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Nondestructive method of thin film dielectric constant
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Svitlana Kondovych1,*, Igor Luk’yanchuk1,2

1 Laboratory of Condensed Matter Physics, University of Picardie,
33 rue St. Leu, 80039 Amiens, France

2 ITMO University, 49 Kronverksky Pr., St. Petersburg, 197101 Russia
* e-mail: svitlana.kondovych@gmail.com

We suggest the nondestructive method for determination of the dielectric constant of
substrate-deposited thin films by capacitance measurement with two parallel wires placed
on top of the film. The exact analytical formula for the capacitance of such system is
derived. The functional dependence of the capacitance on dielectric constants of the film,
substrate and environment media and on the distance between the wires permits to measure
the dielectric constant of thin films for the vast set of parameters where previously proposed
approximate methods are less efficient.
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designated for measurement of the dielectric constant
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1 Introduction

Miniaturization of electronic devices down to the nano-scale has become possible by achiev-
ing the unprecedentedly efficient material functionalities not available in bulk systems. A
large variety of novel nanoscale materials extends from thin films and superlattices [1–5] to
nanoparticles and particle composites (see e.g. [6] and references therein), the unique prop-
erties of which open a way to various implementations for nanoelectronics. In particular,
tailoring the properties of substrate-deposited thin films by strain has attracted particular
attention due to technological feasibility and various potential applications such as sensors,
actuators, nonvolatile memories, bio-membranes, photovoltaic cells, tunable microwave cir-
cuits and micro- and nano- electromechanical systems [1–5]. Control and measurement of the
dielectric constant ε of thin films present one of the major objectives of strain-engineering
technology to achieve the optimal dielectric properties of constructed nanodevices.

The arising difficulty, however, is that the conventional technique for measurement of
ε, consisting in the determination of capacitance of a two-electrode plate capacitor, C =
ε0εS/h (where ε0 is the vacuum permittivity, S is the electrode surface and h is the distance
between plates), is not suitable here. The bottom-electrode deposition at the film-substrate
interface, if ever possible, perturbs the functionality and integrity of the device, whereas the
top-electrode can influence the optical characterization of the system. In addition, defect-
provided leakage currents across thin film can distort the results. The emergent technique
of nanoscale capacitance microscopy [7,8] that measures the capacitance between an atomic
force microscope tip and the film is also limited by the same requirement of film deposition
on a conductive substrate.

A non-destructive way to overcome these difficulties consists in employing a capacitor in
which both electrodes are located outside but in close proximity to the film. The capacitance
of the system will depend on its geometry and in particular on the dielectric constants
of film and substrate that finally permits to measure ε. However, determination of such
functional dependence is the complicated electrostatic problem that, in general, requires
cumbersome numerical calculations. The semi-analytical method of capacitance calculation
for a particular case of planar capacitor in which two semi-infinite electrode plates with
parallel, linearly aligned edges are deposited on the top of the film was proposed by Vendik
et al. [9]. This geometry attracted the experimental audience due to the simplicity and
intuitive clarity of the resulting formula. Under the reasonable experimental conditions,
the capacitance of the planar capacitor was found to be inversely proportional to the width
of the edge-separated gap transmission line, d, and can be approximated as C = ε0εS/d
where S is the cross-sectional area of the film below the electrode edge. This expression is
formally equivalent to the capacitance of a parallel-plate capacitor of thickness d, in which
the electrodes correspond to the cross-sectional regions.

Note, however, that Vendik’s method is limited to the case when the dielectric constant
of the film (we set it as ε2) is much bigger than the dielectric constants of the environment
media, ε1, and the substrate, ε3, and when the transmission gap is thinner than the film
thickness [10]. This restriction is related to the used “partial capacitance” or “magnetic wall”
approximations in which the film, the substrate and the environment space are assumed to
be electrostatically independent of each other and the electric field lines do not emerge from
the deposited film. Being justified for the upper subspace, which is normally air with ε1 = 1,
the partial capacitance approximation can be not accurate enough if the dielectric constant
of the substrate is bigger than (or comparable to) that of the film.

