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ABSTRACT

The complete Swift BAT and XRT light curves of 118 GRBs with known redshifts
were fitted using the physical model of GRB pulses by Willingale et al. (2010) to
produce a total of 607 pulses. We compute the pulse luminosity function utilising
three GRB formation rate models: a progenitor that traces the cosmic star formation
rate density (CSFRD) with either a single population of GRBs, coupled to various
evolutionary parameters, or a bimodal population of high and low luminosity GRBs;
and a direct fit to the GRB formation rate excluding any a-priori assumptions.

We find that a single population of GRB pulses with an evolving luminosity func-
tion is preferred over all other univariate evolving GRB models, or bimodal luminosity
functions in reproducing the observed GRB pulse L-z distribution and that the mag-
nitude of the evolution in brightness is consistent with studies that utilise only the
brightest GRB pulses. We determine that the appearance of a GRB formation rate
density evolution component is an artifact of poor parameterisation of the CSFRD at
high redshifts rather than indicating evolution in the formation rate of early epoch
GRBs. We conclude that the single brightest region of a GRB lightcurve holds no
special property; by incorporating pulse data from the totality of GRB emission we
boost the GRB population statistics by a factor of 5, rule out some models utilised
to explain deficiencies in GRB formation rate modelling, and constrain more tightly
some of the observed parameters of GRB behaviour.

1 INTRODUCTION

The luminosity function (LF) is a powerful tool for pop-
ulation analysis and, when applied to Gamma-ray bursts
(GRBs), is used to verify theoretical models of the physical
processes that go into forming GRBs; and as a benchmark
for observation rates of future GRB missions, and gravi-
tational wave detection likelihoods. The luminosity function
does however require a precise measure of the distance to the
GRB in order to convert from the observed flux to the rest-
frame luminosity. In the era of Swift observations, over one
thousand GRBs have been observed with approximately 1/3
having an associated redshift, meaning that GRB luminos-
ity functions are currently built upon relatively small sample
sizes compared to other luminosity functions found in astro-
physics. The standard technique for generating a luminosity
function for GRBs is to utilise either a time-averaged lumi-
nosity, or the brightest part of a burst, as the characteristic
luminosity of the GRB; and in such cases where there is lit-
tle, or no, variation in the lightcurve such an approach is
acceptable. The majority of Swift GRBs, however, show sig-
nificant variation in their lightcurves with multiple peaks in
the early prompt and late-time emission that, in some cases,
are of comparable brightness to the most luminous part of
the GRB lightcurve. In this paper we follow a different ap-
proach. Using a physically motivated model for the prompt
and high-latitude emission from GRBs (Genet & Granot
2009; Willingale et al. 2010) we fit the lightcurves of 118 long

Gamma-ray bursts (LGRBs) to produce a total of 607 in-
dividual Gamma-ray pulses and X-ray flares. The wealth of
information stored within these other, less-luminous, pulses
are utilised to produce a GRB pulse luminosity function;
of which the more conventional LGRB LF can be consid-
ered as a high-luminosity subset. As with papers investi-
gating the GRB luminosity function, we find discrepencies
between observed, and theoretical LF models that require
additional evolutionary effects to correct for. In this paper
we evaluate extensive solutions to these discrepencies: ad-
ditional luminosity, rate, and metallicity density evolution;
bimodal low/high luminosity functions; and direct fitting of
GRB formation rates. We find that in all cases a model that
incorporates evolution in the break luminosity, such that
higher redshift GRBs are more luminous, is preferred over
one that does not. We also do not see strong evidence of a
divergence between the cosmic star formation rate density
and the GRB formation rate, nor any compelling evidence of
a separate population of high and low luminosity GRBs. Our
findings are broadly consistent with GRB LF studies whilst
producing better defined evolutionary parameters, suggest-
ing that there is nothing special about the single bright-
est pulse and that studies into GRB population behaviour
should include all the pulse information available.

Prior to the launch of Swift (Gehrels et al. 2004), the
number of LGRBs localised to a suitably fine error circle on
the sky such that follow-up observation could find an asso-
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2 A. Amaral-Rogers et al.

ciated host galaxy or afterglow was small; out of some 2704
GRBs detected by BATSE (Goldstein et al. 2013) only a
handful had a measured redshift, made possible only due
to simultaneous detection of the burst by other Gamma-
ray missions with greater localisation abilities. Given the
lack of real redshifts, many authors instead sought to derive
pseudo-redshifts using properties of the LGRB lightcurves in
order to derive a LGRB luminosity function; the most pop-
ular of which included the lag-luminosity relationship (Nor-
ris, Marani & Bonnell 2000; Kocevski & Liang 2006), the
variability-luminosity relationship (Fenimore & Ramirez-
Ruiz 2000; Reichart et al. 2001; Lloyd-Ronning, Fryer &
Ramirez-Ruiz 2002; Wei & Gao 2003); and the Amati rela-
tionship (Amati et al. 2002; Atteia 2003; Firmani et al. 2004;
Yonetoku et al. 2004; Salvaterra & Chincarini 2007; Sal-
vaterra et al. 2009). The large intrinsic scatter within these
relationships produces however a redshift distribution that,
whilst arguably it represents that of the true LGRB red-
shift distribution, also shows significant uncertainty in the
fitted parameters. With the launch of the Swift mission, with
its fast slew rate and accurate on-sky localisation, suddenly
a large proportion of GRBs being detected had associated
photometric and/or spectroscopic redshifts of either the host
galaxy or the GRB’s X-ray afterglow within a day or two of
initial observation. Early Swift GRB LF papers continued
to develop the LGRB luminosity function by utilising either
small numbers of LGRBs with measured redshifts (Li 2008;
Kistler et al. 2008), with poor constraints on fitted param-
eters; or by artificially boosting the LGRB redshift sample
by combining real and pseudo redshift data from Swift and
BATSE (Butler, Bloom & Poznanski 2010; Salvaterra et al.
2012). Over time, the sample size of GRBs with observed
redshifts has increased1 and contemporary GRB LF studies
utilise larger datasets with entirely observed redshifts (Wan-
derman & Piran 2010; Cao et al. 2011; Robertson & Ellis
2012; Howell & Coward 2013; G. Dainotti et al. 2014; Pet-
rosian, Kitanidis & Kocevski 2015; Pescalli et al. 2015; Yu
et al. 2015; Deng et al. 2016).

Throughout these earlier studies the emphasis has been
on trying to extract information about the average be-
haviour of the LGRB as a whole; in general, characteris-
ing the luminosity of a GRB using the flux of the single
brightest peak in the lightcurve binned in 1 second bins
(see for example Yonetoku et al. (2004)). In reality the
lightcurve of a GRB is complex and the scale of variabil-
ity between lightcurves is bewildering. The luminosity and
total energy output of GRBs spans many orders of magni-
tude. Whilst some bursts consist of a single Fast Rise Expo-
nential Decay (FRED) profile, others have multiple peaks;
some are very spikey with rapid variations while others have
a much smoother profile. Many lightcurves display aston-
ishing chaotic time-variability, continually varying between
bright, short peaks and low troughs where in some cases the
flux drops below the detection threshold for a while before
flaring up again. The current paradigm is of the totality of
the prompt emission constructed of simple pulses (Norris
et al. 2005; Willingale et al. 2010). Lasting from fractions of
a second, to minutes in duration, these pulses are indepen-

1 As of January 2016 over 1000 GRBs have been observed by
Swift with 295 GRBs having associated redshifts.

dent of each other but with many overlapping to some de-
gree to produce the incredible lightcurve variation observed.
Late-time X-ray flares (Chincarini et al. 2007; Falcone et al.
2007) seen above the afterglow emission hundreds, and in
some cases thousands of seconds, after the initial trigger
appear to follow the same mechanism as the prompt emis-
sion pulses and can be considered as the lower energy tail
of a unimodal pulse energy distribution2. Given the wealth
of information contained within GRB lightcurves, the ap-
proach taken by the authors is to fit each individual pulse
using a physical model characterised by a few simple param-
eters: the peak flux, a characteristic time scale, a rise time
as a fraction of the characteristic time scale, and a spectral
shape; the model furthermore incorporates spectral evolu-
tion such that the rise and decay to and from the peak of
each pulse depend on the changing X-ray spectrum. Instead
of the single data point extracted by more conventional GRB
luminosity function studies, we fit, on average, 5 pulses per
GRB, with the more variable lightcurves containing pulses
numbering in the tens, significantly increasing our sample
size over single pulse studies. Using the measured redshift,
the peak flux, and spectrum we derive the rest-frame bolo-
metric luminosity for each pulse, and use the totality of our
data to construct and evaluate various GRB pulse luminos-
ity functions.

