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We study quantum quenches in the XXZ spin-1/2 Heisenberg chain from families of ferromag-
netic and antiferromagnetic initial states. Using Bethe ansatz techniques, we compute short-range
correlators in the complete generalized Gibbs ensemble (GGE), which takes into account all local
and quasi-local conservation laws. We compare our results to exact diagonalization and numerical
linked cluster expansion calculations for the diagonal ensemble finding excellent agreement and thus
providing a very accurate test for the validity of the complete GGE. Furthermore, we compute the
diagonal entropy in the post-quench steady state. By careful finite-size scaling analyses of the exact
diagonalization results, we show that the diagonal entropy is equal to one half the Yang-Yang en-
tropy corresponding to the complete GGE. Finally, the complete GGE is quantitatively contrasted
with the GGE built using only the local conserved charges (local GGE). The predictions of the two
ensembles are found to differ significantly in the case of ferromagnetic initial states. Such initial
states are better suited than others considered in the literature to experimentally test the validity
of the complete GGE and contrast it to the failure of the local GGE.

I. INTRODUCTION

Understanding the long-time behavior of an isolated
many-body quantum system after it is brought out of
equilibrium represents a fundamental physical problem.
Arguably, the simplest paradigm is that of a quantum
quench [1], where a well-defined initial state is let evolved
unitarily under a time independent Hamiltonian.

In the past decade, tremendous theoretical efforts have
been devoted to the study of quantum quenches, an im-
portant motivation being recent experimental progress
in ultracold atomic physics [2–4]. Many beautiful ex-
periments have now shown that nearly isolated quantum
systems can be taken far from equilibrium using quan-
tum quenches and their dynamics studied in great detail
[5–14]. Such experiments have made it clear the need
for a theoretical understanding of quantum dynamics in
isolated systems, which may have been considered to be
a purely academic problem before.

Among others, one question has emerged as specially
important: is it possible to predict the properties of a
post-quench steady state based on simple physical prin-
ciples? This question is particularly relevant when com-
pared to the prohibitive complexity of computing the full
post-quench time evolution of a many-body quantum sys-
tem, and has inspired an intense theoretical research ac-
tivity. As a result, it has been concluded that a funda-
mental difference exists between generic and integrable
systems. In the former, it was proposed that the post-
quench steady state can be described by a thermal Gibbs
ensemble, where the effective temperature is fixed by the
initial state [15–19]. On the other hand, in integrable
models a key role is played by the presence of an exten-
sive number of conservation laws and such systems retain
much more information on the initial state [20, 21]. Ac-
cordingly, in order to characterize the post-quench steady
state a generalized Gibbs ensemble (GGE) was proposed,
which is constructed by taking into account conservation
laws emerging from integrability [22–24].

Much subsequent work has addressed the subtle ques-
tion of which conserved operators (or charges) have to
be taken into account in the GGE. In integrable models
mappable to noninteracting ones, either the occupation
of the single-particle eigenstates of the noninteracting
problem or all local conserved charges have been shown
to produce correct physical predictions following quan-
tum quenches [22–47]. However, recent investigations in
models that cannot be mapped onto noninteracting ones
(referred to as interacting integrable models in what fol-
lows) have unraveled the need for considering more gen-
erally all quasi-local conservation laws [48–58].

The existence of quasi-local conserved charges in in-
teracting integrable lattice models was discovered in the
context of thermal spin transport [59], where a number of
works have been devoted to analyze their physical conse-
quences [60–64]. Note that additional non-local conser-
vation laws and their importance on relaxation processes
have also been recently discussed in XY spin chains [65–
69] and integrable quantum field theories [70–74]. The
ensemble obtained by considering only local conserved
operators is now called the local (or ultra-local) GGE,
while the correct construction which includes all quasi-
local charges is usually referred to as the complete GGE.
For a pedagogical introduction to these topics see the
recent reviews [75–80].

An important role in the more recent developments has
been played by the introduction of the so-called quench
action approach [81, 82]. The latter is an analytical
method that allows one to compute physical quantities
on the post-quench steady state based on Bethe ansatz
techniques. At the moment, its applicability is limited to
those initial states for which the overlaps with the eigen-
states of the Hamiltonian after the quench are known
analytically [83–90]. Nevertheless, it has already been
successfully employed in the study of several quantum
quenches [51, 52, 85, 91–95], and was an essential theo-
retical tool for establishing the failure of the local GGE
in interacting systems [51, 52].
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Most of the progress related to interacting integrable
models has occurred remarkably rapidly. It is then im-
perative to substantiate the body of evidence in favor
of the complete GGE conjecture, which at the moment
has been tested to high precision for a relatively small
number of initial states [51, 52, 96]. Furthermore, in the
majority of the cases, the local GGE has been found to
provide extremely good predictions for local observables.
An important question related to experiments is whether
one can always expect the local GGE to give predictions
that are sufficiently accurate for all practical purposes.

The systematic investigation of these issues provides
the first motivation for our work. In particular, we fo-
cus on the prototypical XXZ spin-1/2 Heisenberg chain
and consider families of initial states given by antifer-
romagnets and tilted ferromagnets for several values of
the tilting angle. Complete GGE results for some tilting
angles and local correlators involving those families of
initial states have been presented in Ref. [96]. Here, we
systematically compare the complete GGE against calcu-
lations for the diagonal ensemble using exact diagonaliza-
tion (ED) and numerical-linked cluster expansions (NL-
CEs) [97–99]. We find perfect agreement for all the cases
considered, thus providing the most accurate benchmark
to date of the complete GGE. Furthermore, we show that
for tilted ferromagnets the predictions of the local and
complete GGEs are significantly different, only the lat-
ter being in agreement with ED and NLCE calculations.
This observation likely shifts the failure of the local GGE
from a purely academic result to something that can be
effectively tested experimentally.