The objective of the present work is to propose the procedure for non-destructive mea-
surements of the dielectric constant of the films, valid for any types of the substrate and
environment media. We consider the geometry in which two parallel wire electrodes are
placed on top of the film and derive the exact formula for the capacitance of such system.
Our calculations don’t imply the partial capacitance approximation and therefore are valid
for nanofilm-substrate devices based on the vast class of materials, extending from semicon-
ductors to oxide multiferroics.
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Fig. 1: Geometry of the system. Thin film of thickness h with dielectric constant ε2 (region (2)) is
deposited on the substrate with dielectric constant ε3 (region (3) at the bottom) and is surrounded
by the external environment with dielectric constant ε1 (region (1) at the top). Two parallel
oppositely charged wires with linear charge densities ±ql and of radius R (not shown) are placed
on top of the film. The distance between wires, d, is much larger then h and R. Measurement of
the capacitance of the two-wire system, Cl, (calculated per unit of length) permits to find ε2. The
z-axis of the rectangular coordinate system is directed across the film plane, the in-plane x-axis
is perpendicular to the wires and the y-axis is directed along the wires.

2 Model

The geometry of the system is shown in Fig. 1. Two parallel wires with opposite linear
charge densities, ±ql, are located on top of the ferroelectric film. The distance between the
wires, d, is much larger than their radius, R, and the film thickness, h. We also account for
anisotropy of the film, assuming that the in-plane (transverse) dielectric constant differs from
the out-of-plane (longitudinal) one, ε2, by the anisotropy factor γ2 and is equal to γ2ε2. The
origin of the rectangular coordinate system is selected in the middle of the film, just below
the left wire. The z-axis is directed perpendicular to the film plane, the y-axis is directed
along the wires and the x-axis is perpendicular to them. Thus, left and right wires have the
coordinates (0, y, h/2) and (d, y, h/2) correspondingly. The translational symmetry of this
system in y-direction permits to reduce the consideration to the 2D space, (x, z).

3 Method

Using the methods of electrostatics we calculate the distribution of the electrostatic potential
induced by one of the wires (left one). The corresponding Poisson equations have to be
written separately for each constituent part of the system (Fig. 1), the external environment
space (region 1), film (2) and substrate (3) :

∂2
xϕ1 + ∂2

zϕ1 = − 1

ε0ε1
ρ(x, z), z > h/2,

γ2∂2
xϕ2 + ∂2

zϕ2 = 0, |z| < h/2,
∂2
xϕ3 + ∂2

zϕ3 = 0, z < −h/2,

(1)

where ρ(x, z) = qlδ(x)δ(z − h/2) is the charge distribution of the wire. The electrostatic
boundary conditions are applied at the interfaces between the regions. We set ϕ1 = ϕ2 and
ε1∂zϕ1 = ε2∂zϕ2 for the located at z = h/2 environment - film interface, (1)-(2), and ϕ2 = ϕ3

and ε2∂zϕ2 = ε3∂zϕ3 for the located at z = −h/2 film - substrate interface, (2)-(3).
The Fourier method, similar to the one applied in [11, 12] for point charges, is used to

solve the system (1) and find the relevant asymptotes. Following this method, the cos-Fourier

transform of the potential inside the film, ϕ̃2(k, z) =
∞∫
0

ϕ2(x, z) cos (kx) dx, is found as:

ϕ̃2 =
qle

γkh/2

2ε0k (ε2 + ε1)

ε2−ε3
ε2+ε3

e−kz + eγkhekz

e2γkh − 1 + 2γ h
λ

. (2)
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a) ε2 ≥ ε3 ≫ ε1 b) ε3 ≥ ε2 ≫ ε1

