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Transport properties of highly mobile 2D electrons are studied in symmetric GaAs quantum
wells placed in titled magnetic fields. Quantum positive magnetoresistance (QPMR) is observed
in magnetic fields perpendicular to the 2D layer. Application of in-plane magnetic field produces
a dramatic decrease of the QPMR. This decrease correlates strongly with the reduction of the
amplitude of Shubnikov de Haas resistance oscillations due to modification of the electron spectrum
via enhanced Zeeman splitting. Surprisingly no quantization of the spectrum is detected when the
Zeeman energy exceeds the half of the cyclotron energy suggesting an abrupt transformation of
the electron dynamics. Observed angular evolution of QPMR implies strong mixing between spin
subbands. Theoretical estimations indicate that in the presence of spin-orbital interaction the elastic
impurity scattering provides significant contribution to the spin mixing in GaAs quantum wells at
high filling factors.

I. INTRODUCTION

The orbital quantization of electron motion in mag-
netic fields generates a great variety of fascinating
transport phenomena observed in condensed materials.
Shubnikov-de Haas (SdH) resistance oscillations1 and
Quantum Hall Effect (QHE)2 are famous examples. Spin
degrees of freedom enrich the electron response.3,4 In two
dimensional (2D) electron systems the orbital quantiza-
tion is due to the component of the magnetic field, B⊥,
which is perpendicular to 2D layer5 whereas the spin de-
grees of freedom are affected mostly by the total magnetic
field, B.6 An increase of the in-plane magnetic field pro-
duces, thus, an enhancement of the spin splitting (Zee-
man effect), ∆Z = µgB, with respect to the cyclotron en-
ergy, ∆C = h̄ωc. Here µ is Bohr magneton, g is g-factor,
ωc = eB⊥/m = eBcos(α)/m is cyclotron frequency, m is
electron effective mass and α is the angle between mag-

netic field ~B and the normal ~n to 2D layer. At a critical
angle αc corresponding to the condition:

∆Z =
∆C

2
⇔ cos(αc) =

gm

m0

, (1)

where parameter m0 is mass of free electron, quantum
levels are equally separated by h̄ωc/2 and the amplitude
of the fundamental harmonic of SdH oscillations, ASdH ,
is zero. This property is the basis of a powerful transport
method (coincidence method) for the study of the spin
degrees of freedom of 2D electrons.3,6

In GaAs quantum wells the critical angle αc is large:
αc ≈ 85-87o due to a small effective electron mass.7–10

At low temperatures, kT ≪ ∆c, the coincidence method
yields g-factor, which is considerably larger than the one
obtained from electron spin resonance.11,12 Even stronger
spin gap is found in measurements of the activation tem-
perature dependence of the magnetoresistance.7,8 The
enhancement of the spin splitting is attributed to effects

of electron-electron interaction of 2D electrons.3 At low
temperatures and high filling factors the spin splitting is
found to be proportional to B⊥

8,13,14, which agrees with
theoretical evaluations of the contribution of the e − e
interaction to the spin gap, when only one quantum level
is partially filled15.

The enhancement of the spin splitting is found above
a sample dependent critical magnetic field Bc.

8,9,16 This
effect has been attributed to the suppression of the con-
tributions of the e− e interaction to the spin splitting by
a static disorder.17 With an increase of the temperature
from mK range to few Kelvin the g-factor enhancement
(Bc) is found to be decreasing (increasing) considerably,
which is attributed to a reduction of the contribution of
the e− e interaction to the spin splitting due to thermal
fluctuations.8

At high temperatures, kT ≫ ∆C ,∆Z there are many
partially populated Landau levels participating in trans-
port and one may expect a quantitatively different value
of the e − e enhanced spin splitting in comparison with
the one at kT ≪ ∆C ,∆Z . We note that the spin
splitting has not been investigated experimentally in the
quantized spectrum at high temperatures since the co-
incidence method relies on SdH oscillations, which are
absent (exponentially suppressed) in the high tempera-
ture regime1. Recent developments18 open a possibility
to study spin effects in electron systems with quantized
spectrum at high temperatures: kT ≫ ∆C ,∆Z .

This paper presents an experimental investigation of
the Quantum Positive MagnetoResistance (QPMR) at
high temperatures kT ≫ ∆C ,∆Z and SdH resistance os-
cillations in GaAs symmetric quantum wells placed in
tilted quantizing magnetic fields. The experiments in-
dicate that angular variations of the QPMR and the
SdH amplitude strongly correlate yielding essentially the
same g-factor: g ≈0.97±0.08. This g-factor value is
close to one obtained in experiments done at much lower
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temperatures.7–10

At a fixed B⊥>0.3T the angular evolution of QPMR
demonstrates a resistance maximum at α ≈62o, revealing
an unexpected decrease of the spin splitting with the in-
plane magnetic fields while the overall angular evolution
of QPMR demonstrates B/B⊥ scaling at ∆Z/∆C<1/2
(α<86o). At α > 86o the QPMR does not return as
expected indicating an absence of the quantized electron
spectrum in the high temperature and large parallel field
regime. A complementary study of quantal heating19–21

at different angles confirms this observation.
In contrast to SdH oscillations the angular evolution

of QPMR implies a significant mixing between spin-up
and spin-down subbands due to quadratic dependence
of the conductivity on DOS (see Eq.(4)). When the
spin and momentum of the electrons are independent,
the non-magnetic impurities can not mix the electronic
states with opposite spins. On the other hand in pres-
ence of spin-orbit coupling, the spin and momentum of
electrons are not independent. In contrast to the Zee-
man splitting the spin-orbit interaction depends on the
energy (velocity) of electrons and does not decrease at
small magnetic fields.22,23 As we show below, even at
a small spin-orbit coupling local non-magnetic impuri-
ties may lead to a scattering between different subsets of
quantum levels leading to the spin mixing at high filling
factors.

