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The dynamics of interstitial dopants governs the properties of a wide variety of doped crystalline
materials. To describe the hopping dynamics of such interstitial impurities, classical approaches
often assume that dopant particles do not interact and travel through a static potential energy
landscape. Here we show, using computer simulations, how these assumptions and the resulting
predictions from classical Eyring-type theories break down in entropically-stabilised BCC crystals
due to the thermal excitations of the crystalline matrix. Deviations are particularly severe close to
melting where the lattice becomes weak and dopant dynamics exhibit strongly localised and hetero-
geneous dynamics. We attribute these anomalies to the failure of both assumptions underlying the
classical description: i) the instantaneous potential field experienced by dopants becomes largely
disordered due to thermal fluctuations and ii) elastic interactions cause strong dopant-dopant inter-
actions even at low doping fractions. These results illustrate how describing non-classical dopant
dynamics requires taking the effective disordered potential energy landscape of strongly excited
crystals and dopant-dopant interactions into account.

Doping pure crystalline solids with small amounts
of interstitial impurities is a widely used method to
enhance material properties such as heat and electric
conductivity[1–4] or to tailor mechanical properties[5].
Prototypical examples include the introduction of carbon
atoms in iron crystals to make steel or the doping of plas-
tic crystals with Li-ions to create solid-state batteries[4].
To ensure longevity of doped materials, it is essential that
the spatial homogeneity and transport dynamics of the
dopants within the crystal are well controlled and under-
stood. Although theories and models are abundant[5–
11], it remains unclear how large thermal excitations of
the matrix lattice affect the dynamics of dopants. This
becomes of particular interest during the processing of
doped crystals, where they are heated close to or beyond
their melting point. For example in body-centered cu-
bic (BCC) iron doped with carbon, significant deviations
from the exponential increase of diffusivity with temper-
ature, expected from Arrhenius’ law, are observed close
to the melting temperature where lattice excitations are
strong[12]. While doping is typically performed to tailor
material properties at the macroscopic scale, these en-
hanced properties emerge from the dynamics and inter-
actions between dopants at scale of individual atoms [13].
In classical theories for dopant dynamics, impurity parti-
cles are described as hopping through a potential energy
landscape which is set by a perfect lattice symmetry, with
transition rates governed by the energy barriers between
adjacent interstitial sites and their occupancy [6, 7, 14].
In reality, thermal fluctuations of atoms away from their
equilibrium lattice positions will randomize the instanta-
neous potential energy landscape that the dopants expe-
rience; this could lead to failure of classical approaches
to capture the physics of impurity diffusion when lattice
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excitations become pronounced. This may be particu-
larly severe for crystals of the BCC symmetry, such as
the high-temperature lattice of sodium, lithium and iron.
In these high-temperature BCC phases, thermal fluctu-
ations are large due to the relatively low coordination
number; in fact, these fluctuations increase the entropy
of the solid to such an extent that they are responsi-
ble for its thermodynamic stability [15]. For impurity
transport in structurally-disordered colloidal glasses, it
was recently shown that thermal fluctuations which cre-
ate time-variations in the potential energy landscape can
have a strong effect on the dopant diffusivity [16, 17];
yet these effects remain largely unexplored for very soft
crystals which exhibit an on-average ordered lattice.

In this paper we study the dynamics of interstitial
dopants in BCC crystals prepared from colloidal parti-
cles interacting by long-ranged electrostatic interactions.
Using Brownian Dynamics simulations we probe in detail
how strong thermal fluctuations of the base crystal affect
the spatial homogeneity of the dopants and their motion
through the lattice. Dopants within a static base crys-
tal obey quantitative predictions of classical transition-
state theory; by contrast, the same impurities diffusing
in a fluctuating crystal exhibit completely different be-
haviour. We show how thermal excitation of the lattice
causes clustering of the interstitials while simultaneously
giving rise to strong disorder in the instantaneous po-
tential energy landscape. This results in heterogeneous
and anomalous dynamics of interstitials within an on-
average perfect lattice. We support these observations
with direct imaging experiments on a colloidal system us-
ing confocal microscopy. These data illustrate how large
thermal fluctuations can give rise to heterogeneous dy-
namics in ordered solids, which cannot be captured by
classical hopping theories.

The classical approach to describe the diffusion of in-
terstitial impurities through a crystalline matrix starts
with the assumption that the dopants experience a static
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Figure 1. A. Schematic representation of a BCC unit cell.
B. The interstitial sites in a plane of the BCC unit cell with
tetrahedral sites in green and octahedral sites in red. The
T–T path (green) and T–O–T path (red) are indicated with
lines connecting the interstitial sites. The potential field felt
by the dopant is shown in the background. The values are
the potential energy with respect to the global minimum at
the tetrahedral site. Yellow indicates values of 20 kBT and
above. C. Hopping barrier UA(φ) along a T–T (circles) and
T–O–T path (squares) from numerical calculations. The solid
lines are a parametric fit to UA(φ) as described in the text,
the dashed line indicates the melting point φm.

potential energy landscape set by the summation of in-
teractions between a dopant and all particles in the base
crystal [14]. Assuming that interactions between dopants
are negligible, i.e. that the dopant concentration is low
and the interstitial site occupancy approaches zero, this
reduces to a simple transition-state theory for thermally-
activated jumps between neighbouring minima in the en-
ergy landscape.

In a BCC crystal the minima in which interstitial im-
purities will reside are the tetrahedral sites (Fig. 1B,
green spheres) [18]. We can identify two transition paths
between tetrahedral sites that are most likely to con-
tribute to the motion of a dopant. The first comprises
the shortest path from one tetrahedral site to another
(T–T transition) during which displacement the parti-
cle crosses a saddle point in the energy landscape. The
second (T–O–T transition) goes from a tetrahedral site
through an octahedral site to an adjacent tetrahedral site
[18]. The rate at which these hops occur is governed by
the energy barrier UA separating two sites along either
path.