We also characterize the post-quench steady states be-
yond short-distance correlators. In the Bethe ansatz lan-
guage, any statistical ensemble (and hence any GGE) can
be characterized in terms of quasi-particle rapidity distri-
bution functions, which generalize the concept of parti-
cle momentum distribution from noninteracting systems.
In fact, one of the simplest quantities in this context
is provided by the corresponding entropy, the so-called
Yang-Yang entropy [100]. While it is an established re-
sult that for thermal states the latter coincides with the
thermal entropy [101], its meaning for non-equilibrium
steady states has yet to be clarified. We note that the
Yang-Yang entropy has recently been used as one of the
key ingredients in the computation of entanglement dy-
namics in Heisenberg spin chains [102], and has thus al-
ready proven to be of great interest in the study of quan-
tum quenches. A detailed investigation of this quantity
provides the second motivation of our work.

In particular, we study the relation between the
Yang-Yang entropy and the so-called diagonal entropy,
whose thermodynamic meaning has been discussed in
Refs. [103, 104] (see Ref. [17] for a recent review). For all
the initial states considered, we show that the Yang-Yang
entropy for the complete GGE is twice the value of the
diagonal entropy, similar to results obtained for several
quantum quenches in translationally invariant systems
that are either noninteracting or that can be mapped

onto noninteracting ones [37, 105, 106] (see Ref. [78] for
a recent review). Our findings are also in agreement with
the analysis of Ref. [102] and corroborate the picture of
pair particle production after a quantum quench even in
fully interacting integrable models such as the XXZ spin-
1/2 Heisenberg chain.

The presentation is organized as follows. In section II,
we introduce the XXZ spin-1/2 Heisenberg Hamiltonian
and the quantum quenches considered in this work, while
in section III we briefly introduce the Bethe ansatz lan-
guage used to describe the complete GGE. In section IV,
we compare the Bethe ansatz predictions with the re-
sults from ED and NLCEs for the diagonal ensemble.
Section V is devoted to the analysis of diagonal and
Yang-Yang entropies. Our conclusions are reported in
section VI. Technical details from our calculations are
reported in the appendices.

II. HAMILTONIAN AND QUANTUM
QUENCHES

The XXZ spin-1/2 Heisenberg Hamiltonian can be
written as

H =
1

4

L∑
j=1

[
σxj σ

x
j+1 + σyj σ

y
j+1 + ∆

(
σzjσ

z
j+1 − 1

)]
, (1)

where σαj , α = x, y, z, are the Pauli matrices, and ∆

is the anisotropy parameter. Later, we will use σ± =
(σx± iσy)/2. We restrict our study to the regime ∆ ≥ 1.

We consider quantum quenches from two different ini-
tial states, namely, the Néel state

|N〉 = | ↑↓〉 ⊗ . . .⊗ | ↑↓〉 = | ↑↓〉⊗L/2, (2)

and the tilted ferromagnet

|Θ;↗〉 =

[
cos

(
Θ

2

)
| ↑〉+ i sin

(
Θ

2

)
| ↓〉
]⊗L

. (3)

Quantum quenches from the Néel state were previously
considered in Refs. [51, 52], were the quench action ap-
proach was employed to obtain an explicit characteriza-
tion of the post-quench steady state. In Ref. [55], it was
shown that the latter coincides with the complete GGE
constructed using all local and quasi-local charges. For
the tilted ferromagnet, in contrast, the overlaps needed
to implement the quench action are not known and the
construction of the complete GGE provides for the mo-
ment the only available analytical approach to obtain
predictions on the post-quench steady state.

In the next section, we review the Bethe ansatz de-
scription of the complete GGE in terms of rapidity dis-
tribution functions.

On the other hand, in our numerical calculations using
ED and NLCEs (see appendix A), correlators after the
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quench are computed in the so-called diagonal ensemble
[16], for which the density matrix reads

ρDE ≡ lim
t′→∞

1

t′

∫ t′

0

dt ρ(t) =
∑
α

Wα |α〉〈α|, (4)

where ρ(t) is the time-evolving density matrix after the
quench, |α〉 are the eigenstates of the final Hamiltonian,
and Wα are the weights of the initial state in the eigen-
states of the final Hamiltonian. In Refs. [51, 98], NLCEs
were used to compute correlators in the diagonal ensem-
ble after quenches from the Néel state. The results ob-
tained were in excellent agreement with those from the
quench action approach.

III. COMPLETE GGE FROM BETHE ANSATZ

The Hamiltonian (1) is integrable and can be diagonal-
ized by means of the Bethe ansatz [101, 107]. A general
eigenstate has a well defined number M of down spins
and can be written as∣∣{λj}Mj=1

〉
=

∑
x1<...<xM

∑
Q∈SM

AQ
(
{λj}Mj=1

)
×

M∏
j=1

e−ixjp(λQj
)σ−xj
| ↑ . . . ↑〉 , (5)

where

p(λ) = −i ln

[
sin(λ+ iη/2)

sin(λ− iη/2)

]
, (6)

AQ ({λj}) =

M∏
k<j

sin(λQj − λQk
− iη)

sin(λQj
− λQk

)
, (7)

while the second sum in Eq. (5) is over all permutations
of M elements.

The complex parameters {λj}Mj=1, usually called ra-
pidities, are obtained as the solution of so-called Bethe
equations(

sin(λj + iη/2)

sin(λj − iη/2)

)L
= −

M∏
k=1

sin(λj − λk + iη)

sin(λj − λk − iη)
, (8)

where η = arccosh(∆). The energy of an eigenstate cor-
responding to the set {λ}Mj=1 is then given by

e
[
{λj}Mj=1

]
= −

M∑
j=1

sinh2 η

cosh(η)− cos(2λj)
. (9)

The solutions of Eqs. (8) arrange themselves into patterns
in the complex plane called strings. A solution {λj}Mj=1

consists of Mn strings of length n in which the rapidities
are parametrized as

λn,aα = λnα + i
η

2
(n+ 1− 2a) + iδn,aα , (10)

with a = 1, . . . n. Here, the real numbers λnα are called
string centers and satisfy λnα ∈ [−π/2, π/2], while δn,aα
are exponentially small deviations that are ignored in
the thermodynamic limit, within the so-called string hy-
pothesis [101].

From the wave-function (5), magnonic excitations
(down spins) can be interpreted as quasi-particles, while
n-strings can be interpreted as n-quasi-particle bound
states. This picture provides the basis for the thermody-
namic description of the model.