II. EXPERIMENTAL SETUP

Studied GaAs quantum wells were grown by molecular
beam epitaxy on a semi-insulating (001) GaAs substrate.
The material was fabricated from a selectively doped
GaAs single quantum well of width d =13 nm sand-
wiched between AlAs/GaAs superlattice barriers. The
studied samples were etched in the shape of a Hall bar.
The width and the length of the measured part of the
samples are W = 50µm and L = 250µm. AuGe eutec-
tic was used to provide electric contacts to the 2D elec-
tron gas. Two samples were studied at temperature 4.2
Kelvin in magnetic fields up to 9 Tesla applied in-situ
at different angle α relative to the normal to 2D layers
and perpendicular to the applied current. The angle α
has been evaluated using Hall voltage VH = B⊥/(enT ),
which is proportional to the perpendicular component,
B⊥ = B · cos(α), of the total magnetic field B. The total
electron density of samples, nT ≈ 8.6 × 1011cm−2, was
evaluated from the Hall measurements taken at α=00 in
classically strong magnetic fields24. An average electron
mobility µ ≈ 1.6×106cm2/V s was obtained from nT and
the zero-field resistivity. Sample resistance was measured
using the four-point probe method. We applied a 133 Hz
ac excitation Iac=1µA through the current contacts and
measured the longitudinal (in the direction of the elec-
tric current, x-direction) and Hall ac (along y-direction)
voltages (V ac

xx and V ac
H ) using two lockin amplifiers with

10MΩ input impedances. The measurements were done
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FIG. 1: (Color online) Dependence of the longitudinal re-
sistance ρxx on the magnetic field perpendicular to the 2D
sample obtained at different angles α between the total mag-
netic field ~B and the normal to the 2D layer. From the top
curve to the bottom one angles are 0, 76.2, 78.6, 81.2, 82.6
83.13, 84, and 85.9 degrees. The insert enlarges the area at
small magnetic fields indicating that the dependencies at dif-
ferent angles diverge from approximately the same magnetic
field B∗ ≈0.11T corresponding to the beginning of Landau
quantization of the electron spectrum at α=00.

in the linear regime in which the voltages are proportional
to the applied current.

III. RESULTS AND DISCUSSION

Figure 1 presents the dissipative resistivity, ρxx(B⊥),

at different angles α between the magnetic field, ~B, and
the normal to the 2D layer, ~n. In perpendicular mag-
netic fields below 0.11 T the resistance is nearly (within
∼0.6%) independent on B⊥. This is the regime of classi-
cal (Drude) magnetoresistance, which is expected to be
independent on B⊥.

24

At α = 00 and B⊥ >0.11 T the magnetoresis-
tance demonstrates a steep (exponential in 1/B⊥) mono-
tonic increase combined with SdH oscillations in B⊥ >
0.45 T. This increase is attributed18 to the quan-
tum positive magnetoresistance (QPMR) due to Landau
quantization.25 At angles α < 65o and B⊥ >0.33 T the
magnetoresistance exhibits an additional few percent in-
crease with the angle (not shown). At α >650 the QPMR
decreases significantly with the angle. Figure 1 demon-
strates this decrease for angles between 76.2 and 85.9
degrees. The insert to the figure shows that the angu-
lar variation of QPMR are approximately uniform with
B⊥ and starts at the same perpendicular magnetic field
B∗ ≈0.11 T, which separates the classical and quantum
regimes of electron transport18,25. The later indicates
that the Landau level width (or the quantum scattering
time τq) is nearly independent of angle α. This is con-
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firmed by more detailed comparison (see Fig.3(d)). At
angles α >860 the QPMR demonstrates a weak recovery
(not shown), which is discussed later.
At B⊥ >0.45T Fig.1 shows SdH oscillations. In con-

trast to QPMR the angular evolution of SdH oscilla-
tions have been intensively studied.7,8,10 Presented ex-
periments show strong correlation between angular evo-
lutions of SdH oscillations and QPMR. Before the de-
tail discussion and comparison of the dependencies, we
present a model, which captures the strong angular cor-
relations of these two phenomena.

A. Model of SdH oscillations and Quantum

Positive Magnetoresistance

A microscopic description of both SdH oscillations and
QPMR in perpendicular magnetic fields (at α =0o) is
presented in paper Ref.[25] neglecting any spin related
effects in particular the Zeeman term. As indicated in
the ”Introduction” the account of the Zeeman splitting
for SdH oscillations is a developed procedure3,6,8. In con-
trast the spin related effects in the QPMR have not been
studied yet.
Below we present a model, which utilizes the simi-

larity of QPMR and Magneto-InterSubband (MISO) re-
sistance oscillations.26–30 The model considers two sub-
bands with the energy spectrum evolving in accordance
with Landau quantization and splitted predominantly by
Zeeman effect.6 A scattering assisted mixing between dif-
ferent subbands is postulated to provide the observed
correlation between the angular evolutions of SdH os-
cillations and QPMR. Within the presented model the
absence of the scattering between subbands would lead
to the absence of an angular evolution of the QPMR as-
sociated with the Zeeman effect in contrast to the angu-
lar dependence of SdH oscillations. The origin of the
mixing requires further investigations. A mixing be-
tween different spin subbands have been reported in Si-
MOSFETs.31 The experiments show a sizable contribu-
tions of the product the spin-up and spin-down density
of states to SdH resistance oscillations. Furthermore in-
vestigations of the resistivity tensor in tilted magnetic
fields have revealed an independence of the Hall coeffi-
cient on the spin subband populations while the electron
mobility in each spin subband was substantially affected
by the in-plane magnetic field32. This behavior has been
interpreted by a mixing between spin subbands due to
an electron-electron interaction.33 We note also that in
the presence of a spin-orbit coupling, different subbands
could be mixed by a local impurity scattering. An in-
vestigation of this possibility is presented in the section
”Spin orbit interaction and QPMR”.
In the simplest case of small quantizing magnetic fields

ωcτq < 1 the main contribution to both SdH oscilla-
tion and QPMR comes from the fundamental harmonic
of quantum oscillations of the density of states (DOS)
corresponding to spin-up and spin-down subbands. The

total DOS, ν(ǫ), reads3:

ν(ǫ)=ν0

[

1−δcos
(

2π(ǫ−∆Z/2)

h̄ωc

)

−δcos
(

2π(ǫ+∆Z/2)

h̄ωc

)]

= ν0

[

1− 2δcos

(

2πǫ

h̄ωc

)

cos

(

π∆Z

h̄ωc

)]

(2)

where δ = exp(−π/ωcτq) is Dingle factor, ν0 is the total
DOS at zero magnetic field and τq is the quantum scat-
tering time, which is considered to be the same in both
spin subbands.
The 2D conductivity σ is obtained from the following

relation:

σ(B) =

∫

dǫσ(ǫ)

(

−∂f
∂ǫ

)