We parametrize our simulations to match an experi-
mental system of charged PMMA particles in an apo-
lar solvent, which forms BCC crystals at low densities
[19, 20]. In these colloidal systems, the main control pa-

rameter is particle volume fraction φ. The crystals are
formed from colloids with a diameter σb = 1.8µm and
doped with interstitial impurities with σd = 0.9µm. The
interactions are described by Yukawa potentials to map
the simulated phase behaviour as a function of φ onto
that determined experimentally (see Fig. S1 & methods).
For a perfect BCC lattice we can now compute the ac-
tivation energy for both the T–T and T–O–T paths by
summing the potential energy fields, taking long-ranged
contributions into account. The BCC crystal exhibits a
periodic network of energy minima (see Fig. S3), which
provides an efficient means for interstitial motion on
large length scales[18]. For the colloidal BCC crystal,
the numerically enumerated transition energies are few
to several kBT and the difference in activation energy
between the T–T and T–O–T paths are small (symbols
in Fig. 1C). To describe these data phenomenologically,
we consider the difference between the summed potential
field at the interstitial site where U exhibits a minimum
and the transition maximum UA(φ) = U+(φ)− U−(φ) =

ε
(
e−κg+a(φ)

g+a(φ) −
e−κg−a(φ)

g−a(φ)

)
, where a(φ) =

(
π
3φ

) 1
3

is the

normalised lattice constant in units σb and the geometri-
cal constants g− and g+ account for the potential energy
fields at the minima and maxima, respectively. We use
this empirical equation to fit the simulation data at dis-
crete values of φ; with values of g+ = 0.348; g− = 0.345
for the T–T transition and g+ = 0.297; g− = 0.295 for
the T–O–T this relation describes our numerical calcula-
tion data well (lines Fig. 1C).

Within the classical approach, the rate at which tran-
sitions occur is governed by a thermally-activated pro-
cess of the Eyring type: kh = kh,0 exp(−UA/kBT ).
The Brownian attempt frequency is given by kh,0(φ) =
D0/d

2
h(φ) = kBT/(d

2
h(φ)6πησd/2), in which dh is the

length of the transition path and D0 is the self-diffusion
coefficient of the interstitial impurities in a solvent of
viscosity η. The long-time diffusion coefficient of the
interstitial impurities as a function of volume fraction
of the BCC crystal can now be predicted as Dl(φ) =
d2
h(φ)kh(φ) = D0 exp(−(UA(φ)/kBT )β) in which the

stretch exponent β accounts for a distribution in hop-
ping times due to the similar barriers of the two different
transition paths.

To test the validity of this prediction based on clas-
sical transition-state theory, we simulate the Brownian
dynamics of interstitial impurities within a static and
perfect BCC crystal (Fig. 2A). The potential energy field
experienced by the dopants exhibits clear minima at the
tetrahedral sites (crosses, bottom Fig. 2G). This leads
to characteristic hopping dynamics in the trajectories of
individual interstitial impurities, with particles vibrating
within a tetrahedral site until they hop to a neighboring
site (Fig. 3A&C). Over time, the interstitial impurities
probe the entire matrix by travelling through the inter-
connected network of local minima (see Fig. S3). This
gives rise to a mean-squared displacement 〈∆r2(τ)〉 as
shown in the left panel of Fig. 4B); at short times vibra-
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Figure 2. Structural features of the BCC crystal for the simulation with a static (A,D and G) and dynamic base crystal (B,
E and H) and the experiments (C, F and I). A-C: snapshots of BCC crystals at φ = 0.14, in which particles are color-coded
according to their instantaneous bond-order parameter q̄6 and dopant particles rendered in orange(A & B only). D-F: Pair
correlation functions g(r). G-I: Potential energy landscape through four unit cells within the on-average ordered lattice, where
black disks indicate the hard-sphere radius of the base crystal particles and the grey areas indicate the volume, from which the
centre-of-mass of dopants are excluded, due to dopant-base particle overlap.

tions within the interstitial sites give rise to subdiffusive
motion. This transitions into diffusive behavior at times
longer than the Brownian self-diffusion time, τ � τB , as
particles explore the lattice by hopping between intersti-
tial sites; this is characterised by a long-time diffusion
coefficient Dl (circles in Fig. 4A & Fig. S5). The simula-
tion data for this static scenario are described very well
by the prediction for Dl(φ) from transition-state theory,
with β = 0.61 ± 0.01 used as a fit parameter (line in
Fig. 4). The fact that β deviates from unity indicates
a heterogeneous hopping process occurring both via the
T–T and T–O–T transitions; the relative occurrence of
T–T versus T–O–T hops is expected to be 3.5:1 based on
the difference in activation energies taking into account
the number of possible T–T and T–O–T transitions from
a given tetrahedral site. We note that at this point, we
have not established an exact and quantitative relation-
ship between the value of β and the ratio of hops occur-
ring via the two possible transition routes.

In real materials, at least one crucial assumption in this
classical approach fails as the matrix in which dopants
diffuse itself is also excited by thermal fluctuations. Es-
pecially for body-centered cubic crystals in close proxim-
ity to their melting point, where doped crystals are typi-

cally processed to induce ductility and malleability, these
fluctuations are known to be strong [15]. Allowing the
BCC phase in these colloidal systems to fluctuate retains
an on-average perfect structure as evident from distinct
Bragg peaks in their structure factor (see Fig. S2). How-
ever, snapshots of the instantaneous structure show sig-
nificant deviations from a perfect lattice as particles dis-
place significantly from their equilibrium positions. Re-
constructions of the system in which the particles are
color-coded according to their instantaneous bond-order
parameter q̄6[21] illustrate the significant amount of ther-
mal disorder within these BCC crystals, both in-silico
and in experiments (Fig. 2B&C). The thermally-excited
excursions of particles from their average lattice position
translate into peak broadening in the pair-correlation
function g(r) (Fig. 2E&F). We note that g(r) for exper-
iment and simulation are in excellent agreement, even
though the field-of-view in our measurements is limited
due to experimental constraints. Despite the strong ther-
mal disorder in these fluctuating BCC crystals, it can still
be structurally distinguished from a liquid by means of
spherical harmonic bond-order parameters (see Fig. S4),
to probe local structure, and the existence of well-defined
Bragg peaks in the structure factor (Fig. S2) which sig-
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Figure 3. A,B: Trajectory of a single interstitial dopant in
the crystalline matrix over ∆t = 29 τb in a static (A) and
∆t = 150 τb in a dynamic BCC crystal (B). C: interstitial
displacement with respect to t = 0 in a static (bottom line)
and dynamic base crystal (top line)

nals the presence of long-ranged order.