In the thermodynamic limit, the macro-states of the
system are described by the quasi-particle and bound-
state rapidity distribution functions. In particular, n-
string centers become dense in the interval [−π/2, π/2]
according to a set of distribution functions ρn(λ), which
completely characterize a macro-state. Together with
these, one has distribution functions ρhn(λ) for the so-
called n-string holes, which generalize the concept of
holes from a noninteracting Fermi gas. In the interact-
ing model considered here, the functions ρhn(λ) are non-
trivially related to ρn(λ) through the thermodynamic
version of the Bethe equations (8)

ρn(λ) + ρhn(λ) = an(λ)−
∞∑
m=1

(anm ∗ ρm) (λ) , (11)

where

anm(λ) = (1− δnm)a|n−m|(λ) + 2a|n−m|(λ)

+ . . .+ 2an+m−2(λ) + an+m(λ) , (12)

and

an(λ) =
1

π

sinh (nη)

cosh(nη)− cos(2λ)
. (13)

In Eq. (11), the convolution between two functions is
defined as

(f ∗ g) (λ) =

∫ π/2

−π/2
dµf(λ− µ)g(µ) . (14)

As already mentioned, this thermodynamic formalism
can be employed to describe the statistical ensembles pro-
vided by the local and complete GGE. In particular, a
recent success has been the determination of the rapid-
ity distribution functions corresponding to the complete
GGE for the Néel and tilted ferromagnetic states con-
sidered here [51, 52, 57, 96]. These are briefly reviewed
in appendix B, where we also discuss how the rapidity
distribution functions for the local GGE are determined.

In principle, the rapidity distribution functions of a
macro-state allow one to compute all local correlators.
More precisely, such correlators can be obtained after
the numerical solution of sets of non-linear integral equa-
tions, which depend on the rapidity distribution func-
tions. Further details are reported in appendix C, while
we refer the reader to the literature for a more complete
treatment [51, 52, 108, 109].
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IV. SHORT-RANGE CORRELATORS

In this section, we compare the Bethe ansatz predic-
tions with ED and NLCE calculations in the diagonal
ensemble. In what follows, we first revisit the Néel state,
which was previously studied in Refs. [51, 52, 98]. Our
analysis goes beyond those works in that we consider
transverse correlators (σ+

i σ
−
i+k). Second, we study the

tilted ferromagnet for a large number of tilting angles.

A. Néel state

Here, we compare the Bethe ansatz predictions for the
complete GGE for longitudinal and transverse correlators
to the results obtained for the diagonal ensemble from
ED in chains with up to 24 lattice sites (with periodic
boundary conditions) and NLCEs in clusters with up to
19 sites. Our findings are reported in Fig. 1.

In Fig. 1, the results reported from the ED calculations
are the average between those obtained in chains with
L = 22 and L = 24 sites. The actual ED results for
the chains with L = 22 and L = 24 sites are shown as
the extremes of the errorbars. This allows one to gauge
finite size errors in the ED calculations. Results are only
reported for chains with an even number of sites as those
are the only ones that accommodate the Néel state (see
appendix A). From the NLCE calculations, the results
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FIG. 1. Short-range correlators for the quench from the Néel
state as functions of the anisotropy parameter ∆. The com-
plete GGE (cGGE) and local GGE (lGGE) predictions are
compared to the results from ED and NLCE. The ED and
NLCE results reported are the average over the two largest
chains (with 22 and 24 sites) and the two highest orders of
the expansion (18 and 19 orders), respectively. The values at
the extremes of the errorbars depict the results that entered
the averages. For 〈σz

i σ
z
i+3〉, inset in (a), and 〈σ+

i σ
−
i+3〉, inset

in (c), we only report results for cGGE, lGGE, and ED.

reported are the average between those obtained in the
expansions with up to 18 and 19 site clusters. The actual
NLCE results for up to 18 and 19 site clusters are shown
as the extremes of the errorbars. This allows one to gauge
convergence in the NLCE calculations.

Figure 1 shows that, for all the short-range correla-
tors and values of the anisotropy parameter ∆ that we
have considered, there is an excellent agreement between
the complete GGE and the ED [except for 〈σ+

i σ
−
i+2〉 in

(d) and 〈σ+
i σ
−
i+3〉 in the inset in (c), because of finite

size effects] and NLCE results. We note that finite-size
errors in ED and convergence errors in NLCE increase
with decreasing ∆, and with increasing the support of
the correlators. However, in all cases, the complete GGE
results are within the results for the last two orders of the
NLCE expansion, and, in most cases, coincide with their
average. The NLCE results fluctuate about the Bethe
ansatz prediction and, as shown in Ref. [98], the mag-
nitude of the fluctuations decrease with increasing the
cluster sizes.

In Fig. 2, we show ED results for four values of ∆
as a function of the chain size, and compare them to
the complete GGE predictions (horizontal dashed lines).
The comparison makes apparent that the ED results ap-
proach the complete GGE ones with increasing the chain
size. Also, as mentioned in the context of Fig. 1, Fig. 2
shows that finite-size errors increase when decreasing the
anisotropy parameter and are most severe at ∆ = 1.

In Fig. 1, we also report the results obtained for the
local GGE. They are almost indistinguishable from those
obtained for the complete GGE. This was first observed
in Ref. [51], where a detailed analysis for longitudinal cor-
relators was provided. In particular, it was shown that
the large-∆ expansions for the short-range correlators of
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FIG. 2. Short-range correlators for the quench from the Néel
state for anisotropy parameters ∆ = 1, 2, 4, and 8. The ED
results (symbols) are shown as functions of the chain size L
in systems with periodic boundary conditions. The complete
GGE results are shown as horizontal dashed lines. For all
correlators and values of ∆, one can see that the ED results
approach the Bethe ansatz predictions as L increases.
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the local GGE and the complete GGE coincide up to
the fourth order and do not differ significantly in general
[51]. On the other hand, our results for the transverse
correlators show that 〈σ+

i σ
−
i+2〉 and 〈σ+

i σ
−
i+3〉 are visibly

different when comparing the complete GGE and the lo-
cal GGE as ∆→ 1. Still, those differences are small so in
experiments it might be difficult to identify which GGE
is providing the correct prediction.