The structure of this paper is therefore as follows: we
discuss the selection criteria for our GRB sample; the phys-
ical model for pulses, and flares; and the fitting technique in
Section 2. We outline the various methods for constructing a
luminosity function in Section 3; and in Section 4 we discuss
the Markov Chain Monte Carlo (MCMC) routine utilised to
fit our luminosity function model parameters. Sections 5, 6,
and 7 are discussions on the results from models convolved
to the cosmic star formation rate density with either: a single
population of GRB progenitors (Type I models), or two sep-
arate populations of high, and low luminosity GRBs (Type
II models); and GRB formation rate models that rely on no
prior assumptions on progenitor mechanisms (type III mod-
els). Section 8 compares the LGRB formation rates with the
observed cosmic star formation rate density and we finally
conclude our findings in Section 9.

2 LIGHTCURVE FITTING

We analysed the lightcurves of LGRBs with associated red-
shifts observed by both the Swift BAT (Barthelmy et al.
2005) and XRT (Burrows et al. 2005), during the period
bordered by LGRBs 050126 and 110503A inclusively, using
the pulse, and afterglow model procedure described in Will-
ingale et al. (2010); a description of which is summarised in
Section 2.1. Our definition as to which class, long or short,
a GRB belongs to is based solely on the T90 > 2s descrim-
inator found by Kouveliotou et al. (1993) and as such may
contain some bursts which exhibit the spectral character-
istics of short GRBs whilst residing solidly in the LGRB
duration regime: so called ”extended emission” (EE) bursts

2 Many early-time X-ray flares have an observable Gamma-ray

counterpart in the BAT however the majority of late-time X-ray

flares would have Gamma-ray fluxes well below the BAT detection
limit.
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(e.g. Norris & Bonnell (2006), Gompertz, O’Brien & Wynn
(2014)). EE GRBs are a small, and contentious subsample
of our GRB dataset and may contribute a small bias in our
LGRB formation rates due to the propensity of SGRBs to
be detected at low redshifts (D’Avanzo et al. 2014); this is
however mitigated to a large extent by the overall number
of fitted pulses and as such is not of significant concern.
The following criteria were used to determine the suitability
of each GRB for pulse fitting, with the bracketed figures
denoting the number of GRBs rejected by the criteria:

- the GRB has an observed redshift and a T90 > 2s (13
GRBs rejected);
- sufficient statistics in the BAT lightcurve to define at least
1 pulse profile (29 GRBs rejected);
- a BAT lightcurve in which pulses are reasonably well de-
fined (3 GRBs rejected);
- early data from the XRT so that the decay of the pulses
is well constrained (22 GRBs rejected); and
- XRT data which provide good definition of X-ray flares,
avoiding flares for which profiles are incomplete or broken
by orbit gaps etc.. (22 GRBs rejected)

We evaluate any redshift bias that the various rejection
criteria may accidentally introduce into our LGRB dataset
by computing the 2-sample Anderson-Darling (AD) statistic
(Anderson & Darling 1952; T. W. Anderson 1954; Darling
1957) 3 on the redshift distributions of accepted GRBs and
of GRBs which failed the rejection criteria, under the null
hypothesis that both are drawn from the same population.
As we are calculating the likelihood of two distributions be-
ing drawn from the same parent distribution, no assump-
tions are required for the shape of the parent; this is not the
case were we calculating a one-sample test. We utilise the
k-sample Anderson-Darling test codified in the SciPy stats
package (Jones, Oliphant & Peterson 2001), which is based
on the work by Scholz & Stephens (1987). The critical sig-
nificance values are modelled as a third order polynomial,
and interpolated over a percentile grid of [0.75, 0.90, 0.95,
0.975, 0.99]; outside of this range, the P -values are extrapo-
lated and, as such, come with large uncertainties the further
away one gets. We therefore quote the calculated AD statis-
tic and the appropriate significance level to which the null
hypothesis may be rejected.

We can reject the null hypothesis that the redshift dis-
tribution of GRBs with a T90 < 2 s is drawn from the same
distribution as LGRBs, as the AD statistic of 11.377 cor-
responds to a significance level of P > 0.99; this result is
entirely expected given our understanding of SGRBs and
LGRBs. We also find that we can accept the null hypothesis
for both the rejection criteria of early XRT data, and com-
plete XRT flares, having been drawn from the same parent
population as our sample of LGRBs: the AD stats are 0.825,
and -0.875 respectively, which corresponds to P -values of
P = 0.85 and P � 0.75 4. The criteria for a minimum of
one pulse in the BAT, and a well defined BAT pulse are,

3 The Anderson-Darling test statistic is a modified Kolmogorov-
Smirnov test statistic, and is preferred due to its greater sensi-
tivity to differences in the tails of distributions, and its ability to

sence differences between very large datasets.
4 The threshold for rejection is often given at the arbitrary P -
value of > 0.95.

like the T90 criterion, both rejected with P -values of > 0.99.
It is highly likely, however, that short GRBs have a poorly
observed BAT regime, as the hardness of short GRBs does
not lend well to detection by the relatively soft BAT pass-
bands. Calculating a 3-sample AD statistic shows that the
null hypothesis that GRBs which fail these three criteria are
drawn from the same population can be accepted, with an
AD statistic of -0.079 corresponding to a P -value of� 0.75;
this suggests that these rejected GRBs are indeed most likely
short, and by excluding them we do no insert any significant
bias to our LGRB dataset.

In summary, out of 187 LGRBs with associated red-
shifts covering the 76 month period from GRB 050126 to
GRB 110503A with T90 > 2s, 118 GRB lightcurves were
deemed suitable and fitted with 607 pulses: a completeness
of ∼ 63%. As a comparison study, Salvaterra et al. (2012)
utilised GRBs spanning an almost identical time period as
our own and, after applying their selection criteria, drew a
population of 58 LGRBs of which 52 have measured red-
shifts: a completeness of ∼ 39% 5.

2.1 The Pulse Model

A photon, emitted from the source when a shell is ejected
from it, arrives in the observer frame at time Tej which can
be thought of as the observed ejection time of the shell. The
initial radial time, T0 is assumed such that the time at which
the first photons emitted from the emission region at radius
R = R0 reaches the observer at T = Tej + T0. Likewise
the final radial time, Tf , emitted from the emission region
at R = Rf reaches the observer at time T = Tej + Tf .
For compactness of equations we also define two normalised
times:

T̄ ≡ T−Tej

Tf
; T̄f ≡ T0

Tf
. (1)

Integrating the comoving luminosity over the equal ar-
rival time surface (EATS) in combination with the model
spectrum, B(q) (see Equation 4), allows us to derive the
flux in terms of number of photons, N per unit energy, E,
area A and time T :

dN

dEdAdT
(E, T > T0 + Tej) = P (T̄ , T̄f )B(q); (2)

the pulse profile, P (T̄ , T̄f ), is given by:

P (T̄ , T̄f ) = PnormT̄
−1
[(
min(T̄ , 1)a+2 − T̄f a+2

)]
(3)

where the pulse profile includes a normalisation parameter,

Pnorm =
(

1− T̄f a+2
)−1

such that the value of P (T̄ , T̄f ) is

1 at T = Tej + Tf . The section in square brackets in Equa-
tion 3 models the rise in the pulse, in this case controlled

5 The Salvaterra et al. (2012) completeness is derived from the
132 available redshifts that were available at the time of that

paper’s writing. Whilst the majority of GRB redshifts are re-

leased within a few days of initial observation, some are derived,
or updated, only after extended follow up observations months, or

years, after the initial burst; in all cases we endeavour to obtain

the most up to date redshift information available.
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Tej Tpk T

Tf

T0

Trise

Figure 1. A schematic for the pulse profile, P (T̄ , T̄f ), showing

the characteristic timescales Tf , T0, and Trise; and the times Tej
and Tpk.

by the temporal index a and the timescales T̄ and T̄f . A
schematic of the pulse is shown in Figure 1 with character-
istic timescales denoted.

Whilst the temporal characteritics of GRBs display re-
markable variation, their spectral profiles are far less varied.
The spectra of GRB pulses during the prompt phase are
distinctly non-thermal; as such, we model each individual
pulse by a Band function, given by Equation 4:

B(q) = Bn

{
qb1−1e−q q 6 b1 − b2
qb2−1(b1 − b2)b1−b2e−(b1−b2) q > b1 − b2

(4)
where b1 and b2 are the low and high energy spectral in-
dexes respectively, Bn is the normalisation parameter, and
q = (E/Ef )T̄ = E/Ec. The cutoff energy at time Tpeak =
Tej +Tf , denoted as Ef , coincides with the maximum emis-
sion from the pulse where the spectral profile is best con-
strained. The hard-to-soft evolution seen in GRB pulses are
modelled through an evolving characteristic energy, Ec, such
that Ec(t) = Ec(T −Tej) = Ef (T̄ )−1, where the strength of
the spectral evolution is a result of assuming synchrotron
dominated emission in the fast-cooling regime (see Will-
ingale et al. 2010 for derivations). Whilst there is, in some
rare cases, evidence of an underlying and statistically signif-
icant thermal component within the spectra of a few GRBs
(see Guiriec et al. 2011 for example), we feel that incorporat-
ing an additional thermal component would be an exercise
in diminishing returns.