= 〈σ(ǫ)〉 (3)

The integral is an average of the conductivity σ(ǫ) taken
essentially for energies ǫ inside the temperature interval
kT near Fermi energy, where f(ǫ) is the electron dis-
tribution function at the temperature T .3 The brackets
represent this integral below.
The following expression approximates the conductiv-

ity σ(ǫ) at small quantizing magnetic fields:

σ(ǫ, B⊥,∆Z) = σD(B⊥)ν̃(ǫ, B⊥,∆Z)
2 (4)

where σD(B⊥) is Drude conductivity in magnetic field
B⊥

24 and ν̃(ǫ) = ν(ǫ)/ν0 is normalized total density of
states. The main assumption of this model is utilized
in Eq.(4). Namely the impurity scattering between the
spin-up and spin-down subbands is considered to be com-
parable with the impurity scattering within a spin sub-
band, when the energies of the spin sectors are the same.
In other words a spin up (spin-down) electron has equal
probability to scatter into a spin-up or spin-down quan-
tum state.
The proportionality of the conductivity σ(ǫ) to the

square of the normalized density of states is due to two
factors. One factor takes into account the number of
available conducting states (parallel channels) at energy
ǫ, which is proportional to the density of states. The
second factor takes into account that the dissipative con-
ductivity in crossed electric and magnetic fields is pro-
portional to the electron scattering rate24. At low tem-
peratures the scattering is dominated by the elastic im-
purities making the rate proportional to the density of
final states at the same energy ǫ.24,34 The quadratic de-
pendence of the conductivity on the density of state re-
sults in the factor 4 in Eq.(5), which is found to be in
good quantitative agreement with the amplitude of SdH
oscillations shown in Fig.2. Furthermore the quadratic
dependence on the density of states yields both QPMR
and its strong correlation with SdH oscillations observed
in presented experiments.
The Eq.(4) is similar to the Eq.(5) of Ref.[35], which

was used for the conductivity in the perpendicular mag-
netic fields neglecting both the Zeeman splitting and
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spin-orbital effects. In this case the energy spectrum of
spin-up and spin-down electrons are the same and the
normalized DOS for each spin subband coincides with
the normalized total DOS, ν̃(ǫ). For two independent
spin subbands the total conductivity is the sum of two
terms: σind = σ+ + σ−, where σ± = (σD/2)ν̃(ǫ)

2. The
factor 1/2 takes into account that the electron density in
each subbands is half the total density. Thus at ∆Z=0
the total conductivity of two subbands does not depend
on the intersubband scattering: σind = σ(∆Z = 0). At
finite ∆Z the intersubband scattering affects the conduc-
tivity.
A substitution of Eq.(4) and Eq.(2) into Eq.(3) yields

two additional terms to the Drude conductivity: σ−σD =
∆σSdH + ∆σQPMR. The first term is proportional to
Dingle factor δ and describes SdH oscillations. It reads:

∆σSdH

σD
= −4δ〈cos

(

2πǫ

h̄ωc

)

〉 cos
(

π∆Z

h̄ωc

)

= −4δA(T ) cos

(

2πǫF
h̄ωc

)

cos

(

π∆Z

h̄ωc

)

,

(5)

where ǫF is Fermi energy and A(T ) =
(2π2kT/h̄ωc)

sinh(2π2kT/h̄ωc)
is SdH temperature factor.1

The second term is proportional to the square of the
Dingle factor and describes variations of the conductivity
due to QPMR. It reads:

∆σQPMR

σD
= 4δ2〈cos2

(

2πǫ

h̄ωc

)

〉 cos2
(

π∆Z

h̄ωc

)

= δ2
[

1 + cos

(

2π∆Z

h̄ωc

)]

,

(6)

In Eq.(6) the exponentially small temperature dependent
term is neglected. At ∆Z=0 Eq.(6) reproduces QPMR
in perpendicular magnetic fields.18,25

Eq.(5) and Eq.(6) indicate the strong angular correla-
tion between the amplitude of SdH oscillations and the
QPMR. In particular the SdH amplitude is proportional
to cos(π∆Z/h̄ωc) and is zero at ∆Z = h̄ωc/2 in agree-
ment with Eq.(1), while the QPMR is proportional to
(1+cos(2π∆Z/h̄ωc) and is zero too at ∆Z = h̄ωc/2. In
the next sections we compare experimental results with
Eq.(5) and Eq.(6).

B. Shubnikov de Haas oscillations

In quantizing magnetic fields ωcτtr ≫1, where τtr is
the transport scattering time. At this condition resistiv-
ity is ρxx = σ[ρxy]

2 and ρxx(B⊥)/ρ0 = σ(B⊥)/σD(B⊥),

where ρ0 is Drude resistivity.24 Therefore in accor-
dance with Eq.(5) the amplitude of SdH oscillations
of the normalized resistivity, ∆ρSdH/ρ0, is ASdH =
4δA(T ) cos(π∆Z/h̄ωc) and the normalized SdH ampli-
tude is Anorm

SdH = ASdH/(4δA(T )) = cos(π∆Z/h̄ωc). To
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FIG. 2: Dependence of normalized amplitude of SdH os-
cillations, Anorm

SdH = ASdH/4δA(T ) on cos(π∆Z/∆C) with
g=0.97. The dependence corresponds to Eq.(5) relating the
angular evolution of SdH amplitude to the angular varia-
tion of the ratio between Zeeman and cyclotron energies:
∆Z/∆C = mg/(2m0 cosα). The insert presents normalized
SdH resistance oscillations in reciprocal magnetic fields at an-
gles α: 67.6, 83.3 and 85.9 degrees.

extract the normalized amplitude Anorm
SdH , the SdH resis-

tance oscillations shown in Fig.1 were separated from the
monotonic background using a low frequency filtering.30

The separated SdH oscillations were then divided by the
factor 4ρ0δ(B⊥, τq)A(T ). By a variation of the quantum
scattering time τq in the Dingle factor δ quantum oscil-
lations with the amplitude, Anorm

SdH , independent on the
magnetic field, B⊥, are obtained. The later indicates that
the ratio of the Zeeman energy, ∆Z to the cyclotron en-
ergy, ∆C = h̄ωc is a constant at fixed angle α in the SdH
regime. The insert to Fig.2 shows the independence of
the normalized SdH amplitude, Anorm

SdH , on the reciprocal
magnetic fields at different angles α.