B. Tilted ferromagnetic state

The analysis of short-range correlators in the post-
quench steady state when the initial state is the tilted
ferromagnet (3) reveals more interesting results. Analo-
gously to the Néel state, we compute the Bethe ansatz
predictions for the complete GGE and the local GGE
for longitudinal and transverse correlators and compare
them to ED and NLCE calculations. We consider the
tilting angles:

Θ = π/m , (15)

with m = 2, 3, . . . 10. Our results are reported in Fig. 3.
Some remarks are in order as to how the plots and

calculations for the tilted ferromagnet differ from those
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FIG. 3. Short-range correlators for quenches from initial tilted
ferromagnetic states as functions of the squared magnetiza-
tion for ∆ = 2 and ∆ = 4. In the main panels of (c) and (d),
we only report results for ∆ = 4. The squared magnetization
is 〈σz

i 〉2 = cos2 Θ, where Θ is the tilting angle. The com-
plete GGE (cGGE) and local GGE (lGGE) predictions are
compared to the results from ED and NLCE. The ED and
NLCE results reported are the average over the two largest
chains (with 23 and 24 sites) and the two highest orders of
the expansion (18 and 19 orders), respectively. The values at
the extremes of the errorbars depict the results that entered
the average. For 〈σz

i σ
z
i+3〉, inset in (a), and 〈σ+

i σ
−
i+3〉, inset

in (c), we only report results for cGGE, lGGE, and ED.

for the Néel state. In the former: (i) The longitudinal
correlators reported are the connected ones

〈σzi σzi+k〉c = 〈σzi σzi+k〉 − 〈σzi 〉2 , (16)

where the squared magnetization is simply related to Θ
in Eq. (15) by the expression 〈σzi 〉2 = cos2 Θ. (ii) The
ED results reported in the plots are obtained using the
average between those obtained in chains with L = 23
and L = 24 sites. The results for L = 23 and L = 24
sites are shown as the extremes of the errorbars.

In Fig. 3 one can see that, in most cases, there is an ex-
cellent agreement between the Bethe ansatz predictions
and the results from ED and NLCE calculations. In
Fig. 4, we show how the ED and NLCE results converge
toward the complete GGE predictions as the chain and
cluster size increase, respectively. (For next-next-nearest
neighbor correlators, we only show results from ED.) For
this quench, we find that the ED results exhibit a faster
convergence toward the complete GGE predictions than
the NLCE ones. In addition, for both ED and NLCEs,
the convergence worsens as the tilting angle approaches
Θ = π/2, and as the support of the correlators increases.

It is interesting to note that the results in Fig. 3 show
that there is a strong dependence of the (connected)
short-range correlators on the tilting angle. Further-
more, we find that the dependence on the anisotropy
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FIG. 4. Short-range correlators for quenches from initial tilted
ferromagnetic states with tilting angles Θ = π/2, π/3, π/4,
and π/6 for ∆ = 2. The ED results (empty symbols) are
shown as functions of the chain size L in systems with periodic
boundary conditions, while the NLCE results (filled symbols)
are shown as functions of the order l of the expansion. The
complete GGE results are shown as horizontal dashed lines.
For 〈σz

i σ
z
i+3〉c in (c), and 〈σ+

i σ
−
i+3〉 in (f), we only report ED

and complete GGE results. For all correlators and values of Θ
shown, one can see that the ED and NLCE results approach
the Bethe ansatz predictions as L and l increase, respectively.
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∆ increases as the tilting angle increases (and 〈σzi 〉2 de-
creases). For small tilting angles, the results for the cor-
relators can be seen to become nearly independent of the
value of ∆.

The predictions of the local GGE are also shown in
Fig. 3. Remarkably, they can be seen to differ signif-
icantly from those of the complete GGE. As a matter
of fact, for 〈σzi σzi+2〉c and 〈σzi σzi+3〉c, one can see that
the local GGE even predicts the wrong sign for the cor-
relators in the steady state. These results are in stark
contrast to those starting from the Néel state, for which
the local GGE yielded relatively accurate results. They
make apparent that there is no reason for one to expect
the local GGE to generically provide accurate predictions
for short-range correlators after quenches in interacting
integrable systems. Also, our findings for 〈σzi σzi+2〉c and
〈σzi σzi+3〉c indicate that those correlators could be used in
experiments with quenches from initial tilted ferromag-
netic states to confirm the correctness of the complete
GGE and the failure of the local GGE.

V. DIAGONAL ENTROPIES

The notion of entropy is a fundamental cornerstone
in statistical physics. In thermal equilibrium, the von
Neumann entropy

SvN[ρ] = −tr(ρ log ρ) , (17)

provides the correct microscopic definition for the ther-
modynamic entropy (using the thermal Gibbs density
matrix for ρ). From the Bethe ansatz point of view, it
is an established result that the thermal entropy com-
puted using Eq. (17) is equal to the so-called Yang-Yang
entropy

SYY [{ρn}∞n=1] =

∞∑
n=1

∫ π/2

−π/2
dλ
{
ρn(λ) log [1 + ηn(λ)]

+ ρhn(λ) log
[
1 + η−1n (λ)

] }
, (18)

where ηn(λ) = ρhn(λ)/ρn(λ), while ρn(λ), ρhn(λ) are the
rapidity and hole distribution functions corresponding to
the thermal Gibbs ensemble, cf. Sec. III.

When entering the realm of non-equilibrium physics,
providing a good definition of entropy is less immediate
[17]. In this work, we focus on the entropy of the post-
quench steady state. A natural candidate is provided by
the infinite-time limit of the von Neumann entropy of a
finite subsystem A, with reduced density matrix ρA(t),
of an infinite system. This entropy is also known as the
entanglement entropy and is extensive, namely, it grows
linearly with the length ` of the subsystem A [110].