The effect of the instantaneous deviations from a per-
fect lattice due to thermal excitations becomes appar-
ent when we plot a snapshot of the potential energy
landscape that a dopant particle experiences at a given
time. Instead of the regular landscape which exhibits
minima at tetrahedral sites, the fluctuating BCC crystal
presents an apparently disordered potential energy land-
scape (Fig. 2H) in which the variations in the height of
energy barriers and the depth of localisation wells are sig-
nificantly larger as compared to the perfect lattice. Also
from experimental data we can reconstruct the poten-
tial energy landscape; we obtain the particle positions
from three-dimensional image stacks. Using the pair in-
teraction potential obtained by inversion of pair correla-
tion functions[22] and assuming pairwise additivity, we
can compute the potential energy of inserting a dopant
particle at a given location within the lattice. Also the
energy landscapes reconstructed in this way from snap-
shots of the experimental system, exhibit strong disorder
(Fig. 2I).

This high degree of instantaneous disorder in the en-
ergy landscape results in very different interstitial dy-
namics than those predicted by the classical theory. The
dopant particles are more strongly localised, and transi-
tions between minima appear at much lower frequency
as compared to a static crystal (Fig. 3). As a con-
sequence, the ensemble-averaged mean-square displace-
ments exhibit a localisation plateau which extends by

several orders of magnitude (right panel, Fig. 4B), result-
ing in a strongly reduced rate of diffusion at long times.
To confirm that the interstitial mean-squared displace-
ment converges to a diffusive behaviour at long times,
we run a longer simulation up to 2 · 104 τB ; indeed the
upturn we see in Fig. 4B becomes diffusive at even longer
times (Fig. S5C).

To extract Dl from these data, we extrapolate the
mean-squared displacement to infinite time; see SI for
a detailed description of our method. Allowing the crys-
tal that surrounds the interstitial impurities to fluctuate
results in more than two orders-of-magnitude reduction
in the diffusion rate (blue symbols Fig. 4A). Clearly, the
effect of thermal excitations of the lattice cannot be ig-
nored in describing dopant dynamics in BCC crystals.

Two possible contributions to this drastic reduction in
interstitial diffusion rate can be identified. First, static
or low-temperature BCC crystals feature a percolated
path of T-T transitions, providing an efficient pathway
for interstitial diffusion over large length scales[18]. This
percolated path results from the centre-of-inversion sym-
metry of the BCC lattice. In the thermal BCC phase,
especially close to melting, thermal excitations of the
lattice are so pronounced that the instantaneous centre-
of-inversion symmetry is lost. Note that this only ap-
plies to instantaneous snapshots of the structure, whereas
time-averaging cancels out these fluctuations and restores
the BCC symmetry, for example evidenced by the dis-
tinct Bragg peaks in the time-averaged structure factor
(Fig. S2). As thermal fluctuations break the local and
instantaneous symmetry, the percolated transition path
that relies on this symmetry is also lost; this is evidenced
in potential energy isosurfaces reconstructed from snap-
shots of the thermal BCC lattice in Fig. S3.

Secondly, as the potential energy landscape is strongly
time-varying, hopping now requires not only a fluctua-
tion large enough to escape a local minimum, but also
the simultaneous availability of a low-energy pathway
that remains open during the transition event. In ef-
fect, two competing frequencies come into play; i) that
of escape attempts of the dopant and ii) the frequency
with which the potential energy landscape reconfigures.
As the Brownian time scales of the base crystal and the
dopants do not differ by much due to the moderate size
asymmetry, escape events now become cooperative and
thus significantly less likely. It is known that the ef-
fect of fluctuating barriers on hopping is strongly non-
monotonic and can lead to either enhancement, when the
two frequencies become resonant, or reduction in transi-
tion rates [23, 24]. As we work in the classical limit,
where the transition itself is not instantaneous but re-
quires a finite time, this poses the additional constraint
that the path remains open for the duration of the transi-
tion event, which further slows down hopping. The com-
bination of these events leads to a strong quenching of
the interstitial mobility in fluctuations BCC lattices.

A key feature for particles in disordered potential land-
scapes is the emergence of heterogeneous dynamics. To
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investigate this, we plot the time-averaged 〈∆r2〉 for all
interstitial particles individually. For the static crys-
tal, no heterogeneities in particle dynamics are observed,
with all mean-squared displacements collapsing onto the
ensemble average (Fig. 4B left panel). By contrast, for
the fluctuating BCC crystal, strongly heterogeneous dy-
namics are observed, with a large inhomogeneity in the
single-particle behavior (Fig. 4B right panel).

To explore the origins of these distinct heterogeneous
dynamics within a on-average ordered solid, we recon-
struct snapshots of the interstitial positions. While
dopants are homogeneously distributed for the static
crystal (Fig. 5A), they exhibit strong clustering in the
fluctuating BCC over the entire range of base crystal den-
sities φ (Fig. 5B and Fig. S7). We hypothesise that this
clustering is caused by the lattice strain accompanying
the insertion of a single interstitial impurity into a tetra-
hedral site. Clustering between interstitials minimizes
the overall elastic deformation of the matrix and is thus
energetically favorable. This gives rise to an emergent
elastic attraction between the impurity particles. Similar
lattice-strain mediated interactions are well-established
to exist for crystallographic defects that cause a lattice
deformation[25]. Indeed, we observe a strong increase
in the lattice strain, defined as the average displacement
of base crystal particles from their equilibrium position
∆rb,l normalised to the lattice constant a, as a function
of the distance to a nearest impurity.

We observe that the clusters are highly dynamic,
with spontaneous particle association and dissociation
(Fig. S6-8 and Video S9 & 10). This indicates a dynamic
equilibrium between singlets (S) and bound states (B)
nS 
 Bn, in which the association constant depends on
the effective attractive potential Ueff emerging through
the elasticity of the matrix: ka ∝ exp(Ueff/kBT ). We
observe a significant fraction of singlets in stable coexis-
tence with clusters, which does not evolve over time after
equilibrating our simulation system (see Fig. S9). This
suggests that the effective attraction strength is of the or-
der of the thermal energy kBT ; the dynamic equilibrium
between clusters and singlets resulting from a balance
between the configurational entropy of distributing im-
purities across the lattice and the enthalpic gain upon
forming a cluster. This is further corroborated by the
distribution of cluster sizes P (SC) (Fig. 5F). These data
are well described by an exponential decay as indicated
by the solid line in Fig. 5F. This indicates that clusters
are formed by an open association process governed by a
dynamic reaction equilibrium between unimeric dopants
and clusters.