Figure 2 presents the angular dependence of the nor-
malized SdH amplitude Anorm

SdH . We note that the
value of the SdH amplitude agrees quantitatively with
the one expected from Eq.(5). The dependence is
plotted versus cos(π∆Z/h̄ωc) = cos(πmg/(2m0 cosα)).
The g-factor is used as a scaling parameter for x-axes
of the plot to provide the linear dependence between
Anorm

SdH and cos(π∆Z/h̄ωc). The obtained value of g-
factor g=0.97±0.08 corresponds to the critical angle
αc=86.3o±0.3o (see Eq.(1)) and is in a good agreement
with existing experiments.7–10 Thus the angular evolu-
tion of SdH oscillations agrees with both Eq.(5) and ex-
isting experiments. We note that the strong enhance-
ment of the g-factor obtained in the present experiments
in the high temperature regime is intriguing, since the
enhancement should degrade with temperature increase
in the low temperature domain.8

The obtained quantum scattering rate, 1/τq, is pre-
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FIG. 3: (a) Dependence of the difference between normal-
ized resistivity at an angle α and the normalized resistivity at
α=85.90≈αc: [ρxx−ρxx(85.9

0)]/ρ0 on the reciprocal magnetic
field. From the top curve to the bottom one corresponding
angles α are 70.1, 76.2, 78.6, 81.2, 82.6, 83.3 and 84.3 de-
grees; (b) magnetoresistance at α=900; (c) Dependence of
the normalized QPMR and SdH amplitudes on the ratio be-
tween total and perpendicular magnetic fields. The solid (dot-
ted) line presents the normalized QPMR (SdH) amplitude:
Anorm

QPMR = (1 + cos(2π∆Z/h̄ωc))/2 (Anorm
SdH ) obtained from

Eq.(6) (Eq.(5)) using g-factor g=0.97; (d) Dependence of the
quantum scattering rate on the ratio B/B⊥ obtained from
the analysis SdH oscillations and the exponential decrease of
the QPMR magnitude with 1/B⊥ expected from Eq.(6).

sented in Fig.3(d). The scattering rate is found to be
independent on the angle α: 1/τSdH

q ≈ 300 ± 100GHz
and agrees with the one obtained using the QPMR de-
scribed in next section.

C. Quantum Positive Magnetoresistance.

In accordance with Eq.(6) the magnitude of the quan-
tum magnetoresistance decreases exponentially with the
reciprocal magnetic field, 1/B⊥, due to the exponen-
tial decrease of Dingle factor δ. Below we explore this
property of the QPMR to extract the quantum scat-
tering rate 1/τq and the normalized QPMR amplitude
Anorm

QPMR = (1 + cos(2π∆Z/∆c))/2. In the vicinity of the
critical angle αc the magnitude of the QPMR is expected
to be very small and the magnetoresistance should be
mostly driven by other mechanisms.36–38 In particular
Fig.3(b) presents the magnetoresistance at angle α=900

at which only in-plane magnetic fields is applied. The
resistance demonstrates a weak (within 2%) parabolic
increase with the in-plane magnetic field. The small in-
plane magnetoresistance affects weakly the curves pre-
sented in Fig.1 and can be taken into account assuming
its independence on the angle α. Below we assume that
all mechanisms leading to negative magnetoresistance in

the vicinity of the critical angle are independent on the
angle α and controlled by B⊥ and B‖ independently.

Within this assumption the difference between mag-
netoresistance at an angle α and the magnetoresistance
at the critical angle αc captures the main effect of the
angular variations of the electron spectrum on the elec-
tron transport described by Eq.(6). Figure 3(a) presents
the dependence of the difference between the resistivity
ρxx(α) and ρxx(85.9

0 ≈ αc) normalized to the Drude re-
sistivity ρ0 on the reciprocal magnetic field, 1/B⊥ taken
at different angles. At small magnetic fields, B⊥, the
dependences demonstrate an exponential decrease with
1/B⊥ in accord with Eq.(6) with the rate depending
weakly on α. With an increase of the angle α the de-
pendencies shift down indicating a decrease of the nor-
malized QPMR amplitude Anorm

QPMR. The presented resis-
tance difference takes into account the small variations of
the resistivity with the in-plane magnetic field shown in
Fig.3(b). The applied correction to the resistivity affect
very weakly (within the size of the symbols) the results
presented in Fig.3(c,d).

Fig.3(c) presents the normalized QPMR amplitude
Anorm

QPMR and SdH amplitude Anorm
SdH plotted vs 1/ cosα =

B/B⊥. The normalized QPMR amplitude is obtained
by the extrapolation of the linear dependencies shown in
Fig.3(a) at high 1/B⊥ to the infinite B⊥. The extracted
normalized amplitude Anorm

QPMR is presented by the open
symbols. The solid line shows the amplitude Anorm

QPMR

obtained from Eq.(6) using g-factor g=0.97. We note
that there are no fitting parameters between the exper-
iment (open symbols) and the Eq.(6) since the g-factor
is obtained from the fitting of the angular dependence
of the SdH amplitude. Shown in Fig.3(c) comparison of
two amplitudes indicates strong angular correlations be-
tween SdH resistance oscillations and the quantum posi-
tive magnetoresistance.

Fig.3(d) presents the quantum scattering rates ob-
tained from the analysis of SdH resistance oscillations
(filled symbols) and QPMR (open symbols). In con-
trast to SdH resistance oscillations the analysis of the
QPMR magnitude yields more accurate results for τq
since QPMR does not depend on the temperature damp-
ing factor A(T ) and the response is mostly controlled by
the Dingle factor only. The quantum scattering rates ex-
tracted by two different methods are found to be in a
reasonable agreement indicating no significant variations
of the electron lifetime τq with both the angle α and the
applied magnetic fields at α < αc.

Figures 1 and 3(a) demonstrate the evolution of the
QPMR, which is obtained at a fixed angle α. At this con-
dition both perpendicular and total magnetic fields are
changing. As mentioned above the angular evolution of
QPMR at small (<650) and large (> αc) angles demon-
strates additional features, which may required a modifi-
cation of the proposed description. To get further insight
into the angular evolution of the QPMR, we have con-
ducted measurements at a fixed perpendicular magnetic
field, B⊥, while sweeping the in-plane magnetic field, B‖.
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At this condition the cyclotron energy is fixed and varia-
tions of the electron spectrum are related mostly to spin
degrees of freedom.