It is almost automatic to identify the von Neumann
entropy of the reduced density matrix in the long-time
limit with the entropy of the complete GGE. Indeed, as-
suming its validity, the latter gives the reduced density
matrix for any finite subsystem A in the infinite-time

limit, provided that the infinite system size limit is taken
first. On the other hand, the entropy of the complete
GGE is computed by means of Eq. (18), namely, it is
given by the Yang-Yang entropy of the corresponding ra-
pidity distribution functions ρn(λ) and ρhn(λ).

In Refs. [103, 104], and more recently in Ref. [17], it
was discussed that the von Neumann entropy of the di-
agonal ensemble [see Eq. (4)], also known as the diagonal
entropy,

SDE = −tr(ρDE log ρDE) , (19)

provides the correct microscopic definition of the thermo-
dynamic entropy for the steady state of isolated quantum
systems after a quench. In particular, it was argued in
Ref. [103] that the diagonal entropy has the correct ex-
tensivity properties and an interpretation in terms of the
logarithm of the number of microstates can be given.

The relation between the diagonal entropy and the
Yang-Yang entropy associated with the GGE has been
studied in several works in the literature [20, 21, 37,
78, 104–106]. However, all those studies focused on
systems that were either noninteracting or for which a
mapping onto noninteracting ones was available. In the
cases in which the systems were translationally invari-
ant [37, 78, 105, 106], a simple relation between the two
entropies was found, namely

SDE =
1

2
SYY . (20)

A heuristic explanation for the factor 1/2 was provided
for the transverse-field Ising chain [37]. After the quench,
free fermionic excitations are created in pairs of opposite
momentum. This represents a set of non-trivial correla-
tions on the particle content of the system, which con-
strains the entropy. However, such correlations are ab-
sent for the (complete) GGE, as it is most easily visual-
ized for the reduced density matrix of a finite subsystem
A. Indeed, if a particle with a given momentum is in
A, the associated particle of opposite momentum will be
found outside of A at sufficiently long times [37].

It is natural to question whether Eq. (20) remains valid
for fully interacting systems or additional effects due to
interactions arise. In order to answer this question for
quenches to the XXZ spin-1/2 Heisenberg chain, we have
computed the Yang-Yang entropy [Eq. (18)] and the di-
agonal entropy [Eq. (19)] for the Néel state and the tilted
ferromagnet. The Yang-Yang entropy is obtained di-
rectly using the Bethe ansatz rapidity distribution func-
tions associated with the complete GGE, while the diago-
nal entropy is computed numerically using ED for chains
with up to L = 24 sites (the ED results converge faster
with increasing chain sizes than the NLCE ones with in-
creasing cluster sizes so only the former are reported).
For comparison, we also computed the Yang-Yang en-
tropy for the local GGE using Bethe ansatz and the en-
tropy of the grand canonical ensemble using NLCEs (the
NLCE results for this quantity converge faster with in-
creasing cluster sizes than the ED ones with increasing
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FIG. 5. Diagonal, grand canonical ensemble, and Yang-Yang
entropies for the quench from the Néel state as functions of the
anisotropy parameter ∆. The diagonal entropy (2SED

DE , notice
the factor 2) computed using ED is compared to the grand
canonical ensemble entropy (SNLCE

GE ) computed using NLCEs,
and to the Yang-Yang entropy for the complete GGE (ScGGE)
and for the local GGE (SlGGE) computed using Bethe ansatz.
The SED

DE results reported are the average over the two largest
chains (with 22 and 24 sites) considered, the extremes of the
errorbars depict the results that entered the averages, while
the SNLCE

GE results are for clusters with up to 18 sites and are
converged to the thermodynamic limit result [111]. The inset
shows SED

DE and ScGGE/2, notice the factor 2, for anisotropy
parameters ∆ = 1, 2, 4, and 8. The ED results (symbols) are
shown as functions of the chain size in systems with periodic
boundary conditions. The complete GGE results are shown
as horizontal dashed lines. For all values of ∆ shown, one can
see that the ED results approach the Bethe ansatz predictions
as L increases.

chains sizes [111] so only the former are reported.) All
entropies reported in this section are entropies per-site.

Our results for the Néel state are reported in Fig. 5.
First, we note that the diagonal entropy for the Néel
state, as computed using ED, is clearly smaller than the
thermal (grand canonical ensemble) entropy, as obtained
using NLCEs. This is expected as the thermal ensem-
ble contains less information about the system than the
diagonal ensemble. Analogously, the local GGE displays
an entropy that is smaller than the thermal entropy but
larger than the complete GGE entropy.

More importantly, we find that the entropy of the com-
plete GGE is twice that of the diagonal ensemble. This
is better seen in the inset in Fig. 5, where the ED results
for the diagonal entropy are shown to approach one half
of the complete GGE ones as the sizes of the chains in-
crease. That inset also shows that finite-size effects in
ED increase as the anisotropy parameter approaches the
Heisenberg point ∆ = 1. We emphasize that Eq. (20)
holds for the complete GGE and not for the local GGE,
as made clear by our results in Fig. 5. The latter en-
semble does not contain the information required to con-
struct the reduced density matrix for a finite subsystem
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FIG. 6. Diagonal and Yang-Yang entropies for quenches from
initial tilted ferromagnetic states as functions of the squared
magnetization for ∆ = 2 and ∆ = 4. The diagonal entropy
(2SED

DE , notice the factor 2) computed using ED is compared to
the Yang-Yang entropy for the complete GGE (ScGGE) and for
the local GGE (SlGGE) computed using Bethe ansatz. We also
report NLCE results for the grand canonical ensemble entropy
(SNLCE

GE ) for tilting angle Θ = π/2 (zero magnetization). The
results for 2SED

DE reported are obtained after an extrapolation
to the thermodynamic limit, cf. appendix D, while the SNLCE

GE

results are for clusters with up to 18 sites and are converged
to the thermodynamic limit result [111].

A of an infinite system in the infinite-time limit.
Our results for the tilted ferromagnet are displayed in

Fig. 6. For this quench, we have found that finite size ef-
fects in the ED calculations are severe and, unlike for the
Néel state, a direct comparison between the ED results
for the largest chains and the complete GGE results is
not meaningful. Instead, careful finite-size scaling analy-
ses of the ED results are required. The fitting procedure
followed is explained in appendix D. Here, we focus on
discussing the results obtained with it.