Intuitively, one may expect that particles present in an
attractive cluster of dopants would exhibit lower mobil-
ity than their singlet counterparts as their local density
is higher. Surprisingly, we observe the opposite; trajec-
tories of dopants reveal that the degree of localisation is
in fact reduced for particles in clusters as compared to
singlets within the same lattice (Fig. 5D). To determine
the origins of this counter-intuitive observation, we de-

Figure 4. A. Long-time diffusion coefficients Dl as a function
of distance to the melting point φ − φm for static (circles)
and dynamic crystals (triangles), with φm = 0.061 as deter-
mined in the SI Fig. S1. Open symbols indicate Dl deter-
mined from the mean-squared displacements at τ = 5 · 102τb,
while filled symbols are computed by extrapolating 〈∆r2〉 to
infinity. Solid line is a fit to the transition-state prediction for
Dl(φ), as described in the text. B: 〈∆r2〉 for individual parti-
cles, with the ensemble-average 〈∆r2〉 (thick line) superposed
for fixed (left) and dynamic crystal (right).

termine the instantaneous deviation of particle positions
away from their equilibrium site in the lattice ∆rb,l as
a function of the distance to the nearest dopant ∆rb,d/a
. Especially for low volume fractions, where deviations
from classical transition-state theory are large, we ob-
serve a strong increase in the lattice strain in proxim-
ity to a dopant (Fig. 5E) while the average orientational
bond-order q̄6 is maintained (see Fig. S4). This suggests
that dopant particles, especially those present in clusters,
locally weaken the lattice, resulting in larger mobility for
both the dopants and the surrounding crystalline matrix.
Interestingly, the fact that deviations in the dynamics of
interstitial impurities are exacerbated close to the melt-
ing transition is also observed in the carbon-doped BCC
phase of iron [12].

In this paper we demonstrated how thermal fluctua-
tions can lead to the failure of classical theories for dopant
dynamics and gives rise to complex heterogeneous and
anomalous dynamics within an on-average ordered ma-
trix. Large instantaneous deviations from a perfect lat-
tice due to thermal excitations cause a disordered poten-
tial energy landscape in which interstitial atom diffusion
can be orders of magnitude slower than expected based
on transition-state theory. Our simulations also give rise
to a microscopic picture of the strongly heterogeneous
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Figure 5. A, B: Dopant positions in a snapshot at φ = 0.07,
in which particles belonging to the same cluster are color-
matched, while singlets are displayed in gray for static (A)
and dynamic base crystals (B). C,D: Particle trajectories of
all particles over a time interval of 2 · 103τb for static (C) and
dynamic (D) base crystal. E: Lattice strain ∆rb,l/a, taken
as the average deviation of particle positions with respect to
their equilibrium site, as a function of distance to a dopant
for φ = 0.07 (circles) and 0.12 (squares). F. Distribution of
cluster sizes P (SC) for φ = 0.07, fitted with an exponential

distribution P (SC) ∝ e−Sc/S
∗
c with S∗c = 0.96 the character-

istic cluster size(red line).

dynamics of interstitial dopants: elastic interactions be-
tween dopants cause them to agglomerate within the lat-
tice, which in turn locally soften the matrix and gives
rise to enhanced mobility. The coupling between spatial
organisation of the dopants, the local properties of the
matrix and resulting dopant dynamics can be expected
to play a crucial role in the effective tailoring of ma-
terial properties using doping. Arriving at a complete
description of these complex dynamics would require ex-
tension of classical lattice dynamics to account for both
the fluctuating and locally disordered energy landscapes,
for which a framework was developed for glasses [24], and
for the emergent interactions and spatial inhomogeneity
of the dopants.

MATERIALS & METHODS

Simulations

We perform Brownian Dynamics simulations using
HOOMD-BLUE, a GPU accelerated software pack-
age, in single-precision mode.[26, 27] Analysis rou-
tines are all written in the python programming lan-
guage, using scipy,[28] numpy[29], lmfit[30], scikit-
learn[31], matplotlib[32], and mayavi[33] libraries. For
the calculation of bond order parameters we use
BondOrderAnalysis[21] and we calculate Voronoi cells us-
ing the voro++ package[34]. All quantities are expressed
in normalised units, in terms of base particle diameter
σb, base particle self-diffusion time τb and kBT respec-
tively. All raw data and scripts can be accessed via
https://github.com/sprakellab/dopantdynamics.

Simulations are performed in the canonical ensem-
ble (or N,V,T-system) with periodic boundaries. Sys-
tems consist of two types of particles, one that forms
the crystalline matrix (σb = 1.8µm) and the dopants
(σd = 0.9µm). This size ratio of 0.5 is experimentally
accessible and close to that for carbon-doped iron and
lithium-impurities in silicon.[35] The particles interact
via Yukawa potentials parameterised using experimen-
tal data (see below). The simulations assume pairwise
additivity of the potentials; in the experimental sys-
tem of charged colloids many-body effects are known to
occur[36]. Nonetheless, in previous work we have estab-
lished that pairwise additive BD simulations can capture
the main behavior of experimental crystals of the charged
colloids we simulate here[37].

Brownian Dynamics integration, using the overdamped
Langevin equations, are performed with a time step of
2.5 ·10−5τb, in one of two ways, either both particle types
are integrated for the dynamic crystal or only the dopant
particles are subjected to integration for the static ma-
trix. In all cases we simulate N = 13718 base crystal
particles. Dopant particles are placed randomly at tetra-
hedral interstitial sites in the pristine BCC lattice in a
ratio of 1:47. Simulations are run for at least 2 · 103τb,
preceded by an equilibration time of 2 · 102τb.