Figure 4(a) presents dependencies of the normalized re-
sistivity on the total magnetic field taken at the fixed B⊥

as labeled. In the agreement with the angular evolution
shown in Fig.1 the total magnetic field suppresses the
quantum magnetoresistance at a fixed B⊥. A stronger
perpendicular magnetic field, B⊥, requires a stronger to-
tal magnetic field, B, to suppress the QPMR. After the
suppression the magnetoresistance demonstrates a weak
increase with the magnetic field, which is, however, much
smaller than expected from Eq.(6). Finally at B⊥ >0.3
T the magnetoresistance shows a maximum enhancing at
higher B⊥ that is also not explained by this model. The
insert to Fig.4(a) presents the position of the resistance
maximum at different B⊥ indicating that the maximum
occurs at α0 ≈620.

Figure 4(b) presents the magnetic field dependencies of
a normalized resistance variation: ∆ρxx/∆ρN = (ρxx −
ρmin)/(ρmax − ρmin), where ρmax and ρmin are maxi-
mum and minimum values of the curves shown in (a).
The figure facilitates the comparison of the shape of the
dependencies at different B⊥.

In accordance with the proposed model (see Eq.(6)) at
a fixed B⊥ and a constant quantum lifetime τq the Din-
gle factor is fixed and the evolution of the magnetoresis-
tance is solely due to variations of the QPMR amplitude,
Anorm

QPMR = (1+ cos(2π∆Z/h̄ωc))/2. If the g-factor is also
a constant, then the Zeeman term, ∆Z = µgB, is lin-
early proportional to the total magnetic field, B, and
the QPMR amplitude depends only on the ratio B/B⊥.
Thus in this case the QPMR should scale with B/B⊥.

Figure 4(c) presents the normalized resistance varia-
tions, ∆ρxx/∆ρN , shown in Fig.4(b) plotted against the
ratio between Zeeman and cyclotron energies: ∆Z/∆C =
(mg/2m0)(B/B⊥), using the constant g-factor g=0.97
obtained from the angular dependence of the amplitude
of SdH oscillations. Except the curve taken at the small-
est B⊥=0.169 T all other curves shown in Fig.4(a,b) col-
lapse on a single dependence at ∆Z/∆C between 0.07 and
0.5. The collapse indicates B/B⊥ scaling, which holds at
high B⊥ in the studied system.

At ∆Z/∆C < 1/2 the scaled dependencies are quite
close to the dependence expected from Eq.(6) and pre-
sented by the open circles at g=0.97 in Fig.4(c) with
no fitting parameters. The dependence obtained at the
smallest B⊥=0.169 T agrees better with the model. We
note that the model takes into account only fundamen-
tal harmonics of the electron spectrum and, thus, is
valid only for overlapping Landau levels at ωcτq <1. At
B⊥ >0.3T the Landau levels become separated at τq ≈4
ps and an account of the higher harmonics of DOS may
improve the agreement with the experiment at high B⊥.
In contrast the description of SdH oscillations is valid
even at higher B⊥ since the contributions of the higher
harmonics of DOS to the SdH amplitude are suppressed
by the temperature for presented B⊥.

1,25 We note also
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FIG. 4: (Color online) (a) Dependence of normalized re-
sistivity on magnetic field at fixed B⊥ as labeled. Insert
shows position of the resistance maximum at different B⊥;
(b) Normalized variations of the resistivity shown in (a):
∆ρxx/∆ρN = (ρxx − ρmin)/(ρmax − ρmin) vs B; (c) Nor-
malized variations of the resistivity vs ratio of Zeeman and
cyclotron energies, µgB/h̄ωc, with g-factor g=0.97 obtained
from the angular variation of SdH oscillations. Open sym-
bols present the normalized magnetoresistance expected from
Eq.(6) with no fitting parameters.

that the shift of the resistive variation at B⊥=0.169T to
a stronger B (∆Z) in Fig.4(c) agrees with the reduction
of the enhanced g-factor by the disorder8,17

An unexpected feature of the dependences presented in
Fig.4 is the resistance maximum emerging at high B⊥.
In accordance with Eq.(6) the maximum occurs at ∆Z=0
and corresponds to the alignment of the quantum lev-
els corresponding to spin-up and spin-down subbands.
The presence of the maximum at a finite magnetic field,
B, suggests that the magnitude of the Zeeman splitting,
|∆Z(B⊥)|, decreases with the increase of the total mag-
netic field, B, at a small B‖. The decrease of the spin
spitting is stronger at larger B⊥. The total magnetic
field, Bmax, corresponding to the resistance maximum at
different B⊥ is shown in the insert to Fig.4(a). At high
B⊥ the Bmax is proportional to B⊥ that corresponds to
the angle α0=620. The position of the maximum agrees,
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therefore, with the B/B⊥ scaling.
The observed behavior is compatible with the follow-

ing relation between an effective spin slitting ∆spin and
magnetic fields:

∆spin = µ|g|B +∆⊥,∆⊥ = βh̄ωc (7)

where β <0. The parameter ∆⊥ describes the addi-
tional contribution of the perpendicular magnetic field to
the spin splitting. At the resistance maximum ∆spin=0
yielding β = −m|g| cosα0/(2m0) ≈ −0.016|g|.
The structure of the effective spin splitting in Eq.(7)

is similar to the one used for 2D electron systems.8,10 In
particular in Eq.(10) of Ref.[8]: ∆spin = µgB + γh̄ωc

the second term proportional to B⊥ is the contribution
from electron-electron interaction.3,15 The important dif-
ference is, however, that the sign of the second term,
γh̄ωc is opposite to the sign of the term ∆⊥ in Eq.(7).
Furthermore the magnitude of the β is an order of mag-
nitude smaller the γ ≈0.2. The origin of these maxima
requires further investigations.
At ∆Z/∆C > 1/2 the angular evolution of the QPMR

deviates significantly from the expected behavior. In-
stead of periodic oscillations with the parameter ∆Z/∆C

the resistance demonstrates a weak increase at angles
α > 860 indicating that the modulation of the density
of states with the energy does not evolve as expected
from Eq.(6). Accounting for the magnetoresistance due
to the in-plane magnetic field (presented in Fig.3(b)) re-
duces this resistance increase at ∆Z/∆C > 1/2 further
(not shown).
To get a better understanding of the DOS at