Figure 6 shows that, like for the Néel state, the Yang-
Yang entropy in the complete GGE is twice the extrap-
olated ED result of the entropy in the diagonal ensem-
ble. We find that finite-size effects in the ED calcula-
tions increase significantly as the tilting angle approaches
Θ = π/2, and the fitting procedure becomes unstable.
Accordingly, we observe a discrepancy for Θ = π/2 be-
tween the Bethe ansatz and extrapolated ED result. The
discrepancy is larger for ∆ = 4 than for ∆ = 2. We in-
terpret those discrepancies to be the result of our fitting
procedure failing to predict the diagonal entropy per site
in the thermodynamic limit.

Finally, Fig. 6 also shows that the Yang-Yang entropy
of the local GGE is much larger than the one of the com-
plete GGE. For Θ = π/2 and ∆ = 2, SlGGE is about
two times larger than ScGGE, and SlGGE is closer to the
entropy of the grand-canonical ensemble SNLCE

GE than to
ScGGE. This unambiguously demonstrates that, in con-
trast to the Néel state, for the tilted ferromagnet the
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local GGE contains much less information than the com-
plete GGE. For this state, neglecting the contribution
of the quasi-local charges results in an ensemble that is
significantly different from the one needed to describe
the steady state following a quantum quench. This of-
fers further support to the conclusions of our analysis of
short-range correlators in Sec. IV.

VI. CONCLUSIONS

We studied quantum quenches to the XXZ spin-1/2
Heisenberg chain from the Néel and tilted ferromag-
netic states. We focused on the post-quench steady
state, and presented a detailed comparison between the
Bethe ansatz predictions for the complete and local GGE
and numerical calculations for the diagonal ensemble by
means of ED and NLCEs.

Our analysis of short-range correlators provides one of
the most accurate benchmarks to date of the validity of
the complete GGE. Furthermore, we have shown that
the local GGE predictions differ significantly from those
of the complete GGE in the case of tilted ferromagnets.
This discrepancy can be clearly and without ambiguity
resolved by ED and NLCE calculations, and could po-
tentially be tested in experiments.

Furthermore, we calculated the diagonal entropy for
the complete GGE in the XXZ spin-1/2 Heisenberg chain
after quantum quenches from different initial states. Us-
ing careful finite-size scaling analyzes, we found that the
diagonal entropy is one half the Yang-Yang entropy for
both the Néel and the tilted ferromagnet state. We ar-
gued that our findings are consistent with the picture of
pair particle production after a quench, recovering the re-
sults obtained in several translationally invariant systems
that are either noninteracting or that can be mapped
onto noninteracting ones [37, 78, 105, 106].
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Appendix A: Exact diagonalization and
numerical linked cluster expansions

The ED calculations are performed in chains with pe-
riodic boundary conditions and with up to L = 24 sites.

To take full advantage of translational symmetry, we
do not deal directly with the Néel state in Eq. (2) but

rather with its translational invariant version:

|N〉′ =
1√
2

(| ↑↓〉⊗L/2 + | ↓↑〉⊗L/2), (A1)

This state can only be accommodated in chains with an
even number of sites and belongs to the zero magnetiza-
tion sector [the total magnetization commutes with the
XXZ spin-1/2 Hamiltonian (1)]. In addition, this state
belongs to the zero momentum sector and it is parity
even. All our calculations for the diagonal ensemble are
performed in this sub-sector of the Hilbert space. The
largest matrices that need to be fully diagonalized for
L = 24 have linear dimension D = 56, 822.

The tilted ferromagnetic state in Eq. (3) is already
translationally invariant and belongs to the zero momen-
tum – parity even – sector. However, in contrast to the
Néel state, the tilted ferromagnet is a superposition of
states that belong to all magnetization sectors. As a
result, while the largest matrices that need to be diago-
nalized for each chain of size L are the same size as those
for the Néel state, one also has to diagonalize many other
smaller ones for all non-zero magnetization sectors. In
addition, this state can also be accommodated in chains
with an odd number of sites, so we have done calculations
for chains with even and odd number of sites.

The NLCE calculations for the diagonal ensemble, on
the other hand, allow one to compute the expectation
value of extensive observables (per lattice site, O) after a
quench in translationally invariant lattice systems in the
thermodynamic limit [97]. This is done by summing over
the contributions from connected clusters c that can be
embedded on the lattice

O =
∑
c

M(c)×WO(c). (A2)

In the expression above, M(c) is the multiplicity of clus-
ter c (the number of ways per site in it can be embedded
on the lattice) andWO(c) is the weight of the observable
of interest O in cluster c. The weightWO(c) is computed
using the inclusion-exclusion principle:

WO(c) = ODE(c)−
∑
s⊂c
WO(s), (A3)

where the sum runs over all connected sub-clusters of
cluster c and

ODE(c) = Tr[O ρcDE]/Tr[ρcDE] (A4)

is the expectation value ofO in the diagonal ensemble cal-
culated for the finite cluster c. ρcDE is the many-body den-
sity matrix of the diagonal ensemble in cluster c. ODE(c)
is computed using full exact diagonalization.

NLCEs were originally introduced to study observables
for lattice systems in thermal equilibrium in the thermo-
dynamic limit [112]. For a pedagogical introduction to
NLCEs see Ref. [113]. This is the approach we used to
compute the grand canonical ensemble results for the en-
tropy (SNLCE

GE ) shown in Figs. 5 and 6. The temperature
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and chemical potential are chosen such that the energy
and the magnetization per site in the grand canonical
ensemble match the values set by the initial state.

In this work, NLCEs for the diagonal ensemble are car-
ried out in clusters with up to 19 lattice sites. This means
that the sum in Eq. (A2) only contains results for clusters
with at most 19 sites. To gain an understanding of how
the results converge to the thermodynamic limit ones as
the cluster sizes are increased, we denote by Ol the sum
in Eq. (A2) when all clusters with up l sites are included.
l is usually referred to as the order of the expansion and is
reported in the plots in Fig. 4. The fact that the clusters
in NLCEs have open boundary conditions, namely, they
lack translational symmetry and hence are more costly to
fully diagonalize, explains why we are limited to smaller
cluster sizes in NLCEs than chains sizes in ED.