2.2 Fitted parameters

The time of the peak with respect to the trigger, Tpk, was
initially set by eye and then allowed to float to find the
best value. In the final fits Tpk was then fixed at the best

value found whilst in all cases the characteristic time Tf was
allowed to float. Instead of fitting the rise time directly it
was expressed as a fraction of Tf , Trise = frTf , and it is this
fraction which was fitted with the constraint of 0 < fr < 1.
Using this fraction provides a simple way to avoid unphysical
rise time values not allowed by the model. In many bursts
significant emission is seen before the trigger and in some
bursts the first peak may have a large negative Tpk value.
On completion of the final fit we redefined the zero time as
the start of the emission in the model given by the start
of the rise of the first pulse, Tzero = Tpk(1) − Trise(1). We
then offset the peak times of all the pulses in the burst to
Tpeak = Tpk − Tzero so this represents the time since the
start of the burst for each pulse.

For all pulses the low-energy index of the Band function
was fit whilst the difference between the low and high spec-
tral indicies was fixed at b− d = 10. This effectively reduces
the Band function to a simpler power law with an exponen-
tial cut-off. For a few pulses the count rate in the higher
energy channels was effectively zero and the spectral index
was very poorly determined. In such cases the lower spec-
tral index was therefore constrained to b > −2.5. Because
of the relatively soft energy bandwidth of the Swift BAT,
and the signal to noise of the measured light-curves, a pow-
erlaw with exponential cutoff produces comparable quality
of fits to Band functions without being so computationally
demanding.

For the majority of GRB pulses the cut-off energy of the
Band function lies outside the passband of the BAT; in such
cases we fix the cutoff energy of the Band function at Tpeak
at Efz = 500 keV in the source frame of the burst, corre-
sponding to Ef = 500/(z + 1) keV in the observer frame,
similar to the fixed cutoff energies utilised by other studies,
e.g. Firmani et al. 2004; Natarajan et al. 2005. For some
pulses however, with good statistics and energy coverage
(including both the BAT and XRT data), it was possible to
constrain Ef by the fitting to some other value (usually a
lower energy). As joint analysis of the spectra of GRB pulses
observed simultaneously by Swift and other satellites such
as Fermi, Suzaku, and Konus-Wind are rare and are often
based on a few GRBs (see for example Krimm et al. 2009),
we cannot directly compare spectral fits on a pulse-by-pulse
basis for the majority of our 607 pulses. We instead compare
the spectral characteristics of the prompt emission pulses
utilised within this paper with the time-averaged spectral
parameters observed by other space-based gamma-ray, and
X-ray observatories with wider energy passbands than the
Swift BAT; out of 118 GRBs, 51 were observed by other
missions, totalling 183 prompt-phase pulses.

Although not strictly equivalent, as the totality of the
GRB prompt emission is a convolution of many constituent
pulses, such a comparison can reveal any significant differ-
ences. To this end we define a deviation metric for param-
eter P such that ∆P = |PSwift − Pother|/σcombined where
σcombined is the resulting uncertainty of the two measure-
ments combined in quadrature (σ2

combined = σ2
Swift+σ

2
other),

and a ∆P < 1 denotes a parameter that is within the
combined 1σ uncertainties. We find good agreement be-
tween our pulse spectral parameters and those of the time-
averaged GRB spectra, with the median deviation in the
spectral indexes, and peak energies of ∆B1 = 1.25+1.89

−0.70, and
∆Epeak = 0.70+0.52

−0.35; where the subscripts/superscripts de-

c© 2016 RAS, MNRAS 000, 1–20



The Pulse Luminosity Function of Swift Gamma-ray Bursts 5

note the 25th and 75th percentiles respectively. Such differ-
ences in the spectral parameters of our pulses and the time-
averaged GRB prompt emission will produce K-correction
factors which may vary significantly, and by extention, pro-
duce bolometric rest-frame luminosities that are widely dif-
ferent. We therefore calculate and compare the K-corrections
one would derive assuming a power-law with exponential
cutoff spectrum for both measurements. We observe a me-
dian deviation between the two broadband observations on
the scale of ∆Kcorr = 0.28+0.24

−0.15; we conclude therefore that
the effect of introducing a fixed cutoff energy in the spectra
of our pulses is negligible.

In general the pulse profiles are well matched by the
model but Figure 2 illustrates typical deficiencies in the fit-
ting (see Willingale et al. 2010 for further discussion on the
various fitting pitfalls). For GRB 060206 the pulse decays
more rapidly in the hard band than predicted and there are
minor excursions away from the model over several of the
pulses in GRB 070508. For many bursts there are a couple
of data points in the harder bands which form a spike which
is not fitted by the model profile. A few points in the decay
of the afterglow in GRB 070508 are well above the model in
the softest band and the very late points of the afterglow in
GRB 060206 are poorly fit. In these fits such errors can’t be
accomodated for by the addition of more pulses and subse-
quently contribute to some of the larger χ2 values obtained.
Despite these issues we tried to fit every pulse-like feature in
all the lightcurves and the combination of the pulse model
plus afterglow accounts, in most cases, for all the emission
detected from all the bursts. 6

3 MODELLING THE GRB LUMINOSITY
FUNCTION

We note that the nomenclature of ”luminosity function” in
reference to GRBs refers specifically to the GRB luminos-
ity probability density function (PDF); to obtain what is in
general analogous to the LFs found in other areas of astro-
physics one must convolve the GRB luminosity PDF with
the cosmic GRB formation rates. Any subsequent reference
to the GRB luminosity function in this paper will follow this
convention and refer to the GRB luminosity PDF. Through-
out this paper we used the formulation of comoving dis-
tance, volume and luminosity distance given by Hogg (1999)
utilising the seven-year WMAP cosmological parameters of
H0 = 71 km s−1 Mpc−1, Ωm = 0.27, Ωk = 0 and ΩΛ = 0.73
(Larson et al. 2011). All errors quoted in this paper are to
the 1σ confidence interval in line with the majority of GRB
LF literature.

Throughout this paper we discuss reproducing the GRB
pulse luminosity function though a variety of models which,
in some cases, include various sub-models. Type I models
invoke a cosmic star-formation rate coupled to a single pop-
ulation of GRB progenitors (Section 3.2); type II models are
similar to type I save for the separation of GRB progenitors
into low, and high-luminosity populations (Section 3.1.1);
whilst type III models are direct fits to GRB formation rates

6 The data used throughout this paper will be available in an
upcoming GRB components catalogue paper by the authors.

Figure 2. The pulse model fits for GRB 060206 (top) and GRB
070508 (bottom). The left columns corresponds to the BAT pass-
bands of 100 - 350 keV (cyan), 50 - 100 keV (blue), 25 - 50 keV

(green), and 15 - 25 keV (red); the right columns are the XRT
passbands of 1.5 - 10 keV (orange), and 0.3 - 1.5 keV (magenta).
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6 A. Amaral-Rogers et al.

and exclude a-priori assumptions about the nature of GRB
progenitors (Section 3.2). Models I, and III are further ex-
plored through the inclusion of various extra evolutionary
effects (see Section 3.6) and are summarised as:

Type I-1: no evolution in either the break of the pulse LF,
Lbreak (δ = 0), or the GRB formation rate, KGRB (γ = 0
or Z/Z� =∞);
Type I-2: evolution of only the GRB formation rate,KGRB

(γ 6= 0);
Type I-3: evolution of only the break, or cutoff, of the
luminosity function, Lbreak (δ 6= 0);
Type I-4: evolution of the GRB formation rate through
the presence of metallicity density evolution (Z/Z� 6=∞);
Type I-5: both Lbreak and KGRB are free to evolve (δ &
γ 6= 0).
Type III-1: no evolution in the break of the pulse LF,
Lbreak (δ = 0);
Type III-2: evolution in the break of the pulse LF, Lbreak
(δ 6= 0);

The observed distribution of pulse bolometric luminosi-
ties, N(L, z), by definition spanning the energy band of 1 -
10000 KeV7, is displayed in Figure 3. Pulses for which the
peak only appears in the BAT or XRT lightcurves are shown
as circles and stars respectively, whilst pulses observed sim-
ulatenously by both instruments are denoted by triangles.
The N(L, z) distribution displays a wide range of bright-
nesses for prompt emission pulses, and late time X-ray flares;
and whilst the very brightest of pulses (L1−10000KeV >
1 × 1053 ergs s−1) are exclusively from the prompt emis-
sion, the X-ray flares and prompt emission pulse luminosity
distributions are indistinguishable from each other.