Experiments

Some aspects of the simulation results are experi-
mentally verified by studying a system of polymethyl
methacrylate particles, stabilised by polyhydroxystearic
acid.[20] Particles with diameters of σb = 1.8 µm
and σb = 0.9 µm are prepared using established
procedures[38]. We suspend the particles in a den-
sity matching solvent mixture of cis-decalin and tetra-
chloroethylene, in which 10 mM Aerosol OT is added
to charge the particles[20]. We image the samples in
three-dimensions and time using confocal fluorescence
microscopy using a VisiTech Infinity-3, mounted on a
Nikon Ti-U and equipped with a Hamamatsu ORCA-
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Flash 4.0 camera. Three-dimensional volumes of 50 x 50
x 30 µm3 are acquired at 1Hz. Particle centroid posi-
tions are determined and linked together in time using
well established methods based on the fitting of a Gaus-
sian curve[39].

Mapping

The particles in the simulation interact via the Yukawa

potential U(r)/kBT = ε
exp (−κσ( rσ−1))

r/σ . In the solvent we

use, the inverse screening length κ is determined to be

1.8/σb [20]. To define the interaction strength ε we map
the simulation data onto the experimentally-determined
melting point of the BCC crystal (Fig. S1). An εb,b of
713 gives a melting point at a volume fraction φ of 0.061
in silico close to the melting point found experimentally,
φ = 0.060. For the smaller dopants we assume a particle-
size independent surface charge density such that εd,d =
227. The cross interactions between dopant and matrix is
taken as the average of the base-base interaction and the
dopant-dopant interaction (εb,d = 470). Data analysis
methods are described in the SI.
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[2] R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and
D. Fournier, Applied Physics Letters 83, 1355 (2003).

[3] A. J. Kenyon, Progress in Quantum Electronics 26, 225
(2002).

[4] D. R. Macfarlane, D. R. Macfarlane, J. Huang, J. Huang,
M. Forsyth, and M. Forsyth, Nature 402, 792 (1999).

[5] H. G. E. Hentschel, M. Moshe, I. Procaccia, K. Samwer,
and E. Sharon, (2015), 10.1080/14786435.2016.1163433,
arXiv:1510.03108.

[6] C. G. Homan, Acta Metallurgica 12, 1071 (1964).
[7] R. Farraro and R. B. McLellan, Materials Science and

Engineering 39, 47 (1979).
[8] M. Weller, Materials Science and Engineering A 442, 21

(2006).
[9] K. Tapasa, A. V. Barashev, D. J. Bacon, and Y. N.

Osetsky, Acta Materialia 55, 1 (2007).
[10] R. Xiao, H. Li, and L. Chen, Scientific Reports 5, 14227

(2015).
[11] J. Kang, H. Chung, C. Doh, B. Kang, and B. Han,

Journal of Power Sources 293, 11 (2015).
[12] J. R. G. da Silva and R. B. McLellan, Materials Science

and Engineering 26, 83 (1976).
[13] M. Ramamoorthy and S. Pantelides, Physical Review

Letters 76, 4753 (1996).
[14] C. A. Wert, Physical Review 79, 601 (1950).
[15] R. W. Cahn and P. Haasen, North Holland Physics

Publi., Elsevier, 3th ed. (1992) p. 328.
[16] T. Sentjabrskaja, E. Zaccarelli, C. De Michele,

F. Sciortino, P. Tartaglia, T. Voigtmann, S. U. Egel-
haaf, and M. Laurati, Nature Communications 7, 11133
(2016), arXiv:1604.02496.

[17] F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capell-
mann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins,
I. Ladadwa, A. Heuer, R. Casta??eda-Priego, and S. U.
Egelhaaf, European Physical Journal: Special Topics
222, 2995 (2013), arXiv:1308.5632.

[18] Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C.
Kim, Y. Mo, and G. Ceder, Nat Mater 14, 10261031
(2015).

[19] A. Yethiraj and A. van Blaaderen, Nature 421, 513
(2003).

[20] T. Kanai, N. Boon, P. J. Lu, E. Sloutskin, A. B. Schofield,
F. Smallenburg, R. van Roij, M. Dijkstra, and D. a.

Weitz, Physical Review E 91, 1 (2015).
[21] W. Lechner and C. Dellago, Journal of Chem-

ical Physics 129 (2008), 10.1063/1.2977970,
arXiv:arXiv:0806.3345v1.

[22] S. H. Behrens and D. G. Grier, Physical Review E 64,
050401 (2001).

[23] P. Reimann and P. Hänggi, in Stochastic Dynamics, Vol.
484 (1997) pp. 127–139.

[24] K. S. Schweizer and E. J. Saltzman, Journal of Physical
Chemistry B 108, 19729 (2004).

[25] C. Teodosiu, Elastic Models of Crystal Defects (Springer
Science & Business Media, 2013).

[26] J. A. Anderson, C. D. Lorenz, and A. Travesset, Journal
of Computational Physics 227, 5342 (2008).

[27] J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui,
F. Spiga, J. A. Millan, D. C. Morse, and S. C.
Glotzer, Computer Physics Communications 192, 97
(2015), arXiv:1412.3387.

[28] E. Jones, T. Oliphant, and P. Peterson, “SciPy: Open
source scientific tools for Python,” (2001).

[29] S. Van Der Walt, S. C. Colbert, and G. Varoquaux,
Computing in Science and Engineering 13, 22 (2011),
arXiv:1102.1523.

[30] M. Newville, A. Ingargiola, T. Stensitzki, and D. B.
Allen, LMFIT: Non-Linear Least-Square Minimization
and Curve-Fitting for Python, Tech. Rep. (2014).

[31] F. Pedregosa, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, A. Passos, D. Cournapeau, G. Varoquaux,
J. Vanderplas, M. Brucher, M. Perrot, and E. Duch-
esnay, Journal of Machine Learning Research 12, 2825
(2011), arXiv:1201.0490.

[32] J. D. Hunter, Computing In Science & Engineering 9, 90
(2007).

[33] P. Ramachandran and G. Varoquaux, Computing in Sci-
ence & Engineering 13, 40 (2011).

[34] C. Rycroft, “Voro++: a three-dimensional Voronoi cell
library in C++,” (2009).

[35] J. C. Slater, The Journal of Chemical Physics 41, 3199
(1964).

[36] J. W. Merrill, S. K. Sainis, and E. R. Dufresne, Phys.
Rev. Lett. 103, 138301 (2009).