Fig. 2: Electric field lines and corresponding electrostatic potential (colour map) induced by
two oppositely charged parallel wires located on top of the substrate-deposited film and directed
perpendicular to the figure plane. The geometry of the system is depicted in Fig. 1. a) For the
high-ε film with ε2 ≥ ε3 ≫ ε1. b) For the low-ε film with ε3 ≥ ε2 ≫ ε1

Here, λ is a characteristic length of the system,

λ = γ
(ε2 + ε1) (ε2 + ε3)

ε2 (ε1 + ε3)
h, (3)

that will be used below to delimit the regions with a different spatial decay of ϕ2 in the
x-direction. The inverse transformation of Eq. (2),

ϕ2 =
2

π

∞∫

0

ϕ̃2 cos (kx) dk, (4)

permits to find the expression for ϕ2(x, z). Similar calculations can be done for ϕ1(x, z) and
ϕ3(x, z). The results of the numerical solution of Eqs. (1) for two typical sets of dielectric
constants ε1, ε2 and ε3 are presented in Fig. 2.

4 Results

Having calculated the potential induced by one of the wires and taking into account their
equivalence we can find the capacitance of the system per unit of length as Cl = ql/∆ϕ
where ∆ϕ = ϕ2(R,h/2) − ϕ2(d−R,h/2) is the potential difference between the wires. For
the large wire separation, d ≫ h,R, the first term in ∆ϕ contributes as the d-independent
cutoff constant, whereas the second one can be calculated analytically, by an expansion of
(2) in series over the small parameter kh ≪ 1 that allows for exact integration in Eq. (4).
Finally, we obtain the following expression for the inverse capacitance,

C−1

l =
(πε0)

−1

ε1 + ε3

[
lnA

d

λ
+

(
1−

h

λ
β

)
g

(
d

λ

)]
, (5)

where A is the non-essential for further analysis constant that comprises the wire-scale cut-off,

β = γ +
ε3
2ε2

(1 + γ) (6)
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and
g (x) =

(π
2
− Six

)
sinx−Ci x cos x (7)

is the shown in Fig. 3 auxiliary function composed from the Sine and Cosine Integrals [13].

ξ

g(
ξ)
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 −ln(cξ)+πξ/2
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Fig. 3: Auxiliary function g(ξ) =
(
π
2
− Si ξ

)
sin ξ−Ci ξ cos ξ and its small-ξ and large-ξ asymptotes.

ln c ≃ 0.577 is the Euler’s constant.

Given by Eq. (5) dependence of the system capacitance on the distance between the wires
presents the basic result for determination of the dielectric constant of the film that enters
there through two fitting parameters, λ(ε2) and β(ε2). We discuss now in detail how this
procedure can be implemented in practice, considering for simplicity the isotropic film with
γ = 1, encompassed by the external environment with ε1 ≪ ε2, ε3 that gives β = 1 + ε3/ε2
and λ = (1 + ε2/ε3) h. We analyze separately the cases of high-ε and low-ε films (with
ε2 ≥ ε3 ≫ ε1 and ε3 ≥ ε2 ≫ ε1 correspondingly) that have different electrostatic behavior.
As shown in Fig. 2, wires-induced electric field lines are “repelled” from the film in the first
case (Fig. 2,a) and “captured” by the film in the second one (Fig. 2,b). Fig. 4 presents
given by Eq. (2) dependence of the inverse capacitance C−1

l , measured in units (πε0ε3)
−1

= 3.6 × 104ε−1
3

µm/pF, on the relative distance between the wires, d/h, for both cases.

