers of inclu-
sions can be handled than with simulation methods that
explicitly resolve the matrix environment [23, 34, 46–49],
at least to the accuracy given by the expansion in the
particle distance. In this way, it shall help to quanti-
tatively support the development of tunable composite
materials designed for a specific requested purpose.
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APPENDIX A

Eq. (12) can be solved by Fourier forth and back trans-
formation. The former replaces the nabla operator ∇ by
ik and the Dirac delta function δ(r−r0) by 1 in Eq. (12),

λkpimk̂mk̂pk
2G̃ij(k) = δjk, (A.1)

with the unit vector k̂ = k/k in k-space. Inserting

λkpimk̂mk̂p = µ

[
δik +

λ+ µ

µ
k̂ik̂k

]
(A.2)

via Eq. (7), we can solve for the Green’s function in
Fourier space:

G̃(k) =
1

µk2

[
Î− λ+ µ

λ+ 2µ
k̂k̂

]

=
1

µk2

[
Î− 1

2(1− ν)
k̂k̂

]
, (A.3)

with Î the identity matrix and k̂k̂ a dyadic product.
Next, we transform back to real space,

G(r) =
1

(2π)3

∫ 2π

0

dϕ

∫ π

0

dϑ sinϑ

∫ ∞
0

dkk2eik·rG̃(k)

=
1

(2π)3µ

∫ 2π

0

dϕ

∫ π

0

dϑ sinϑ

∫ ∞
0

dk eikr cosϑ

[
Î− 1

2(1− ν)
k̂k̂

]
. (A.4)

The Dirac delta function is linked to its Fourier transform via∫ ∞
−∞

dk eikx =

∫ ∞
−∞

dk
[

cos(kx) + i sin(kx)
]

= 2πδ(x). (A.5)

Keeping this in mind, the k-integral in the second line of Eq. (A.4) is reformulated:∫ ∞
0

dk eikr cosϑ =

∫ ∞
0

dk cos(kr cosϑ) +

∫ ∞
0

dk i sin(kr cosϑ)

=
1

2

∫ ∞
−∞

dk cos(kr cosϑ) +

∫ ∞
0

dk i sin(kr cosϑ)

=
1

2

∫ ∞
−∞

dk
[

cos(kr cosϑ) + i sin(kr cosϑ)
]
− 1

2

∫ 0

−∞
dk i sin(kr cosϑ)

= πδ(r cosϑ)− 1

2

∫ 0

−∞
dk i sin(kr cosϑ). (A.6)

We find that the second term in the last line of the previous expression does not contribute. Upon inserting it into
Eq. (A.4), it leads to ∫ 2π

0

dϕ

∫ π

0

dϑ sinϑ

∫ 0

−∞
dk sin(kr cosϑ)

[
Î− 1

2(1− ν)
k̂k̂

]
. (A.7)

Substituting u = cosϑ and −du = sinϑ dϑ, it can easily
be seen that the first term in the square brackets leads to
an odd function of u and therefore vanishes upon integra-
tion over du from u = 1 to −1. Calculating for the second

term in the square brackets all matrix components k̂ik̂j
explicitly by inserting the components of k̂, the second
term is found to vanish as well.
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Thus, for the remainder of Eq. (A.4), we obtain

G(r) =
1

8π2µr

∫ 2π

0

dϕ

∫ 1

−1

du δ(u)

[
Î− 1

2(1− ν)
k̂k̂

]

=
1

8π2µr

∫ 2π

0

dϕ

[
Î− 1

2(1− ν)
k̂k̂

]∣∣∣∣∣
k̂·r=0

, (A.8)

with the condition k̂ ⊥ r arising from the delta function.
Thus, k̂ can be expressed as

k̂ = α̂ cosϕ+ β̂ sinϕ, (A.9)

with the unit vectors α̂, β̂ = const., α̂ ⊥ β̂, and α̂ ⊥ r ⊥
β̂. Then, α̂, β̂, and r̂ = r/r form an orthonormal basis
and we can write

α̂α̂ + β̂β̂ + r̂r̂ = Î. (A.10)

Inserting Eq. (A.9) into Eq. (A.8), we evaluate the re-
maining integral over dϕ and obtain

G(r) =
1

8πµr

[
2Î− 1

2(1− ν)

(
α̂α̂ + β̂β̂

)]

=
1

8πµr

[
2Î− 1

2(1− ν)

(̂
I− r̂r̂

)]
. (A.11)

Finally, combining the Î-prefactors leads to the expres-
sion for the elastic Green’s function in Eq. (13).