[37] B. van der Meer, W. Qi, R. G. Fokkink, J. van der
Gucht, M. Dijkstra, and J. Sprakel, Proceedings of
the National Academy of Sciences 111, 15356 (2014),
http://www.pnas.org/content/111/43/15356.full.pdf.

http://dx.doi.org/10.1063/1.4815960
http://dx.doi.org/10.1063/1.4815960
http://dx.doi.org/ 10.1063/1.1601676
http://dx.doi.org/10.1016/S0079-6727(02)00014-9
http://dx.doi.org/10.1016/S0079-6727(02)00014-9
http://dx.doi.org/ 10.1038/45514
http://dx.doi.org/ 10.1080/14786435.2016.1163433
http://arxiv.org/abs/1510.03108
http://dx.doi.org/10.1016/0001-6160(64)90079-3
http://dx.doi.org/10.1016/0025-5416(79)90169-1
http://dx.doi.org/10.1016/0025-5416(79)90169-1
http://dx.doi.org/10.1016/j.msea.2006.02.232
http://dx.doi.org/10.1016/j.msea.2006.02.232
http://dx.doi.org/10.1016/j.actamat.2006.05.029
http://dx.doi.org/ 10.1038/srep14227
http://dx.doi.org/ 10.1038/srep14227
http://dx.doi.org/ 10.1016/j.jpowsour.2015.05.060
http://dx.doi.org/10.1016/0025-5416(76)90229-9
http://dx.doi.org/10.1016/0025-5416(76)90229-9
http://dx.doi.org/10.1103/PhysRevLett.76.4753
http://dx.doi.org/10.1103/PhysRevLett.76.4753
http://dx.doi.org/10.1103/PhysRev.79.601
http://dx.doi.org/ 10.1038/ncomms11133
http://dx.doi.org/ 10.1038/ncomms11133
http://arxiv.org/abs/1604.02496
http://dx.doi.org/ 10.1140/epjst/e2013-02071-2
http://dx.doi.org/ 10.1140/epjst/e2013-02071-2
http://arxiv.org/abs/1308.5632
http://dx.doi.org/10.1038/nmat4369
http://dx.doi.org/10.1038/nmat4369
http://dx.doi.org/10.1038/nature01328
http://dx.doi.org/10.1038/nature01328
http://dx.doi.org/ 10.1103/PhysRevE.91.030301
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/10.1063/1.2977970
http://arxiv.org/abs/arXiv:0806.3345v1
http://dx.doi.org/10.1103/PhysRevE.64.050401
http://dx.doi.org/10.1103/PhysRevE.64.050401
http://dx.doi.org/10.1007/BFb0105605
http://dx.doi.org/10.1021/jp047763j
http://dx.doi.org/10.1021/jp047763j
http://books.google.nl/books?id=8szyCAAAQBAJ&pg=PA9&dq=intitle:elastic+models+of+crystal+defects&hl=&cd=1&source=gbs_api
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1016/j.cpc.2015.02.028
http://dx.doi.org/10.1016/j.cpc.2015.02.028
http://arxiv.org/abs/1412.3387
"http://www.scipy.org/"
"http://www.scipy.org/"
http://dx.doi.org/10.1109/MCSE.2011.37
http://arxiv.org/abs/1102.1523
http://dx.doi.org/10.5281/zenodo.11813
http://dx.doi.org/10.5281/zenodo.11813
http://arxiv.org/abs/1201.0490
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://eprints.cdlib.org/uc/item/8sf4t5x8
http://eprints.cdlib.org/uc/item/8sf4t5x8
http://dx.doi.org/10.1063/1.1725697
http://dx.doi.org/10.1063/1.1725697
http://dx.doi.org/10.1103/PhysRevLett.103.138301
http://dx.doi.org/10.1103/PhysRevLett.103.138301
http://dx.doi.org/ 10.1073/pnas.1411215111
http://dx.doi.org/ 10.1073/pnas.1411215111
http://arxiv.org/abs/http://www.pnas.org/content/111/43/15356.full.pdf


[38] L. Antl, J. W. Goodwin, R. D. Hill, R. H. Ottewill, S. M.
Owens, S. Papworth, and J. A. Waters, Colloids and
Surfaces 17, 67 (1986).

[39] Y. Gao and M. L. Kilfoil, Optics Express 17, 4685 (2009).

[40] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, in Pro-
ceedings of the 2nd ACM SIGKDD (AAAI Press, Port-
land, Oregon, 1996) pp. 226–231.

http://dx.doi.org/ 10.1016/0166-6622(86)80187-1
http://dx.doi.org/ 10.1016/0166-6622(86)80187-1
http://dx.doi.org/10.1364/OE.17.004685


1

Supplementary Information

Anomalous dynamics of interstitial dopants in
soft crystals

Justin Taubera,1,Ruben Higlera,1 & Joris Sprakela,2

aPhysical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen,
The Netherlands

1J.T.(Justin Tauber) and R.H. (Ruben Higler) contributed equally to this work.
2To whom correspondence should be addressed. E-mail: joris.sprakel@wur.nl

A. Figure S1: Determination of the phase diagram

To accurately define the melting point φm and the re-
gion where liquid and BCC crystal coexist, we calculate,
for every particle, the averaged bond order parameter
following the approach described in [21]:

q̄l(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm(i)|2 (1)

for l = 6 or l = 4 and where

q̄lm =
1

Ñb(i)

Ñb(i)∑
k=0

qlm(k) (2)

where Nb is the number of neighbours of particle i. We
identify nearest-neighbors based on proximity, consider-
ing only particles closer together than the lattice constant
a. The spherical harmonic bond order parameter qlm(k)
for particle i is given by

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(rij) (3)

where Ylm are the spherical harmonics.
Using q̄6 we characterize the local structure. We re-

construct our in-silico system by color-coding all particles
according to their q̄6 value for the three different regimes:
liquid, liquid-BCC coexistence, and solid BCC (Fig. S1A-
C top). This clearly shows the different regimes in our
phase diagram. In order to identify the phase transition
points we calculate the probability distribution P (q̄6).
Here we average over 90 snapshots with dt = 2 · 101 τb
(Fig. S1A-C bottom). We find three distinct behaviors.
In the liquid we observe is a sharp peak around a q̄6

value of 0.2 (Fig. S1A bottom). The solid BCC (includ-
ing dopants) exhibits a peak around a value of 0.4 with a

tail extending towards lower q̄6 values, due to the dopant
induced lattice strain (Fig. S1C bottom).