High-ε film, ε2 ≥ ε3 ≫ ε1. For a large ratio ε2/ε3 the characteristic scale λ can be
comparable and even larger than the linear size of the system, and therefore the g-function
can be expanded over the small parameter d/λ as g (d/λ) ≃ − ln (cd/λ)+πd/2λ [13], (Fig. 3),
where ln c is the Euler’s constant, ln c

n→∞

= Σn
k=1

k−1 − lnn ≃ 0.577. Then, the resulting
expression for C−1

l can be simplified to:

C−1

l = const +
1

ε0ε2

d

2h
, (8)

that permits to measure ε2 via the linear slope of dependence C−1

l (d) at d → 0 (Fig. 4,a).
This method is analogous to that for geometry of planar capacitor with semi-infinite plates [9]
due to the similar linear dependence on the distance between electrodes. Presented in Fig. 4,a
numerical analysis shows, however, some restrictions for the application of this method. The
distance between electrodes at which the linearity is manifested should be rather small (but
still larger than R and h) and the parameter ε2/ε3 should be large enough.

Low-ε film, ε3 ≥ ε2 ≫ ε1. For small ε2/ε3 the opposite situation, d > λ, takes place
and the large-scale approximation for the g-function can be used, g (d/λ) ≃ (λ/d)2 [13].
Then, Eq. (5) is simplified to:

C−1

l ≃
1

πε0ε3

[
lnA

d

h
−

ε3
ε2

h2

d2

]
, (9)
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Fig. 4: The inverse capacitance of the system, C−1

l , in units (πε0ε3)
−1, as a function of the relative

distance between the wires, d/h, for different ratios of the film and substrate dielectric constants,
ε2/ε3. The dielectric constant of the environment media is assumed to be small, ε1 ≃ 1. a) For
the high-ε film with ε2 ≥ ε3 ≫ ε1. b) For the low-ε film with ε3 ≥ ε2 ≫ ε1.

the corresponding dependencies C−1

l (d/h) being shown in Fig. 4,b.
To extract the value of ε2 from experimental data one should first get rid of the ε2-

independent contribution presented by the logarithmic term in Eq. (9), which contains the
unknown cut-off constant. For this, one can plot C−1

l in units (πε0ε3)
−1 vs. ln(d/h) as shown
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Fig. 5: Determination of the dielectric constant of the low-ε film. The inverse capacitance of the
system, C−1

l , is measured in units (πε0ε3)
−1 and is plotted as a function of the logarithm of the

relative distance, d/h, between the wires (orange solid line). Then, it is extracted from the linear
background (purple dashed line), determined from the slope of C−1

l at d → ∞. The resulting
capacitance, C ′, is plotted in units πε0 as a function of (d/h)2, giving the straight line (inset).
The tangent coefficient corresponds to the film dielectric constant ε2 (here, ε2 = 100).
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in Fig. 5 and subtract the linear background, manifested at d → ∞. The residual contribution
to the capacitance, C ′

l = C∞

l − Cl, is given by the simple dependence C ′

l = πε0ε2(d/h)
2,

independent of the value of ε3. Then, the dielectric constant, ε2, can be extracted from the
slope of C ′

l , plotted in units πε0 as a function of (d/h)2 (Inset to Fig. 5).
Note that for the low-ε films the small ratio d/λ < 1 can be realized only for the distances

d much smaller than the cutoff lengths, R and h. Therefore the linear approximation over
d/λ, used in [9], makes no sense here.

5 Conclusion

The explicit analytical expression (5) derived for the capacitance of two parallel wires placed
on top of the substrate-deposited film gives a way for experimental non-destructive measure-
ments of the dielectric constant of this film. For experimental implementation, it can be con-
venient to deposit the system of equidistant wires and measure consequently the capacitance
between them. The technical procedure consists in the determination of the capacitance as a
function of the distance between the wires with subsequent comparison (fit) with functional
dependence, given by Eq. (5). Simple and intuitively clear realizations of this method for
high-ε and low-ε films (with respect to substrate) are proposed. The suggested procedure
is based on the exact expression that permits to measure the dielectric constant for those
systems in which traditionally used techniques are less precise or even fail because of the
uncontrolled approximations.

We acknowledge the stimulating discussions with T. Baturina, V. Vinokur and A. Razum-
naya. This work was supported by FP7-ITN-NOTEDEV project.
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