The standard procedure for relating the observed dis-
tribution of LGRBs to the comoving burst formation rate
(see for example Fenimore & Ramirez-Ruiz (2000); Lloyd-
Ronning, Fryer & Ramirez-Ruiz (2002); Salvaterra & Chin-
carini (2007); Butler, Bloom & Poznanski (2010); Salvaterra
et al. (2012)) is given by:

N(L, z)dzdL = φ(L, z)

[
D(L, z)

∆Ω∆TΨ∗(z)

(z + 1)

dVc(z)

dz

]
dzdL

(5)
where the observed distribution of LGRB bursts, N(L, z), is
a convolution of the comoving burst formation rate, Ψ∗(z),
the comoving volume element, dVc(z)/dz, a detection prob-
ability profile, D(L, z), and the GRB luminosity probability
density function, φ(L, z). The factor of 1/(z + 1) corrects
for cosmological time dilation whilst ∆Ω and ∆T are the
terms correcting for the field of view of the BAT and the
total duration our GRB sample covers.

3.1 Luminosity Function

The functional forms for LGRB LFs represented in the Swift
literature are predominantly that of a broken power-law
(sometimes with a smoothed transition between low and

7 The bolometric luminosity of each individual pulse is derived

from applying a K-correction to the pulse flux using the spectrum
at peak time as a fiducial spectrum.
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Figure 3. The distribution of peak luminosities as a function of
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only with the BAT or XRT instruments respectively with trian-

gles denoting pulses detected by both instruments simultaneously.

BAT observed pulses are visible below the BAT detection limit as
fainter pulses co-added to prior, brighter pulses can be ”boosted”

into the detection range. Pulse colours denote the integrated peak

flux in the observed 0.3 - 350 keV passband. The overlain boxes
show the corresponding Ji sets used to determine each bin’s lim-

its with an explanation to the derivation of set limits outlined
in Section 4.1. The yellow dashed and red dashed lines show the

detection threshold of the bolometric luminosity as a function

of redshift, with a burst detection threshold in the BAT (15-350
keV) of 0.1 photons cm−2 s−1, equivalent to 8× 10−9 ergs cm−2

s−1 (Sakamoto et al. 2008) and an approximate XRT (0.3-10 keV)

pulse/flare detection limit of 3×10−12 ergs cm−2 s−1. In practice
the XRT detection limit depends on the brightness of the after-

glow component and the time since trigger so the lower detection

threshold varies considerably from burst to burst. Few pulses are
seen near the XRT threshold and the detection likelihood of pulses

is discussed in Section 3.5. The K-correction to convert the BAT

& XRT flux detection limits to that of bolometric luminosities
utilises the average spectral parameters of the Band function de-

rived from our dataset of 607 pulses with b = −1.57, d = −11.60

and Ef = 183 keV.

high luminosity regions) (Lloyd-Ronning, Fryer & Ramirez-
Ruiz 2002; Liang et al. 2007; Butler, Bloom & Poznanski
2010; Cao et al. 2011; Salvaterra et al. 2012), or a power-law
with an exponential cutoff (Salvaterra & Chincarini 2007;
Salvaterra et al. 2009; Cao et al. 2011; Salvaterra et al. 2012).
In this paper, to ensure completeness, we utilise both a bro-
ken power-law (BPL),

φ(L, z) = Ln


(

L
Lbreak

)α
L 6 Lbreak(

L
Lbreak

)β
L > Lbreak

; (6)

and a power-law with exponential cutoff (PLEC),

φ(L, z) = Ln

(
L

Lbreak

)α
exp

[(
−L
Lbreak

)]
; (7)

to model our pulse luminosity function. α and β (BPL only)
are the low & high luminosity indexes; Lbreak is the break
luminosity; and Ln is the normalisation of the LF, which is
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given by the reciprocal of the LF integral. The normalisation
factor is sensitive to the limits of integration and can have
an effect on the derived efficiency parameter, KGRB , up to a
factor of 2. The limits of integration are therefore chosen by
various authors depending on the constraints that they place
on their data sets, bias controls, or calculation methods8; the
variation in normalisation is small however when compared
to the intrinsic uncertainties in the CSFRD, IMF evolution,
metallicity density, etc.. We adopt the faintest, and brightest
pulse luminosities as the limits of integration, which in this
paper spans 1× 1046 to 1× 1054 ergs s−1.

3.1.1 A Separate Low-Luminosity GRB Population

Although LGRB studies generally prefer utilising luminos-
ity functions that assume a single population of LGRBs,
a small group of LGRBs appear to exist with particularly
low luminosities (LL, L < 1050 ergs s−1) that are poorly
fitted by these single population models (Liang et al. 2007;
Virgili, Liang & Zhang 2009; Qin et al. 2010; Howell & Cow-
ard 2013). Typically these LL LGRBs are assumed to trace
the same progenitor models as those of higher luminosity
LGRBs whilst convolved to a separate luminosity function.
Such luminosity functions produce markedly differing nor-
malisation rates for the two types of LGRBs; the local for-
mation rates of LL LGRBs are suggested to be several orders
of magitude greater than those of more luminous LGRBs.

With the incorporation of bright prompt emission
pulses, and late time, faint X-ray flares, 72 of 607 pulses
fall into the luminosity regime typically associated with LL
LGRBs. In this paper we evaluate the performance of bi-
modal LF models (denoted as type II models) compared to
single population LGRB models (type I models). Following a
similar procedures set out by Liang et al. (2007), we produce
a bimodal luminosity function by combining two luminosity
functions, φLL(L) and φHL(L) such that:

φ(L) = φLL(L)KLL−GRB + φHL(L)KHL−GRB , (8)

where the LGRB formation rate efficiencies, KLL−GRB and
KHL−GRB are included in the LF to allow for different for-
mation efficiencies of the two GRB types, and are analogous
to the ρLL0 and ρHL0 parameters found in Liang et al. (2007).
Both φLL(L) and φHL(L) follow the same shape as Equa-
tions 6 and 7 and each population is fitted separately to
ensure that the LL and HL parameters are independent of
each other. Normalisation limits for the bimodal LFs, as that
of the single population model, are set at 1×1046 to 1×1054

ergs s−1.

8 The brightest subsection of low-z GRBs are often utilised as
the subsample avoids Malmquist bias, and is less succeptible to

other intrinsic biases such as redshift detectability, and uncer-
tainty in the CSFRD at high-z (Cao et al. 2011); utilising the

least/most luminous pulses (Firmani et al. 2006; Salvaterra et al.

2012), or integrating over infinity, especially for PLEC LF models
(Campisi, Li & Jakobsson 2010), is also common.

3.2 LGRB Co-moving Pulse Rate

We model the comoving burst rate, Ψ∗(z), or more specif-
ically the comoving pulse formation rate (pulses yr−1

Mpc−3) using two diametrically opposed models:

Ψ∗(z) = Kpulse

{
KGRBψ∗(z)ι(z)F (z) Type I
ψGRB(z) Type III

. (9)

Type I models assume a functional form for the cos-
mic star formation rate density (CSFRD), ψ∗(z) (M� yr−1

Mpc−3), and couple to: an evolving fraction of high-mass
stars that are capable of forming GRBs at at given redshift,
F (z); an additional rate density evolution parameter, ι(z),
capable of boosting GRB formation rates above CSFRD lev-
els, and conversion factors Kpulse, and KGRB which describe
the average number of pulses per GRB, and the number of
GRBs formed per solar mass of stars respectively. Included
amongst the type I models is a non-evolving GRB luminos-
ity function derived when ι(z) is constant, and the break
luminosity index, δ = 0. Type III models are a common al-
ternative to type I models where direct fitting of a simple
functional form to Ψ∗(z), in this paper taken to be a triple
broken power-law, allows for ease of comparison between
cosmic star formation rate density models without the need
for refitting of GRB luminosity functions.

All the parameters used in modelling the comoving
pulse formation rate are functions of redshift with the ex-
ception of Kpulse: the number of pulses per GRB shows no
correlation with redshift; having removed the effect of the
BAT rest-frame duration, T90/(z + 1), we derive a Spear-
mann’s partial rank correlation coefficient of ρs = −0.045,
implying that Kpulse is redshift-independent.