∆Z/∆C > 1/2 we have conducted measurements of quan-
tal heating.19–21 Figure 5(a) presents dependencies of
the normalized differential resistance on the electric cur-
rent obtained at fixed B⊥ and different total magnetic
fields B = B⊥/ cosα. An application of dc current
decreases considerably the differential resistance due to
quantal heating. In accordance with theory the magni-
tude of the heating induced variation of the conductivity
at small perpendicular magnetic fields is proportional to
the square of the magnitude of DOS modulations with
the energy: 2δ2.35 Using Eq.(2) for the DOS and Eq.(4)
for the conductivity one can find the effect of quantal
heating on the conductivity in a tilted magnetic field
following the case corresponding to α=00 and consid-
ering the inelastic relaxation in the τ -approximation.35

The variation of the conductivity due to quantal heat-
ing, ∆σQH = σ(I)− σ(0), at ωcτq <1 is the following:

∆σQH

σD
= −δ2

[

1 + cos

(

2π∆Z

h̄ωc

)]

4Qdc

1 +Qdc

. (8)

The term Qdc = [2τin/τtr][eERc]
2[π/ωc]

2, where τin (τtr)
is inelastic (transport) time, Rc is cyclotron radius and
E ∼ I is the electric (Hall) field.35,39 Eq.(8) follows from
Eq.(15) of Ref.[35] if one substitutes the factor 2δ2 by
δ2(1 + cos(2π∆Z/(h̄ωc)). Eq.(8) indicates that the mag-
nitude of the conductivity variation at different angles
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FIG. 5: (Color online) (a) Quantal heating of 2D electrons
at different angles α: 0, 66.4, 76.1,80.8, 83.1, 84.3, 85.4, 86.6,
87.3 deg. at B⊥=0.267T; (b) Solid lines are variations of the
resistance shown in (a), scaled vertically by factor k(α), vs
the electric current I at several angles α=0, 76.1, 80.8 and
84.3. Dashed line presents fit, which follows from Eq.(8) for
the differential resistance39; (c) Solid curves present smoothed
dependencies of the normalized variations of the resistance
∆ρxx/∆ρN on the magnetic field B. Symbols present the
normalized magnitude of the heating induced resistance vari-
ation, ∆norm

QH = k(α)/kmax, obtained at different magnetic
fields B⊥ and B as labeled.

depends on the factor [1 + cos(2π∆Z/(h̄ωc)], which is
identical to the one describing QPMR magnitude (see
Eq.(6)). On the other hand the factor, Qdc/(1 + Qdc),
describing variations of the resistance with the electric
field (current) does not depend on the angle α. This
means that the shape of the current dependence of the
resistance is expected to be the same at different angles,
while the overall magnitude of the resistance variations
should depend of the angle.

Figure 5(b) demonstrates that the heating induced re-
sistance variations, ρxx(0)− ρxx(I), at different angles α
are indeed proportional to each other and to the one ex-
pected from Eq.(8).39 To reveal the proportionality the
curves, shown in Fig.5(a), are scaled vertically to follow
the same dependence on the applied current, I. At high
currents the dependences deviate from the theory due to
other mechanisms of nonlinearity.19

The normalized magnitude of the heating induced re-
sistance variation ∆norm

QH = k(α)/kmax are shown in
Fig.5(c) at different B and B⊥. Here k(α) is the re-
ciprocal scaling coefficients of the curves in Fig.5(b) and
kmax is the maximum value of k. At ∆Z/∆C < 1/2 the
heating induced resistance variations follow the QPMR
magnitude in agreement with Eq.(6) and Eq.(8) and,
thus, correlate with the angular variations of the SdH
amplitude. The later is in agreement with previous
observations.21 At ∆Z/∆C > 1/2 the heating induced
resistance variations are absent, indicating the absence of
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oscillations of the DOS in this regime. On another hand
at ∆Z/∆C <1/2 the angular evolution of SdH oscilla-
tions, QPMR and quantal heating indicates quantization
of the electron spectrum demonstrating the electron life-
time, τq ≈4 ps independent on the angle α.
The results show, thus, a rather abrupt transition of

the quantized electron spectrum at ∆Z/∆C <1/2 to
an uniform, energy independent DOS at ∆Z/∆C >1/2.
Both these results and investigations of the angular evo-
lution of SdH oscillations8,10, thus, do not support the
proposal of a gradual decrease of the quantum scattering
time with the in-plane magnetic field.40,41 The observed
quenching of MIRO in tilted magnetic fields41–43 also in-
dicates a modification of the electron spectrum, which
happens, however, at smaller angles α < αc. This sug-
gests that the transition to an energy independent DOS
in the high temperature regime, kT ≫ h̄ωc, may depend
not only on the ratio between Zeeman and cyclotron en-
ergies but also on some other parameters such as electron
density, disorder17 and/or the width of the quantum well.
The angular evolution of QPMR indicates significant

spin mixing. This spin mixing suggests an important
role of the spin orbit coupling in electron transport at
high filling factors. The importance of spin orbit interac-
tion for the quantized spectrum increases at small mag-
netic fields since the strength of this interaction is inde-
pendent of magnetic field.22,23 The observed absence of
QPMR and quantal heating at ∆Z/∆C >1/2 suggests a
transition of the quantized electron orbital motion and
the independent periodic spin evolution to a stochastic
spin-orbital dynamics when energy (period) of the spin
evolution is compatible with the energy (period) of the
orbital motion. Below we evaluate the effect of spin-orbit
interaction on spin mixing in the studied system.

D. Spin-Orbit Interaction and Quantum Positive

Magnetoresistance.