NLCEs for the Néel state were previously carried out
in Refs. [51, 98] for clusters with up to 18 lattice sites.
Details about the NLCE calculations can be found in
Ref. [98]. Here we have extended these calculations by
one order (to clusters with up to 19 lattice sites) and also
computed transverse correlators.

The NLCE calculations for the tilted ferromagnet are
carried out in a similar fashion. For each cluster in the
expansion, we use the fact that the tilted ferromagnet
is parity even and consider all magnetization sectors (in
contrast to the Néel state [98]). This makes the NLCE
calculations for the tilted ferromagnet more costly than
those for the Néel state. Also, for the tilted ferromagnet,
the connected nearest neighbor longitudinal correlators
are computed after the sub-cluster subtraction is per-
formed. On the other hand, for next nearest neighbors
sites, the connected longitudinal correlators are com-
puted at the cluster level and the sub-cluster subtrac-
tion is performed afterwards. This accelerates the con-
vergence of the NLCE results. The largest matrices that
need to be fully diagonalized for both initial states in
clusters with L = 19 have linear dimension D = 46, 252.

Appendix B: Rapidity distribution functions for the
local and complete GGE

In this appendix, we review results regarding the rapid-
ity distribution functions corresponding to the complete
and local GGE both for the Néel and tilted ferromagnet
state.

In the case of the complete GGE, the rapidity distri-
bution functions can be determined analytically. In par-
ticular, for the Néel state they read [51]

η1(λ) =
sin2(2λ) [cosh(η) + 2 cosh(3η)− 3 cos(2λ)]

2 sin
(
λ− iη2

)
sin
(
λ+ iη2

)
× [sin(2λ− 2iη) sin(2λ+ 2iη)]

−1
, (B1)

ρh1 (λ) = a1(λ)

×
(

1− cosh2(η)

π2a21(λ) sin2(2λ) + cosh2(η)

)
, (B2)

where a1(λ) is given in Eq. (13). Higher string distribu-
tion functions are obtained as

ηn(λ) =
ηn−1(λ+ iη/2)ηn−1(λ− iη/2)

ηn−2(λ) + 1
− 1 , (B3)

ρhn(λ) = ρhn−1(λ+ iη/2)[1 + η−1n−1(λ+ iη/2)]

+ ρhn−1(λ− iη/2)[1 + η−1n−1(λ− iη/2)]

− ρhn−2(λ) , (B4)

where we set η0(λ) ≡ 0, ρh0 (λ) ≡ 0.
In the case of the tilted ferromagnet, the rapidity dis-

tribution functions corresponding to the complete GGE
instead are [96]

η1(λ) = −1 +
T1
(
λ+ iη2

)
φ
(
λ+ iη2

) T1 (λ− iη2 )
φ̄
(
λ− iη2

) , (B5)

ρh1 (λ) =
sinh η

π

(
1

cosh(η)− cos(2λ)
− P (λ)

Q(λ)

)
, (B6)

where

P (λ) = 2 sin2(Θ)
{

2 sin2(Θ)

+ cosh(η) [(cos(2Θ) + 3) cos(2λ) + 4]
}
, (B7)

Q(λ) = sinh2(η) [cos(2Θ) + 3]
2

sin2(2λ) +
{

2 sin2(Θ)

+ cosh(η) [(cos(2Θ) + 3) cos(2λ) + 4]
}2
, (B8)

T1(λ) = cos(λ)
[
4 cosh(η)

− 2 cos(2Θ) sin2 λ+ 3 cos(2λ) + 1
]
, (B9)

φ(λ) = 2 sin2 Θ sinλ cos
(
λ+ i

η

2

)
sin
(
λ− iη

2

)
,(B10)

φ̄(λ) = 2 sin2 Θ sinλ cos
(
λ− iη

2

)
sin
(
λ+ i

η

2

)
.(B11)

Once again, higher string distribution functions are im-
mediately given by Eqs. (B3) and (B4).

As opposed to the complete GGE, the rapidity dis-
tribution functions for the local GGE can only be ob-
tained numerically. In the case of the Néel state, these
were explicitly obtained in Ref. [51], where a numeri-
cal scheme was developed to this end (see also Ref. [53]).
This method requires an initial guess for the first rapidity
distribution function ρ1(λ) and reaches the correct dis-
tribution functions by subsequent iterations [51]. This
scheme was used here to obtain the local GGE predic-
tions corresponding to the Néel and tilted ferromagnet
states, as displayed in Figs. 1 and 3 for local correlations,
and in Figs. 5 and 6 for the Yang-Yang entropies. Note
that in the case of tilted ferromagnetic states one has to
account for a non-vanishing magnetization, as opposed
to the cases considered in Ref. [51, 53]. Accordingly, one
has to introduce a Lagrange multiplier h in order to fix
the correct magnetization. In turn, this determines the
asymptotic behavior of ηn(λ) for large n, which has to
be used to truncate the infinite system of partially de-
coupled equations for ηn, in complete analogy with the
thermal case [101].
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In all the cases considered here, we explicitly checked
that the values of the short-range correlators obtained for
the local GGE were in agreement with those of Ref. [50],
where a different quantum transfer matrix approach was
employed.

Appendix C: Short-range correlators from Bethe
ansatz

Here, we briefly review the formulas used in this work
to compute short-range correlations by means of the
Bethe ansatz. These were recently derived in Ref. [108],
to which we refer the reader for further details (see also
Refs. [51, 52, 109]).