3.3 Cosmic Star Formation Rate Density

The comoving burst formation rate is dependant on the
properties of the central engines that power GRBs; for
LGRBs the preferred mechanism is that of a collapsar:
massive stars that undergo catastrophic core collapse into
blackholes (Woosley 1993; Paczyński 1998; MacFadyen &
Woosley 1999), favoured because of the observed associa-
tion with Type Ib/c supernovae (Galama et al. 1998; Stanek
et al. 2003) with Wolf-Rayet stars the favoured progenitor
type. With their high mass (M > 25M�), and subsequently
short main-sequence lifespans, Wolf-Rayet stars closely trace
the local star formation rate; as such, for type I/II models,
we take the Cole (Cole et al. 2001) functional form for the
CSFRD:

ψ∗(z) =
(a1 + a2z)h

1 + (z/a3)a4
, (10)

in units of M� yr−1 Mpc−3; and use the best fit parame-
ters: a1 = 0.0389, a2 = 0.0545, a3 = 2.973, and a4 = 3.655
derived by Kobayashi, Inoue & Inoue (2013). These values
are based on corrections to the work by Hopkins & Beacom
(2006) where overestimations in the CSFRD were found to
have arisen due to uncertainties in the correction for dust-
obscuration and the conversion from UV luminosity to in-
trinsic star formation rates. These coefficients produce a cos-
mic star formation rate that has an almost flat profile to a

c© 2016 RAS, MNRAS 000, 1–20



8 A. Amaral-Rogers et al.

redshift of z = 2 and approximately an order of magnitude
greater formation rate at z = 0 than that produced from
using Hopkins and Beacom’s fitted parameters.

3.4 The Cosmic IMF

A contributing second-order effect from an evolving pop-
ulation of high-mass stars is considered by some authors
either explicitly in the modelling of derived GRB luminos-
ity functions (Lloyd-Ronning, Fryer & Ramirez-Ruiz 2002)
or as an explanation to the observed evolution in lumi-
nosity or rate parameters (Kistler et al. 2008; Cao et al.
2011). The CSFRD is, by definition, the total star for-
mation rate at a given redshift and, for completeness, in
this paper we explicitly convert the CSFRD to a forma-
tion rate density of stars capable of undergoing catas-
trophic core collapse and forming GRBs (i.e. with mass
greater than 25M�) by deriving the fractional mass of
stars greater than a ”GRB ignition mass”, F (z), given by

F (z) =
∫ 120M�

25M�
MΦ(M, z)dM/

∫ 120M�
0.01M�

MΦ(M, z)dM . In

our derivation of the fraction of high-mass stars we assume
an IMF, Φ(M, z), which is top-heavy at high redshift as log-
ically in the metal-poor early universe the Eddington limit,
and subsequently the population of high mass stars, was
much greater than more recent epochs. Studies into extra-
galactic star formation history indicates an evolving IMF
(Davé 2008; van Dokkum 2008; Wilkins, Trentham & Hop-
kins 2008) up to z ∼ 2 and as such we adopt the redshift-
dependent IMF model of Davé (2008) where the IMF takes
the form of a broken power-law (Kroupa 2001):

Φ(M, z) =


(
M

M̂

)−0.3

M 6 M̂(
M

M̂

)−1.3

M > M̂
(11)

with the characteristic break mass evolving with redshift:
M̂ = 0.5(z + 1)2M�, which we naively extrapolate up to
z = 10. The effect of the evolving IMF on the distribution
of stellar masses is subtle; in the current epoch, approx. 9.6%
of all stellar mass formed per year is locked up within stars
of M > 25M�, increasing to approx. 62.5% at z = 10.

3.5 Swift Detection Likelihood

It is common, in previous studies of the Swift GRB lumi-
nosity function, where only the defining pulse luminosities
(i.e. the brightest) were utilised, to set the likelihood of de-
tection by the BAT within its field of view to be at unity.
In deriving a GRB pulse luminosity function incorporating
data from the XRT we include pulses up to three orders
of magnitude less luminous than the detection threshold of
the BAT. We produce a model of the Swift detection pro-
file, D(L, z), assuming total detection likelihood above the
BAT detection threshold which scales to zero at an effec-
tive XRT detection threshold of 3 × 10−12 ergs s−1 cm−2

as a power-law of index ∼ −1/3. This is, of course, a naive
model of Swift’s detection profile: each pulse is treated as
an individual event and assuming unity down to the XRT
detection threshold would be inappropriate; each pulse de-
tected by the XRT was because of BAT detection and the
XRT detection threshold varies considerably from burst to
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Figure 4. The observed distribution of pulse luminosities for a
type I model with rate evolution of γ = 0 where the luminosity

function is assumed to be constant. The solid curve is the ex-

pected distribution resulting from integrating Equation 5 whilst
assuming a detection profile, D(L, z), that varies from unity at

the BAT threshold down to non-detection at the approximate

XRT threshold. The dotted curve is the expected distribution as-
suming D(L, z) is unity down to the XRT sensitivity limit and

the dashed curve arises when setting the BAT detection threshold

as the lower limit of detection.

burst depending on the brightness of the afterglow compo-
nent, and the time between XRT detection and BAT trig-
ger; furthermore as there is often significant overlap between
pulses, fainter pulses may be seen when an earlier, signifi-
cantly brighter pulse is present. Modelling the combinded
detection profile of Swift is highly complicated and, as such,
the results are somewhat subjective. Our detection profile
convolved to the CSFRD, metallicity density, and constant
φ(L, z), produces a distribution of pulses that closely traces
the observed distribution up to approximately 1051 ergs s−1

(solid line, Figure 4). Setting the detection profile to unity
above either the XRT or BAT detection thresholds produces
the dotted and dashed distributions which tends to overes-
timate the population of low luminosity pulses (>XRT =
unity) or underestimates the population of sub-peak lumi-
nosities (<BAT = 0) requiring, respectively, a luminosity
function that is more positively or negatively tilted to com-
pensate.

3.6 Redshift Evolution Models

For a type I GRB LF model, the basic method of tak-
ing a CSFRD convolved to a luminosity function, detection
profile, and cosmological volume element produces a distri-
bution of LGRBs that under-represents the observed high-
redshift, high-luminosity population. The solution is to pro-
vide an extra evolutionary effect in the modelling and allow
it to float when fitting the model parameters. In this paper
we look at three of the most common evolutionary effects:
evolution of the break, or cutoff, of the luminosity func-
tion; a metallicity density evolution such that LGRBs trace
low metallicity star forming regions; and a more generic rate
density evolution on top of the CSFRD as solutions to differ-
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ences between the observered and type I pulse distribution
functions.

3.6.1 Break Luminosity

Evolution in the break, or cutoff, luminosity is of the form
Lbreak(z) = L0(z + 1)δ, where L0 is the break in the LF at
z = 0 and δ is the index of LF evolution (Lloyd-Ronning,
Fryer & Ramirez-Ruiz 2002; Firmani et al. 2004; Yonetoku
et al. 2004; Kocevski & Liang 2006; Salvaterra & Chincarini
2007; Salvaterra et al. 2009; Campisi, Li & Jakobsson 2010;
Virgili et al. 2011; Salvaterra et al. 2012; Petrosian, Kitani-
dis & Kocevski 2015; Yu et al. 2015). This has the further
effect that the normalisation parameter, Ln, becomes Ln(z).
In this paper the break luminosity evolution can be applied
to both the type I and type III LGRB pulse formation rate
models. In principle, luminosity break evolution can be in-
corporated into type II models such that either one, or both,
GRB populations see their own luminosity evolution. Given
the large number of free parameters, and the small popula-
tion of low-luminosity pulses, however, we believe that we do
not yet have the statistics to draw meaningful conclusions
from such a model.

3.6.2 Metallicity Density

Extreme mass-loss through stellar winds, a characteristic of
high-mass stars, will prevent the formation of a GRB; if,
however, the progenitor has low metallicity (Z < 0.1Z�)
then the mass-loss rate is severely dampened and a GRB is
able to form (Fryer, Woosley & Hartmann 1999; Mészáros
2006). LGRB progenitors should therefore preferentially
form in low-metallicity galaxies at any given redshift. A
model of fractional mass densities belonging to metallici-
ties below metallicity Z at redshift z, Σ(z) has been derived
by Langer & Norman (2006) from the Schechter distribution
function of galaxy masses and the mass-metallicity relation-
ship determined from SDSS surveys. The functional form of
Σ(z) is given by:

Σ(z) =
γ̂[0.84, (Z/Z�)2100.3z]

Γ(0.84)
(12)

where γ̂ and Γ are the lower incomplete and complete
gamma functions respectively. The metallicity density will
always boost high-redshift GRB formation rates, with the
metallicity threshold determining how rapidly this rate in-
creases; a higher metallicity threshold will produce a smaller
increase in GRB formation with redshift, tending towards no
evolution when Z/Z� → ∞ (Salvaterra & Chincarini 2007;
Qin et al. 2010; Virgili et al. 2011; Salvaterra et al. 2012).