Spin-orbit coupling in quantum wells and heterojunc-
tions has been discussed in literature4. In particular the
significant deviation of the g-factor obtained in electri-
cally detected ESR from the bulk GaAs value11 has been
attributed to spin-orbit effects.23 The spin-orbit inter-
action leads to positive quantum corrections to conduc-
tivity of disordered 2D conductors.44–46 In GaAs hetero-
junctions the effect of spin-orbit interaction on quantum
corrections to the conductivity has been investigated.47,48

We consider that the spin mixing leading to QPMR is
due to impurity scattering between different s-sectors of
the Hamiltonian (9) containing a spin-orbit interaction.
To evaluate the spin mixing we first find the electron
spectrum, then compute numerically matrix elements of
the impurity induced transitions both within an s-sector
and between different s-sectors and compare them.
We consider a 2DEG in the x-y plane placed in a

tilted magnetic field and affected by Rashba spin-orbit
term.22,23,49. The in-plane component of the magnetic

field is chosen to be along the x-direction yielding B =
(B‖, 0, B⊥). The Hamiltonian of the system can be writ-
ten in the following form:

H =
1

2m

(

p+
e

c
A

)2

+
λ

h̄
ẑ ·

[(

p+
e

c
A

)

× σ
]

+
1

2
µBgB⊥σz +

1

2
µBgB‖σx

(9)

, where m,−e and λ are the electron mass, charge and
spin-orbit coupling constant, respectively and σi are the
Pauli matrices. We employ Landau gauge A = −yBx̂.
In that case the Hamiltonian does not contain x variable
and the momentum in x-direction px = h̄k is a conserved
quantity.
As was noted previously49 at angle α = 0 the problem

can be solved analytically yielding the following energy
spectrum22,23

En,s = h̄ωc

(

n+
s

2

√

(1− gs)2 + 8η2n
)

, (10)

where η = λmlB/h̄
2 and gs = gm/2m0. Here lB =

√

h̄/eB⊥ is the magnetic length. In Eq.(10) s = 1 for
n = 0 and s = ±1 for n > 0. We note that at λ=2.5
meV·nm obtained from an analysis of the ESR spectrum
in GaAs heterojunctions11,23 the spin-orbital term, 8η2n,
provides a significant contribution to the gap between
different s-sectors in Eq.(10) at the high filling factors
(n ∼30) relevant to the experiments.
The corresponding eigenfunctions have the following

form

ψn,k,s(x, y) = cos θn,sχn,k,+1 + i sin θn,sχn−1,k,−1 (11)

where θ0,1=0 and for n > 0, tan θn,s = −un + s
√

u2n + 1

and un = (1 − gs)/(η
√
8n). Functions χn,k,σ = φn,k|σ〉

present the eigenfunctions of the Hamiltonian (9) at
λ = 0 and B‖ = 0, where φn,k are the Landau level
eigenfunctions and |σ〉 is the eigenstate of the spin oper-
ator σz with eigenvalues σ = ±1. Each eigenstate ψn,k,s

has the degeneracy Nφ = LxLyeB/(hc) related to Nφ

values of k, where Lx and Ly are the system sizes in x
and y direction, respectively.
In a tilted magnetic field, α > 0, the problem can be

solved numerically49. An application of the in-plane mag-
netic field, B‖, induces transitions between states ψn,k,s

with different index s (between different s-sectors). Us-
ing functions ψn,k,s as the basis set, one can present the

Hamiltonian in matrix form30. The matrix contains four
matrix blocks: Ĥ = (Ê+, T̂ ; T̂ ∗, Ê−), where the semi-

colon separates rows. The diagonal matrices Ê+ and Ê−

represent energy of the s-sectors with s =1 and s =-1, re-
spectively, in different orbital states n following Eq.(10):

E+
nm = δnmh̄ωc

(

(n− 1) +
1

2

√

(1− gs)2 + 8η2(n− 1)

)

E−
nm = δnmh̄ωc

(

n− 1

2

√

(1 − gs)2 + 8η2n

)

(12)
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FIG. 6: (a) Level spacing δEl = El+1−El in the energy spec-
trum of electrons in B⊥=0.44 T and B‖=0.83 T at spin-orbit
coupling λ=2.95 meV·nm and g=-0.44 . (b) Dependence of
the energy of the quantum states in the vicinity of Fermi en-
ergy on the spin-orbit coupling parameter η at B⊥=0.44T and
α=00. Labels show quantum indexes of the levels according
to Eq.(10).

where indexes n=1,2...Nmax and m=1,2...Nmax numer-
ate rows and columns of the matrix correspondingly. In
numerical computations the maximum number Nmax is
chosen to be about twice larger than the orbital number
NF corresponding to Fermi energy EF . Further increase
of Nmax show a very small (within 1%) deviation from
the dependencies obtained at Nmax ≈ 2NF .
The corresponding matrix elements of the off-diagonal

matrix T̂ are the following:

Tnm = iδnm
µBgB‖

2
cos θn−1,1 sin θm,−1 (13)

The Hamiltonian Ĥ is diagonalized numerically at dif-
ferent magnetic fields B⊥ and B‖. To analyze the spec-
trum the obtained eigenvalues of the Hamiltonian are nu-
merated in ascending order using positive integer index
l=1,2.... The electron transport depends on the distri-
bution of the quantum levels in the interval kT near the
Fermi energy EF

24. Below we focus on this part of the
spectrum.
Figure 6 presents the difference between energies of

l + 1-th and l-th quantum levels of the electron spec-
trum. Each symbol represents a particular level spac-
ing normalized to the cyclotron energy: δEl/h̄ωc =
(El+1 − El)/h̄ωc.

30. Figure 6(a) presents the normal-
ized level spacing at spin-orbit coupling λ=2.95 meV·nm
and g=-0.44 obtained in B⊥=0.44 T and B‖=0.83 T.
These magnetic fields correspond to the QPMR maxi-
mum shown in Fig.4. At these conditions the two near-
est quantum levels coincide in the vicinity of Fermi en-
ergy, EF , yielding the level splitting ∆∗=0. Fig.6(b)
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FIG. 7: The contour plots of
∣

∣〈n0, 1, k|V (x, y)|n0, 1, k
′〉
∣

∣ (a)

and
∣

∣〈n0, 1, k|V (x, y)|n0 + 2,−1, k′〉
∣

∣ (b) for different values

of k and k′ for Gaussian impurity potential with parameters
V0 = 0.1h̄ωc, a = 6.6 · 10−4lB and η ≈ 0.11.

presents the energy of the quantum levels in the vicin-
ity of the Fermi energy vs the strength of the spin-orbit
coupling characterized by the coefficient η at B⊥=0.44 T
and α=00. Near η ≈0.11 levels of two different s-sectors
intersect opening a channel for the impurity scattering
between s-sectors. Below we evaluate the rate of these
transitions for the crossing of the level with quantum
numbers n0=30, s=1 and the one with n0 + 2=32, s=-
1 and investigate the relation of the scattering matrix
elements inside the same s-sector and between different
s-sectors.
We approximate the impurity potential by Gaussian

function located at (0, 0) point:

V (x, y) = V0 exp

[

−x
2 + y2

2a2

]

, (14)

where V0 is the amplitude of the impurity potential and
a defines it’s width. For very narrow impurity potential
Eq.(14) can be reduced to a Delta function VD(x, y) =
2πV0a

2δ(x)δ(y). In this case at α=00 the matrix ele-
ments can be written explicitly:

〈n, s, k|VD(x, y)|n′, s′, k′〉 = 2πV0a
2×

[

sin θn,s sin θn′,s′φn−1,k(0, 0)φn′−1,k′(0, 0)+

cos θn,s cos θn′,s′φn,k(0, 0)φn′,k′(0, 0)

]

, (15)

whereas for general case they should be computed nu-
merically.
Below we compute the matrix elements inside the

same s-sector 〈n0, 1, k|V (x, y)|n0, 1, k
′〉 and between dif-

ferent sectors 〈n0, 1, k|V (x, y)|n0 +2,−1, k′〉 at the value
η ≈0.11 and compare the magnitudes of these two ma-
trix elements. In calculations the size of the system in
the y-direction is Ly = 6Rc, where Rc =

√
2n0 + 1lB is

the cyclotron radius.
Fig.7(a) shows a contour plot of the magnitude of

the matrix element |〈n0, 1, k|V (x, y)|n0, 1, k
′〉| within
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FIG. 8: (a) The dependence of the square of matrix elements
on impurity width parameter a both for Gaussian V (x, y) and
Delta VD(x, y) function potential cases for η ≈ 0.11. (b) The
dependence of the square of matrix elements on the value of
spin-orbit interaction parameter η for Gaussian impurity with
the width parameter a = 6.6·10−4 lB. The impurity amplitude
is V0 = 0.1h̄ωc for both figures and the amplitudes of matrix
elements are averaged over all k and k′ values.

the same s-sector while Fig.7(b) shows the magnitude
of the impurity scattering between different s-sectors
|〈n0, 1, k|V (x, y)|n0 + 2,−1, k′〉| for different values of k
and k′. The impurity parameters are V0 = 0.1h̄ωc and
a = 6.6 · 10−4lB. Fig.7(a) demonstrates that for scat-
tering within the same sector both forward scattering
(k = k′) and backscattering (k = −k′) are substan-
tial, although forward scattering is somewhat stronger
than backscattering. In contrast, in transitions between
different s-sectors backscattering plays the major role
while forward scattering is strongly suppressed. The av-
erage of the squares of scattering amplitudes are found
to be of the same order: 1.22 · 10−19(h̄ωc)

2 within the
same s-sector and 0.72 · 10−19(h̄ωc)

2 between different
s-sectors. Thus due to backscattering the impurity scat-
tering between different s-sectors is comparable with that
within the same s-sector. We note that the studied sys-
tems demonstrate a significant magnitude of impurity
backscattering.50–52

Fig.8(a) presents the dependence of the averaged
square of the matrix elements on the shape of the impu-
rity potential V (x, y) at η ≈ 0.11. The average is over all
k and k′ values. This figure shows that at a < 0.05lB

both Gaussian and Delta function potentials provide
nearly identical scattering both within the s-sector and
between different s-sectors and the scattering magnitude
is proportional to the cross-section of the impurity po-
tential a2. At higher magnetic fields a > 0.05lB the
scattering on the Gaussian potential deviates from the
a2 dependence. More importantly the figure shows that
at a > 0.05lB the impurity potential cannot provide sig-
nificant scattering between different s-sectors. Thus the
scattering between different s-sectors is effective at rela-
tively small magnetic fields (high filling factors) and/or
for sharp impurities. At the upper limit of the perpen-
dicular magnetic fields used in this study, B⊥ ≈1 T, the
magnetic length lB ≈25 nm and for impurities with size
a less 1nm backscattering is effective and leads to the
strong spin mixing at B⊥ <1T. The size, a <1 nm, is
reasonable for neutral impurities in a solid.
Due to the impurity scattering quantum levels are

broadened and the elastic transitions may occur in an
interval of the energies when two levels overlap. Thus
the scattering may exist in an interval of the parameter
η. Figure 8(b) presents the dependence of the averaged
square of matrix elements on the parameter η. The η
is varied in the range, where the energy of the system
changes by about 0.6h̄ωc. It accounts, thus, for a signifi-
cant broadening of quantum levels. The figure shows that
the amplitudes of both the intra-sector and inter-sectors
scattering are quite comparable in the broad range of η
and the difference decreases with the η increase. The
increase of the scattering between different s-sectors is
related to the fact that at η = 0 different sectors corre-
spond to eigenstates with different z components of the
electron spin. These states cannot be coupled by the im-
purity scattering unless a magnetic impurity is involved
(see Eq.(15)). Due to the fact that the majority of the
impurities in the studied systems are non-magnetic the
scattering between different sectors is completely medi-
ated by the spin-orbit interaction and increases with the
increase of the spin-orbit coupling.
The presented estimations of the impurity scattering

in the presence of spin-orbit interaction indicate that in
the range of physical parameters relevant to presented
experiments the scattering between different s-sectors is
comparable with the scattering within the same s-sector.
This leads to strong spin mixing in the studied systems
and, thus, support the assumption used for Eq.(3).

IV. CONCLUSION

Quantum positive magnetoresistance (QPMR) of 2D
electrons is studied at different angles α between the mag-
netic field and the normal to the 2D layer. The magni-
tude of QPMR varies significantly with the magnetic field
tilt. The angular evolution of QPMR correlate strongly
with angular variations of the amplitude of SdH resis-
tance oscillations indicating that the Zeeman spin split-
ting, ∆Z , enhanced by electron-electron interaction, is
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the dominant mechanism leading to the QPMR reduc-
tion. Surprisingly no quantization of the electron spec-
trum is detected when the Zeeman energy exceeds the
half of the cyclotron energy suggesting a transformation
of the electron dynamics in the high temperature regime
at kT ≫ ∆Z > h̄ωc/2 .
In contrast to SdH oscillations the angular evolution

of QPMR implies substantial mixing between spin sub-
bands. A spin mixing have been detected in other 2D
electrons systems.31,32 Although the origin of the spin

mixing remains puzzling investigations indicate, that the
spin-orbit interaction may lead to a significant spin mix-
ing via impurity scattering in the studied system.
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