In the phase coexistence regime we observe a peak at
q̄6 = 0.4, corresponding to the BCC crystal structure,
and a large tail extending to lower values corresponding
to the coexisting liquid pockets (Fig. S1C bottom).

We locate the melting point, where liquid pockets first
appear, at φ ∼ 0.0655, and the freezing point, where the
last remnants of solid vanish at φ ∼ 0.0605. These transi-
tions are in agreement with those found in the experimen-
tal system onto which our simulation parameterisation is
mapped.

B. Figure S2: Calculation of two-dimensional
structure factor

We calculate a two-dimensional projection of the three-
dimensional static structure factor S(q) as:

S(q) =
1

N

〈∑
jk

exp iq · (rj − rk)

〉
(4)

averaged over all particles and time (Fig. S2). We find
well defined Bragg peaks corresponding to a BCC crystal
for the static base crystal, the dynamic base crystal, and
the experimental BCC phase system.

C. Figure S3: Percolating network of tetrahedral
interstitial sites

To illustrate the percolated network of tetrahedral hop-
ping transitions we plot an isosurface (U(r) = 3.5 kBT )
of the calculated three-dimensional potential field for the
static base crystal (Fig. S3A). The interconnected tran-
sition path network can be clearly seen. By contrast, a
similar analysis for the fluctuating dynamic base crys-
tal (U(r) = 42 kBT ), reveals a striking difference with a
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complete vanishing of the interconnected structure, and
only localised blobs of lower potential energy remaining
(Fig. S3B). Both potential fields are calculated on simu-
lation snapshots of the system on a grid of 100x100x100
voxels.

D. Figure S4: Influence of dopants on base crystal
structure

In order to determine the local structure of the BCC
phase we plot the average bond parameters q̄4 and q̄6 for
every base particle (blue) and every dopant (green), for
both a static base crystal (Fig. S4A left) and a dynamic
base crystal (Fig. S4A right). As a reference we have
plotted q̄4 and q̄6 for particles in a perfect BCC lattice
(red) and particles in a liquid state (yellow, obtained from
simulations at φ = 0.600).

The fact that the structure of the base crystal is in-
fluenced by thermal fluctuations is apparent from the q̄6

bond parameter probability distribution (Fig. S1B). The
addition of dopants results in the appearance of a tail in
P (q̄6) at q̄6 < 0.46, indicating that the dopants locally
strain the BCC lattice (Fig. S4B).

E. Figure S5: Determination of the long time
diffusion coefficient

The dynamics of the dopant particles are studied by
means of their mean-squared displacement 〈∆r2〉. For
every particle we calculate 〈∆r2〉 from the dopant parti-
cle trajectories for 200 values of τ logarithmically spaced
over the entire simulation duration. In addition, we
perform an ensemble-average over all particles, for both
static (Fig. S5A red curves) and dynamic (Fig. S5A blue
curves) base crystals. We define a effective diffusion
rate as the local slope of the mean-squared displacement

D = 1
6
d〈∆r2〉
dτ (Fig. S5B). To extract the long time diffu-

sion coefficient Dl we use two methods: First we take Dl

to be the diffusion coefficient at τ = 5 · 102τb. Secondly
we fit the tail-end of the D(τ) curve with the function

D(τ) = −1+c
1
τ +Dl, where both c and Dl are used as fit

parameters. The values found for Dl using both meth-
ods are in close agreement (Fig. 4A blue open & closed
triangles). To show that at long times the MSD goes to-
wards diffusive behavior we performed an extended simu-
lation. The mean-squared displacements calculated from
this simulations clearly show the upturn at long times
towards a slope of one; indicative of diffusive motion
(Fig. S5C).

F. Figure S6: Voronoi analysis

To evaluate the local environment of dopant particles,
we use a Voronoi analysis; we calculate Voronoi cells us-
ing voro++[32] taking into account the periodic bound-

aries of our simulation box. We observe a significant
difference in the local environment of the dopant parti-
cles in the static base crystal compared to the dynamic
base particles. In the case of a static base crystal the
distribution in Voronoi volume is very narrow both aver-
aged over time and in a simulation snapshot (Fig. S6A-B
red). The dynamic base crystal case shows a much larger
distribution of Voronoi cell volumes (Fig. S6A-B blue),
again confirming the highly heterogeneous nature of the
instantaneous structure of soft BCC crystals. We also
compare the number of faces of a Voronoi cell around a
dopant for the cases of a static and a dynamic base crys-
tal. For a dopant which resides at the tetrahedral site in
a perfect BCC crystal the expected number of faces is 8;
this is indeed what we find in a static crystal (Fig. S6C
red), confirming that virtually all interstitial dopants re-
side in tetrahedral sites. The few cells which exhibit a
higher number of faces correspond to dopants which are
in transition between two tetrahedral sites since these
data are taken from snapshots of the dopant structure.
The situation in the dynamic crystal is significantly dif-
ferent, the loss of well defined interstitial sites causes the
dopant particles to have a Voronoi cell faces distribution
close to what we would expect for the base particles in a
regular BCC lattice site (Fig. S6C blue).

G. Figure S7: Clustering of interstitial dopants

Clustering occurs across the whole range of volume
fractions for dynamic base crystals (Fig. S7A-D top row),
whereas it remains completely absent for the fixed base
crystals. Clusters are identified using the DBSCAN al-
gorithm as developed by Ester et al.[40] and embedded
in the python library scikit-learn. We consider particles
with a maximum nearest neighbour distance of 1.5a to
be in a single cluster, where a is the lattice constant and
the minimum cluster size is two. The heterogeneity in
local cluster distribution is also reflected in the single-
particle mean-squared displacements of the dopants. To
this end we plot the distribution of 〈∆r2(τ)〉 values for
all dopants in the simulation system (Fig. S7A-D middle
row). The distribution of MSD curves is highly hetero-
geneous, with different populations of dopant particles
with similar MSD curves visible as thick bundles. To
more clearly illustrate the heterogeneity of the MSD dis-
tribution we plot a distribution of 〈∆r2(τ/τb = 5 · 102)〉
(Fig. S7A-D bottom row), which indeed shows multiple
populations, which we attribute to singlets and clustered
dopants.