3.6.3 Rate Density

Metallicity density evolution acts as a physical explaina-
tion to observed evolution in GRB formation rates, how-
ever the formulation of the model relies on no scatter in
the mass-metallicity relationship, and no redshift evolution
in the faint end of the Schechter galaxy mass function and
the rate of which the average galactic metallicity evolves.
One may instead use a simple (z+1)γ factor to produce the

same effect as metallicity density evolution with the advan-
tage that rate density also allows for a dampening of GRB
formation rates at high-z, something that is impossible for
the formulation of metallicity density to achieve (Kocevski
& Liang 2006; Kistler et al. 2008; Salvaterra et al. 2009; Qin
et al. 2010; Cao et al. 2011; Virgili et al. 2011; Robertson &
Ellis 2012; Salvaterra et al. 2012; Petrosian, Kitanidis & Ko-
cevski 2015). This factor is however purely empirical, which
frustrates interpretations of the results. Both the metallicity
density and rate density evolution are incorporated into the
type I GRB formation rate model, Ψ∗(z), through the ι(z)
term in Equation 9, either singularly or in combination with
each other (Qin et al. 2010).

3.6.4 Combined Break Luminosity & Rate Density

Evolution either in rate density, or break luminosity has
been utilised as a solution to discrepencies between theoret-
ical, and observed LGRB luminosity functions. Little study
has however been made on the performance of more com-
plex evolutionary models involving evolution in both rate
and break luminosity. In this paper we evaluate the perfor-
mance of a type I combined rate/break evolutionary model
and compare this model’s performance with the more com-
mon univariate type I evolutionary models.

4 THE GRB PULSE LUMINOSITY FUNCTION

4.1 The MCMC Simulation

We bin the observed distribution, N(L, z), by splitting the
607 GRB pulses into equipopulous redshift bins: 0.125 <
z 6 1.505, 1.51 < z 6 2.6, and 2.612 < z 6 9.4; we further-
more bin over luminosity to improve statistics at the high
and low luminosity tails of the GRB pulse distribution such
that the ith bin is the associated set Ji ≡ {j|Lmini < L <
Lmaxi , zmini < z < zmaxi }, with n(Ji) as the total number
of pulses in Ji, set at a minimum of 11 pulses: a tradeoff
between maximising the total number of bins, and reduc-
ing the fractional Poissonian error component of each bin.
The lower and upper redshift and luminosity limits of each
bin are subsequently trimmed to remove excess ”padding”
of empty data space with the resulting bins shown in Fig-
ure 3. For a non-trivial model with parameters, θ̂, a Gaus-
sian minus log-likelihood function can be constructed using
methods outlined by D’Agostini (2005), giving:

− log(L[θ̂|n(Ji)]) =

N∑
i=1

log(2πσ2
i )

2

+

N∑
i=1

[n(Ji)−
∫ Lmax

i

Lmin
i

∫ zmax
i

zmin
i

η(L, z; θ̂)dLdz]2

2σ2
i

(13)

where η(L, z; θ̂) is equivalent to the R.H.S of Equation 5
and the associated squared error of the ith bin is given by
σ2
i = σ2

n(Ji)
+σ2

Li
+σ2

zi . The error in n(Ji), σn(Ji) is naively
taken as the standard deviation of a Poissonian distribution
with mean, n(Ji), giving σn(Ji) =

√
n(Ji). The errors, σLi ,

and σzi are defined as uncertainties in the limits of inte-
gration for each bin. As the bin edges are defined only by
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the minimal/maximal pulse luminosities and redshifts con-
tained theirin, assuming a 10% uncertainty in the limits of
integration gives:

σLi =

∫ 1.1Lmax
i

0.9Lmin
i

∫ zmax
i

zmin
i

η(L, z; θ̂)dLdz

−
∫ Lmax

i

Lmin
i

∫ zmax
i

zmin
i

η(L, z; θ̂)dLdz; (14)

σzi =

∫ Lmax
i

Lmin
i

∫ 1.1zmax
i

0.9zmin
i

η(L, z; θ̂)dLdz

−
∫ Lmax

i

Lmin
i

∫ zmax
i

zmin
i

η(L, z; θ̂)dLdz. (15)

A Metropolis-Hastings Markov Chain Monte Carlo
(MCMC) method is preferred for the maximisation of the
minus log-likelihood due to the high dimensionality of
the fitting, as well as being able to return the confidence
regions of all fitted parameters. Assuming uniform priors
for the indexes: α, β, γ, and δ; and logarithmic priors
for KGRB and L0, we run MCMCs with chain lengths
of 1 × 106 with typical ”burn in” taking around 2 × 103

iterations. To ensure that the MCMC program is finding
the global, rather than local, maximum we evaluate the
MCMC convergence success by running multiple MCMCs
from random starting points and deriving the Gelman &
Rubin (Gelman & Rubin 1992) potential scale reduction
factors (PSRFs); an example for the fully evolving PLEC
model, allowing GRB rate and break luminosity evolution,
is shown in Figure 5.

For the type I models our results are discussed in Sec-
tion 5 and tabulated in Table 1; the results derived using the
type II bimodal low-luminosity and high-luminosity func-
tions are discussed in Section 6 and displayed in Table 2;
and the results for a type III LF independent of formation
rate models are discussed in Section 7 and shown in Ta-
ble 3. The χ2

r quoted are derived from the 54 bins shown
in Figure 3, the associated error of the ith bin, σi, and
the number of fit parameters of the model. The Akaike
weights, wi(AICc), derived using the Akaike Information
Criterion (AIC) (Akaike 1974), are shown and are a mea-
sure of the relative likelihood of each model. Derived from
wi(AICc) = exp(−∆(AICc)i/2)/Σ[exp(−∆(AICc)i/2)]
where ∆(AICc)i = AICc−min(AICc), they can be consid-
ered as the probability that model Mi is the best amongst
all the chosen models and penalises models with larger num-
bers of free parameters. The AICc is used rather than the
AIC as it contains extra-terms that adjust for the bias that
a finite sample size can contain.

5 THE TYPE I GRB MODELS

5.1 No Evolution Model (Type I-1)

We find that the scenario in which there is no inclusion
of evolutionary models: luminosity break, rate density, or
metallicity, produces a fit of χ2

r = [1.81, 1.83] for the BPL
and PLEC models respectively. This model produces a dis-
tribution of GRB pulses that underestimates the extrema of
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Figure 5. 7 MCMC chains for the type I GRB pulse LF PLEC

model convolved with the CSFRD, and the fractional population

of high mass stars. The parameters for the break luminosity, L0;
luminosity break evolution, δ; low-luminosity index, α; GRB for-

mation rate, Kgrb; and GRB formation rate evolution, γ, were

allowed to evolve from random start points and converge to a
unique solution typically around ∼ 2× 103 iterations. Gelman &

Rubin PSRFs statistics for each of the parameters were derived

with σPSRF = 1.0051, 1.0073, 1.0058, 1.0022, 1.0052 for L0, δ, α,
Kgrb, and γ respectively.

the observed pulse luminosity distribution. The derived nor-
malised Akaike information criterion weights, wi(AICc) for
the BPL and PLEC LF models are ∼ ×10−7, making these
models highly unlikely, compared to the fully evolving LF
and GRB rate type I-5 models, to minimise the Kullback-
Leibler discrepancy and as such we can reject this model.
This finding is in agreement with single pulse studies utilis-
ing the brightest prompt emission pulses (Daigne, Rossi &
Mochkovitch 2006; Salvaterra & Chincarini 2007; Salvaterra
et al. 2009; Qin et al. 2010; Wanderman & Piran 2010; Vir-
gili et al. 2011; Salvaterra et al. 2012).
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5.2 Rate Density Model (Type I-2)

The addition of a simple (z+ 1)γ rate evolution produced a
best fit to the observed pulse distribution of γ = 0.51± 0.30
for the BPL and PLEC models (top left panel, Figure 6).
This shifts the peak of the CSFRD to higher redshifts,
boosting the GRB pulse formation rate at high-z whilst re-
ducing low-z formation rates, producing broadly the same
deficiencies as the non-evolving type I-1 model with re-
gards to reproducing the observed population of LGRBs
at the extrema. A marginal improvement in the fits of
χ2
r = [1.78, 1.78] is seen and the addition of the extra evolu-

tionary parameter makes this model approximately twice as
likely as the non-evolving type I-1 model to produce our ob-
served GRB pulse distribution according to Akaike weight-
ing. This is however still approximately 106 times less likely
than the fully evolving type I-5 model, making this model
highly unlikely and as such we reject it as a solution to the
observed evolution in the GRB pulse distribution.