First, we introduce the set of auxiliary functions

{ρ(a)n (λ)}∞n=1, {σ(a)
n (λ)}∞n=1 as the solution of the follow-

ing system of integral equations

ρ(a)n (λ) = −s(a)n (λ)−
∞∑
m=1

(
ϕnm ∗

ρ
(a)
m

1 + ηm

)
(λ) ,(C1)

σ(a)
n (λ) = s̃(a)n (λ) +

∞∑
m=1

(
ϕ̃nm ∗

ρ
(a)
m

1 + ηm

)
(λ)

−
∞∑
m=1

(
ϕnm ∗

σ
(a)
m

1 + ηm

)
(λ) , (C2)

where we use the notation in Eq. (14) for the convolution
of two functions as well as

s(a)n (λ) =

(
∂

∂λ

)a
s(0)n (λ) , (C3)

s̃(a)n (λ) =

(
∂

∂λ

)a
s̃(0)n (λ) , (C4)

s(0)n (λ) =
2 sinh(nη)

cos(2λ)− cosh(nη)
, (C5)

s̃(0)n (λ) = − n sin(2λ)

cos(2λ)− cosh(nη)
, (C6)

and

ϕjk(λ) = −
[
(1− δjk)s

(0)
|j−k|(λ) + 2s

(0)
|j−k|+2(λ)

+ . . .+ 2s
(0)
j+k−2(λ) + s

(0)
j+k(λ)

]
, (C7)

ϕ̃jk(λ) = −
[
(1− δjk)s̃

(0)
|j−k|(λ) + 2s̃

(0)
|j−k|+2(λ)

+ . . .+ 2s̃
(0)
j+k−2(λ) + s̃

(0)
j+k(λ)

]
. (C8)

The short-range correlators are then given in terms of
algebraic expressions of the form

〈σz1σz2〉 = coth(η)ω00 +W10 , (C9)

〈σx1σx2 〉 = − ω00

2 sinh(η)
− cosh(η)

2
W10 , (C10)

where the parameters ωab and Wab are defined by

ωab = −(−1)(a+b)/2Ωab

− (−1)b
1

2

(
∂

∂λ

)a+b
K(λ)

∣∣∣
λ=0

, (C11)

Wab = −(−1)(a+b−1)/2Γab

+ (−1)b
1

2

(
∂

∂λ

)a+b
K̃(λ)

∣∣∣
λ=0

. (C12)

Here

Ωab = −2

∞∑
n=1

s(b)n ·
ρ
(a)
n

1 + ηn
, (C13)

Γab = 2

( ∞∑
n=1

s̃(b)n ·
ρ
(a)
n

1 + ηn
+

∞∑
n=1

s(b)n ·
σ
(a)
n

1 + ηn

)
, (C14)

and we introduced the notation

f · g =

∫ π/2

−π/2
dµf(µ)g(µ) , (C15)

and

K(λ) =
sinh(2η)

sinh(λ+ η) sinh(λ− η)
, (C16)

K̃(λ) =
sinh(2λ)

sinh(λ+ η) sinh(λ− η)
. (C17)

Increasing the range of the correlators, the algebraic ex-
pressions analogous to Eqs. (C9) and (C10) become in-
creasingly long and are not reported here. See Ref. [108]
for details.

Note that for transverse correlators, we compute
〈σ+
j σ
−
j+k〉 as displayed in Figs. 1 and 3. These can be

easily related to the correlators 〈σxj σxj+k〉. Indeed, we
have

σ+
j σ
−
j+k =

1

4

[
σxj σ

x
j+k + σyj σ

y
j+k

− i(σxj σ
y
j+k − σ

y
j σ

x
j+k)

]
. (C18)

Next, we note that

〈σxj σ
y
j+k − σ

y
j σ

x
j+k〉 = 0 , (C19)

when computed on an ensemble invariant under spin-
inversion, as are the local and complete GGE. Exploiting
rotational invariance along the z-axis, we then have

〈σ+
j σ
−
j+k〉 =

1

2
〈σxj σxj+k〉 . (C20)

Equations (C1) and (C2) can also be cast in partially
decoupled form [101, 108]. However, for the tilted ferro-
magnetic state for small values of the tilting angle Θ, the
rapidity distribution functions of the complete GGE are
peaked around ±π/2 [96]. Accordingly, we found it more
convenient to solve the coupled form Eqs. (C1) and (C2)
using the Gaussian quadrature method, which reduced
the numerical error due to discretization. Conversely, for
the local GGE for the tilted ferromagnet, and for the lo-
cal and complete GGE for the Néel state, the decoupled
form of these equations was used.
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Appendix D: Finite-size analysis of the diagonal
entropies

In this appendix, we briefly discuss the strategy fol-
lowed to extrapolate the ED results for the diagonal en-
tropy of the tilted ferromagnetic state to the thermo-
dynamic limit, which is illustrated in Fig. 7. From the
sequence of finite-size results SDE(L) for the diagonal en-
tropy (SED

DE in the figure), we construct a second sequence
Fit(L,L + 1) obtained by interpolating the results for
SDE(L) and SDE(L + 1) with a linear fit to L−1 and
extrapolating to L → ∞. For L not too small, this sec-
ond series is almost perfectly linear and can be fitted
accordingly (see Fig. 7). The resulting extrapolations to
L → ∞ provide the results for the numerical estimation
of the diagonal entropy reported in Fig. 6. This proce-
dure was found to be stable under small modifications.
For instance, we verified that changing the intermediate
sequence of two-point fits to a sequence built out of three
point fits does not significantly change the final result (see
Fig. 7).

This method proved to be more stable than a direct fit
of the results for SDE(L) to a polynomial in L−1. How-
ever, for tilting angle Θ = π/2, finite-size effects appear
to be too strong and our fitting procedure does not pro-
vide a reliable extrapolation to the thermodynamic limit.
Larger system sizes need to be calculated to obtain a
good estimate of the diagonal entropy for Θ = π/2 in the

thermodynamic limit.

0 0.05 0.1 0.15 0.2
1/L

0.05

0.1

0.15

0.2

S

S
DE

Fit(L,L+1)

Linear Fit of Fit(L+1,L+2)

1/2 S
cGGE

Fit(L,L+1,L+2)

Linear Fit of Fit(L,L+1,L+2)

ED

FIG. 7. Diagonal entropy as obtained using exact diagonaliza-
tion and the extrapolations explained in the text for ∆ = 2
and Θ = π/6. One half of the Yang-Yang entropy for the
corresponding complete GGE (1/2ScGGE) is depicted as a
horizontal line. Notice that the two extrapolations of the im-
proved sequences are almost identical to 1/2ScGGE.
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