APPENDIX B

Our goal is to evaluate the integral

1

2

∞∫
−∞

dk
sin(ka)

ka
eikk̂·r (B.1)

appearing in Eq. (46). For this purpose, we rewrite the
expression by substituting z = ka:

1

2

∞∫
−∞

dk
sin(ka)

ka
eikk̂·r =

1

4ia

∞∫
−∞

dz
1

z

[
e
iz
(

1+ k̂·r
a

)
− eiz

(
−1+ k̂·r

a

)]
. (B.2)

The evaluation can be accomplished in a straightforward
way by using contour integration in the complex z-plane.
We start by considering only the first term on the right-
hand side and define the function

f(z) =
1

z
e
iz
(

1+ k̂·r
a

)
. (B.3)

Depending on the value of k̂ · r/a, the integration path is
amended on a case-by-case basis over a semicircle of in-
finite radius R in either the upper or the lower complex
z-half-plane. Starting with k̂ · r/a > −1, the integra-
tion path is closed in the upper z-half-plane. According
to Cauchy’s integral theorem, in our case all closed in-
tegration paths that do not contain the origin are zero,
therefore

0 =

∮
dz f(z) = lim

R→∞

 −ε∫
−R

dz f(z)−
∫
Cε

dz f(z) +

R∫
ε

dz f(z) +

∫
CR

dz f(z)

 , (B.4)

with Cε = {εeiϕ | 0 ≤ ϕ ≤ π} and CR = {Reiϑ | 0 ≤ ϑ ≤
π}. The integral over the path CR vanishes for R → ∞.
Combining these relations with the principal value,

P
∫

(. . .) = lim
ε↘0

 −ε∫
−∞

(. . .) +

∞∫
ε

(. . .)

 , (B.5)

we obtain in this first case

P
∞∫
−∞

dz f(z) = lim
ε↘0

i

π∫
0

dϕe
iεeiϕ

(
1+ k̂·r

a

)
= iπ. (B.6)

Likewise for k̂ · r/a < −1, we amend the integration
path over the semicircle of infinite radius in the lower
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z-half-plane and obtain for the principal value

P
∞∫
−∞

dz f(z) = − lim
ε↘0

i

2π∫
π

dϕe
iεeiϕ

(
1+ k̂·r

a

)
= − iπ.

(B.7)

An analogous procedure for the second term on the
right-hand side of Eq. (B.2) yields

P
∞∫
−∞

dz
1

z
e
iz
(
−1+ k̂·r

a

)
=

iπ, for k̂·r
a > 1,

−iπ, for k̂·r
a < 1.

(B.8)
Inserting Eqs. (B.6)–(B.8) into Eq. (B.2) finally leads

to [52]

1

2

∞∫
−∞

dk
sin(ka)

ka
eikk̂·r =

{
π
2a , for − 1 < k̂·r

a < 1,

0, otherwise.

(B.9)
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[34] P. Cremer, H. Löwen, and A. M. Menzel, Appl. Phys.

Lett. 107, 171903 (2015).
[35] E. Jarkova, H. Pleiner, H.-W. Müller, and H. R. Brand,

Phys. Rev. E 68, 041706 (2003).
[36] S. Bohlius, H. R. Brand, and H. Pleiner, Phys. Rev. E

70, 061411 (2004).
[37] M. Tarama, P. Cremer, D. Y. Borin, S. Odenbach,
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Comp. Mater. Sci. 124, 364 (2016).

[50] L. D. Landau and E. M. Lifshitz, Theory of Elasticity
(Elsevier, Oxford, 1986).

[51] S. Kim and S. J. Karrila, Microhydrodynamics: Princi-
ples and Selected Applications (Butterworth-Heinemann,
Boston, 1991).

[52] J. K. G. Dhont, An Introduction to Dynamics of Colloids
(Elsevier, Amsterdam, 1996).

[53] B. U. Felderhof, Phys. A 89, 373 (1977).
[54] D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69,

1352 (1978).
[55] L. Durlofsky, J. F. Brady, and G. Bossis, J. Fluid Mech.

180, 21 (1987).
[56] K. Zahn, J. M. Méndez-Alcaraz, and G. Maret, Phys.

Rev. Lett. 79, 175 (1997).
[57] J.-C. Meiners and S. R. Quake, Phys. Rev. Lett. 82, 2211

(1999).
[58] J. K. G. Dhont, J. Chem. Phys. 120, 1642 (2004).
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