Our derived γ values are consistent with those derived in
single pulse GRB LF studies, albeit towards the lower end
of the distribution (0.5 < γ < 1.93, Kistler et al. (2008);
Qin et al. (2010); Cao et al. (2011); Virgili et al. (2011);
Robertson & Ellis (2012); Salvaterra et al. (2012); G. Dain-
otti et al. (2014)). This diversity, in part, reflects the di-
versity of GRB formation models used, most notably the
CSFRD, and the selection methods of suitable GRBs pre-
ferred by the authors. Furthermore, excluding the evolving
formation rate efficiency of high-mass stars, F (z), which it-
self produces a weak rate evolution, would result in a greater
derived γ value as such effects are ignored in other papers.
Direct comparisons between studies are difficult given the
variation in methods, and data utilised, however the com-
mon result is that inclusion of a rate density parameter im-
proves the performance of the fit but is less effective than
other evolutionary models (see Salvaterra et al. (2012) for
example).

5.3 Metallicity Density Model (Type I-4)

Our attempts at fitting metallicity density evolution proved
to be unsuccessful, with our MCMC code unable to con-
verge on a unique solution, suggesting strong degeneracy be-
tween Z/Z� and other fitted parameters. We therefore chose
to set six metallicity thresholds and fit our data, covering
0.01 < Z/Z� < 0.6. We find that degeneracy exists between
the metallicity threshold, and all other fitted parameters,
with this degeneracy arising from the unique shape of Σ(z).
The functional form of Σ(z) can be crudely considered as
a linear rise in z connecting two plateaus at Σ(z) ≈ 0 and
Σ(z) ≈ 1. The metallicity density threshold acts to shift
Σ(z) in z, whereby a greater Z/Z� shifts the start of the
linear rise to lower-z. For Z/Z� = 0.01, this shift is strong
enough that the majority of Σ(z) is at the first plateau, re-
sulting in a significantly higher KGRB to compensate. As
Z/Z� increases, more of Σ(z) occupies the upper plateau
and KGRB tends towards values found for type I models
excluding metallicity density evolution. Further degeneracy
between Z/Z� and L0, α, and β arises when convolving
Σ(z) to the Swift detection profile, D(L, z). As the detec-
tion thresholds of the BAT and XRT effectively bisects the
L − z plane, changes to the size of the plateau that Σ(z)

produces is rotated onto the L dimension by D(L, z), and is
counterbalanced by variation of the LF parameters.

Despite the range of metallicity density thresholds fit-
ted, our type I-4 models produces broadly similar quality of
fits, with small variations as displayed by the χ2

r and Akaike
weights in Table 1. Across all Z/Z� in both the BPL and
PLEC we see a general improvement in the quality of fits as
compared to both the non-evolving type I-1 model and type
I-2 rate density model. The combined Akaike weights make
the type I-4 metallicity density model 153 times more likely
than the non-evolving type I-1 model and 70 times more
likely than the type I-2 rate density model whilst the evolv-
ing type I-3 LF break model is 3.7× 103 more likely. These
values strongly suggests that either the metallicity density
evolution is not a suitable explaination to the observed dis-
tribution of GRB pulses, or that assumptions made in the
derivation of Σ(z) are not entirely appropriate. The deriva-
tion for the metallicity density evolution by Langer & Nor-
man (2006) does not, for example, consider scatter in the
mass-metallicity relationship, redshift evolution of the faint
end of the SGMF, or the rate at which the average galactic
metallicity evolves with redshift.

Although the degeneracies of the metallicity density
prevents suitable convergence in the metallicity density
threshold, our results are broadly similar to studies utilis-
ing a GRB’s brightest pulse: Salvaterra et al. (2012) finds
that metallicity density evolution is more likely than rate
density evolution and less likely than evolution in the break
to minimise information loss, although to a much less sig-
nificant degree than we find; Qin et al. (2010) finds that a
GRB formation rate that is proportional to both CSFRD
and metallicity density (with Z/Z� = 0.1) only barely re-
produces the z distribution; whilst Virgili et al. (2011) finds
such models failed to reproduce observations to enough sig-
nificance to pass the author’s criteria.

5.4 Break Luminosity Evolution (Type I-3)

Evolution in the break, or cutoff, of the LF model is the most
common explaination to the observed evolution in the GRB
distribution. We find that the inclusion of break evolution
produces an evolutionary factor δ of 3.35+0.74

−0.74 and 2.92+0.54
−0.54

for the BPL and PLEC models with corresponding χ2
r val-

ues of 1.05 and 1.08. As seen in the top right panel of Figure
6 the evolution in the break acts to boost the GRB pulse
distribution at the extrema, significantly improving the fit
statistics. Combined Akaike weights, wi(AICC) of 0.196, for
the evolving LF break model shows that this model is 3×103

times more likely than type I-4 metallicity density models,
and 2.8 × 105 times more likely than type I-2 rate density
models to minimise information loss; luminosity evolution
in the GRB LF, excluding or including all secondary GRB
pulses, is preferred over all over forms of type I univari-
ate evolutionary models (Salvaterra & Chincarini 2007; Sal-
vaterra et al. 2012).

Our derived values for the LF break evolution param-
eter are consistent with GRB LF studies that utilise Swift
data (2.1 < δ < 3.5, Yonetoku et al. (2004); Campisi, Li
& Jakobsson (2010); Salvaterra et al. (2012); Petrosian, Ki-
tanidis & Kocevski (2015); Pescalli et al. (2015); Yu et al.
(2015)), whilst studies that incorporate BATSE data display
weaker luminosity evolution (1.0 < δ < 2.0. Lloyd-Ronning,
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Figure 6. The derived GRB pulse luminosity distribution for a PLEC LF (dashed contours) overlaying the observed pulse distribution,

binned to an arbritrary 1/4 dex in luminosity and 1/32 dex in redshift. The four models shown corresponds to: a type I-2 rate density
evolution model, incorporating an additional (z + 1)γ evolutionary factor (top left); a type I-3 break luminosity model evolving as

Lb = L0(z + 1)δ (top right), a type II bimodal GRB luminosity function consisting of separate high and low luminosity components
(bottom left); and a type III-2 GRB formation rate model with break luminosity evolution (bottom right). The upper (yellow) and lower
(red) dashed lines denote the detection thresholds of the BAT and XRT respectively.

Fryer & Ramirez-Ruiz (2002); Firmani et al. (2004); Ko-
cevski & Liang (2006); Salvaterra & Chincarini (2007); Sal-
vaterra et al. (2009)). The BPL and PLEC LF parame-
ters of α, β = [−0.70+0.06

−0.06,−1.69+0.56
−0.56] and L0 = [2.0 ×

1050, 1.5 × 1051] ergs s−1 are likewise in concordance with
those found in the literature, with shallower low-luminosity
gradients generally derived by studies that incorporate the
fainter bursts/pulses detectable by Swift.

5.5 Evolving LF and Rate Density (Type I-5)

We derive values of γ = 0.49+0.25
−0.25 for both LF model types

and δ = [3.26+0.72
−0.72, 2.83+0.55

−0.55] for the BPL and PLEC, with
a corresponding χ2

r of 1.00, and 1.04 respectively, with the

majority of this improvement is seen in the very high red-
shift bins. The derived evolutionary parameters are simi-
lar to those of type I-2, I-3 univariate models, and suggests
weak degeneracy between the rate density and break lumi-
nosity model parameters, with the evolution of the break
performing the lion’s share of log-likelihood optimisation.
The combined Akaike weights makes the type I-5 bivariate
evolving model more than 4 times as likely as the type I-3
evolving LF break model despite the additional evolutionary
parameters required. Although this suggests that a bivari-
ate evolution model is preferred over a univariate evolution
model, a model based solely on the evolution of the break
luminosity cannot be ruled out entirely.
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BPL Z/Z� KGRB γ L0 δ α β χ2
r wi(AICc)

[10−8 GRBsM−1
� ] [1052 ergs s−1]

I-1) - 1.18+0.10
−0.09 - 1.69+1.29

−0.73 - −0.79+0.04
−0.04 −1.91+2.04

−2.04 1.81 1.4× 10−7

I-2) - 0.67+0.28
−0.20 0.51+0.30

−0.30 1.70+1.22
−0.71 - −0.78+0.04

−0.04 −1.88+1.12
−1.12 1.78 2.6× 10−7

I-3) - 1.20+0.10
−0.09 - 0.02+0.05

−0.02 3.35+0.74
−0.74 −0.70+0.06

−0.06 −1.69+0.56
−0.56 1.05 0.0961

I-4) 0.01 653.0+66.7
−65.6 - 1.21+0.77

−0.47 - −0.75+0.06
−0.06 −1.69+0.23

−0.23 1.67 5.1× 10−6

0.1 14.3+1.2
−1.1 - 1.05+0.74

−0.43 - −0.75+0.06
−0.06 −1.59+0.22

−0.22 1.69 4.6× 10−6

0.2 4.91+0.43
−0.39 - 1.05+0.77

−0.45 - −0.75+0.06
−0.06 −1.55+0.27

−0.27 1.71 4.5× 10−6

0.3 2.87+0.25
−0.23 - 1.26+0.92

−0.53 - −0.76+0.05
−0.05 −1.60+0.43

−0.43 1.71 4.7× 10−6

0.4 2.07+0.18
−0.17 - 1.46+1.00

−0.60 - −0.77+0.04
−0.04 −1.70+0.48

−0.48 1.71 5.6× 10−6

0.5 1.67+0.15
−0.14 - 1.67+1.04

−0.64 - −0.77+0.04
−0.04 −1.83+0.55

−0.55 1.70 6.3× 10−6

0.6 1.47+0.13
−0.12 - 1.70+1.86

−0.89 - −0.77+0.04
−0.04 −1.89+4.33

−4.33 1.71 5.4× 10−6

I-5) - 0.69+0.24
−0.18 0.49+0.25

−0.25 0.02+0.06
−0.02 3.26+0.72

−0.72 −0.70+0.06
−0.06 −1.67+0.72

−0.72 1.00 0.3029

PLEC Z/Z� KGRB γ L0 δ α χ2
r wi(AICc)