H. Figure S8: Heterogeneous long time dynamics.

To investigate the cause of dynamical heterogeneity on
long time scales we calculate the fraction of time a parti-
cle is present in a cluster. This fraction is plotted against
〈∆r2〉 at τ/τb = 5 · 102 for every particle. This shows
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that at both high and low volume fractions there are two
groups: clustered particles and singlets (Fig. S8A & B).
Singlets only show low 〈∆r2〉 values, indicating strong
localisation of singlets, while clustered particles show a
broad range in these values. It is clear that at low volume
fractions of the base crystal, where the elastic interac-
tions responsible for clustering are weaker, the exchange
of particles between singles and clusters is more dynamic,
thus reducing the average time a particle resides in a clus-
tered configuration.

I. Figure S9: Cluster dynamics

We start by looking at the fraction of total dopant par-
ticles in the system that are part of a cluster as a function
of volume fraction φ (Fig. S9A). The difference between
the two states of the base crystal (static or dynamic)
is striking. For the dynamic case we see that most of
the particles form part of cluster and this ratio doesn’t
change significantly with φ (Fig. S9A blue circles). For
the fixed base crystal, the number of particles forming
part of a cluster of N ≥ 2 is very low and drops off as
φ increases (Fig. S9A red triangles). This seems to sug-
gest that the clusters formed in the static case consist
mostly of dimers due to the random thermal distribution

of dopants across the lattice.
Over time the fraction of particles present in a clus-

tered, versus a singlet, state is constant (Fig. S9D-F).
For the dynamic crystal we observe small fluctuations in
the fraction of clustered dopants around a mean value,
indicative of the dynamic equilibrium between clusters
and singlets. For the static cases these fluctuations are
larger, as a result of the fact that these clusters are not
formed by an effective medium attraction, driven by a
minimization of the lattice strain but simply by random
collisions of dopant particles as they diffuse across the
lattice.

J. Movie S1: Cluster dynamics φ = 0.07

To illustrate the dynamic behaviour of the dopant clus-
ters in time and the continuous association and dissocia-
tion of dopants we reconstructured a movie of all dopant
particles with those in a cluster, SC >= 4, rendered
larger to aid visualization. The movie spans a simula-
tion time of 2.2 · 103 τb.

K. Movie S2: Cluster dynamics φ = 0.12

Same as Movie S1 for φ = 0.12.



4

Figure 6. Top: Base particles colored according to their q̄6 bond parameter. Middle: the phase diagram for our simulation
system. Bottom: q̄6 histograms. (A) The liquid phase at φ = 0.060. (B) Phase coexistence of liquid at the BCC phase at
φ = 0.063. (C) A BCC phase at φ = 0.0656. Histograms are an average over 90 snapshots separated by ∆t = 2 · 101 τb

Figure 7. S(qx, qy) of the base particles of (A) a static base crystal with φ = 0.07, (B) a dynamic base crystal with φ = 0.07
and (C) experimental BCC crystal with φ = 0.14.
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Figure 8. Base particles (blue) with an isosurface (orange) plotted of the potential field felt by a dopant particle. (A) Static
base crystal with isosurface at ∆U = 3.5kBT and (B) potential field of a snapshot at t = 2 · 103σb with an isosurface at
∆U = 42kBT

Figure 9. The q̄6 versus q̄4 for every particle in a snapshot of the system at t = 2 · 103 τb. for (A) a static base crystal at
φ = 0.07 and (B) a dynamic base crystal at φ = 0.07. (C) The probability distribution for q̄6 in a system without dopant
particles (left) and Nd : N = 1:47 (right). This is an average over 90 snapshots separated by ∆t = 2 · 101 τb
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Figure 10. Ensemble averaged mean-squared displacements for all volume fractions, φ = 0.0656, 0.066, 0.067, 0.070, 0.071,
0.075, 0.08, 0.09, 0.10, 0.12, 0.15, and 0.20. (A) 〈∆r2(τ)〉 of the dopant particles for a static base crystal (red) and a dynamic
base crystal (blue). Volume fraction increases from bottom to top (B) The diffusion coefficient D(τ) calculated from the
gradient of 〈∆r2(τ)〉 for the static base crystal (red), the dynamic base crystal with Nd : N = 1:47 (blue). φ decreases from
bottom to top. (C) Ensemble averaged mean-squared displacements for a longer simulations; the extra order of magnitude in
simulation time clearly shows the upturn towards diffusive behavior; dashed line has a slope of one.

Figure 11. Results from Voronoi analysis on dopant particles at φ = 0.07 for a static base crystal (red) and a dynamic base
crystal (blue) (A) The average voronoi volume, (B) the voronoi volume at a snapshot at t = 2 · 103 τb and (C) the number of
faces at t = 2 · 103 τb.
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Figure 12. Cluster analysis at different volume fractions: (A) φ = 0.07, (B) φ = 0.09, (C) φ = 0.15 and (D) φ = 0.20. Systems
all have Nd : N = 1:47 Top: Snapshots of cluster formation at t = 2 · 103 τb, only the clusters with SC >= 4 are highlighted
for clarity. Middle: 〈∆r2(τ)〉 curves per particle (grey) and the ensemble average (red). Bottom: Histograms of the 〈∆r2〉 at
τ = 5 · 102 over 50 bins.

Figure 13. 〈∆r2〉 at t = 5 · 102 versus the fraction of simulation time that a particle is part of a cluster. Plotted for volume
fractions: (A) φ = 0.07 and (B) φ = 0.12.
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Figure 14. (A) The average fraction of clustered particles NC/N against φ. (B) Averaged cluster size SC as a function of phi
and (C) average amount of clusters CN against φ. For Nd : N = 1:47 in a static base crystal (red triangles) and in a dynamic
base crystal (blue circles) (D-F) Behaviour of NC/N , 〈SC〉, and CN during the simulation at two different volume fractions
φ = 0.07 (blue circles and red downward pointing triangles) φ = 0.12 (blue squares and red upward pointing triangles).
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