[10−8 GRBsM−1
� ] [1052 ergs s−1]

I-1) - 1.13+0.10
−0.10 - 4.31+1.18

−0.92 - −0.75+0.05
−0.05 - 1.83 2.0× 10−7

I-2) - 0.65+0.25
−0.18 0.51+0.28

−0.28 4.55+1.32
−1.02 - −0.75+0.05

−0.05 - 1.78 4.8× 10−7

I-3) - 1.19+0.10
−0.10 - 0.15+0.12

−0.07 2.92+0.54
−0.54 −0.70+0.05

−0.05 - 1.08 0.0999

I-4) 0.01 642.4+58.7
−53.8 - 5.35+1.50

−1.17 - −0.76+0.05
−0.05 - 1.79 6.2× 10−7

0.1 13.9+1.3
−1.2 - 5.34+1.65

−1.26 - −0.76+0.05
−0.05 - 1.80 5.2× 10−7

0.2 4.77+0.44
−0.40 - 5.25+1.72

−1.29 - −0.76+0.05
−0.05 - 1.79 9.0× 10−7

0.3 2.76+0.26
−0.23 - 5.02+1.58

−1.20 - −0.75+0.05
−0.05 - 1.75 2.1× 10−6

0.4 1.98+0.18
−0.17 - 4.74+1.42

−1.09 - −0.75+0.05
−0.05 - 1.73 3.8× 10−6

0.5 1.62+0.15
−0.14 - 4.56+1.30

−1.01 - −0.74+0.05
−0.05 - 1.72 4.1× 10−6

0.6 1.42+0.13
−0.12 - 4.38+1.22

−0.95 - −0.74+0.05
−0.05 - 1.72 3.7× 10−6

I-5) - 0.68+0.23
−0.07 0.49+0.24

−0.24 0.17+0.14
−0.08 2.83+0.55

−0.55 −0.70+0.05
−0.05 - 1.04 0.5010

Table 1. Fitted results for Type I models, where the GRB pulse formation rate function, Ψ∗(z), incorporates a Cole CSFRD parameterised

by Kobayashi, Inoue & Inoue (2013). The best fit parameters for the BPL and PLEC LF models are shown for the scenarios of I-1)
where there is no extra evolutionary parameter (ι(z) = 1); I-2) there is evolution in the GRB formation rate (ι(z) ∝ (z+ 1)γ); I-3) there

is evolution in the break luminosity (Lbreak ∝ (z + 1)δ); I-4) there is present a metallicity density evolution (ι(z) = Σ(z) and Σ(z) =
Γ̂[0.84, (Z/Z�)2100.3z ]/Γ(0.84)) and; I-5) there is simultaneously evolution of the rate density and break luminosity (ι(z) ∝ (z + 1)γ

and Lbreak ∝ (z + 1)δ). The χ2
r values, and Akaike weights, wi(AICc), are derived from the bins shown in Figure 4, and are quoted as

a means of comparison rather than the means of fitting. A perfect fit is almost impossible due to the clumpy nature of the pulse data
coupled with the affect that uncertainties in the larger bins have on the likelihood.

5.6 Redshift, Luminosity, and Flux Cuts

In all single population GRB pulse models the residuals of
fitted GRB luminosity functions are greatest at the extrema
of the GRB pulse L− z distribution:

• non-evolving models underestimate the population of high-
z, high-L pulses, whilst overestimating that of low-z, low-L
pulses;
• rate density models overestimate the population of high-z,
high-L pulses, whilst underestimating that of low-z, low-L
pulses;
• both models that incorporate break luminosity overesti-
mate the high-z, high-L GRB pulse populations but are con-
sistent with their large associated uncertainties, contributing
little to the log-likelihood function.

Discrepencies at the extrema may be due to parent GRBs
that are significantly different from the bulk population, ei-

ther through a separate GRB progenitor type (Pop III stars
for high-z, high-L GRBs) or a via a more complex GRB
luminosity function (LL & HL GRBs). Cutting away GRB
pulses that lie in the extrema of the redshift, or luminosity
distributions may produce noticible changes in fitted param-
eters, suggestive of LGRB sub-populations. We find, how-
ever, that performing successive cuts in the data for the
type I-5 PLEC LF model (see Figure 7) of the high/low
regions (filled/empty circles) of the z, or L distributions
(black/green data) produces weak variations in the fitted
parameters, which becomes more pronounced as the sam-
ple size decreases. Such variations in the fitted parameters
are, however, small with good overlap of the 1σ confidence
intervals. Whilst this suggests that the low-z/high-z, and
low-L/high-L GRB pulses are part of a single population
rather than belonging to unique sub-populations, we cannot
rule out the possibility that the latter is true.
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Figure 7. Fitted MCMC parameters of a fully evolving type I-5

PLEC LF model with successive redshift cuts (black axis), bolo-

metric rest-frame luminosity cuts (green axis), or observer-frame
integrated peak flux cuts (blue axis) to the GRB pulse data. Filled

and empty circles denote the upper and lower cutoffs respectively

for that particular dataset with 1σ uncertainties. Overlaid are the
median redshift, luminosities, and fluxes of the pulse data (dashed

lines).

It is common in the data selection phase of GRB lumi-
nosity studies to apply a flux cut to the data, with authors
arguing that the brightest GRBs in the observer-frame suf-
fer the least from detection bias, and as such are more rep-
resentative of the true population of GRBs. The study by
Salvaterra et al. 2012, for example, utilises a flux cut of
P15−150keV = 2.6 photons s−1 cm−2 in the observer frame,
equating to an integrated flux of F15−150keV ≈ 1.21 × 10−5

ergs s−1 cm−2 for a PLEC spectrum with α = −1.57,
Ec = 183 keV. The inclusion of a high flux limit has led to
suggestions that the observed evolution seen in such studies
arise from a flux threshold selection effect rather than being
an intrinsic property of the GRB luminosity function (How-
ell & Coward 2013). To this end, we vary the flux selection
threshold on our GRB pulse data and re-run our MCMCs
to refit the data. We find some variation in the GRB pulse
luminosity fit parameters (Figure 7, blue data) however such

variation, like those of the redshift and luminosity thresh-
olds, are consistent with the intrinsic uncertainties of the
model fit parameters. Whilst the direction of the rate evolu-
tion parameter, γ, varies in direction such that it is not con-
crete that such evolution is real, the evolution in the break
luminosity is strong and sees little variation when applying
various data cuts.

6 THE TYPE II GRB MODEL

To reduce the dimensionality of the bimodal LL & HL GRB
LF model, we fix the indexes of the two populations at the
values derived for a Type I-1, non-evolving single population
GRB LF, such that α = αHL = αLL (or β = βHL = βLL).
We find little variation between the HL LF parameters and
the single population Type I-1 LF parameters, unsurpris-
ing given the bulk of the GRB pulse population lies within
the regime of HL GRBs. We find a local HL GRB forma-
tion rate density, ρHL0 of 0.22+0.02

−0.02, 0.21+0.01
−0.02 GRBs Gpc−3

yr−1 for the PLEC and BPL LFs respectively, compared to
the 0.09 < ρHL0 < 1.2 GRBs Gpc−3 yr−1 range found by
Liang et al. (2007); Virgili, Liang & Zhang (2009); Howell &
Coward (2013) for their high luminosity GRBs. The inclu-
sion of a secondary LL LF marginally improves the fitting of
the observed L− z GRB pulse distribution (see bottom left
panel, Figure 6), reducing the χ2

r contribution of the low-L,
low-z bins at the expense of twice the number of input pa-
rameters. The secondary LL GRB pulse LF shows a break
at LLL0 = 7.21× 1046, 1.10× 1047 ergs s−1 for the BPL and
PLEC LF models respectively, with a local GRB formation
rate density of ρLL0 = 0.09, 0.21 GRBs Gpc−3 yr−1.

The ratio of low/high-luminosity GRB formation rate
densities found in this paper are approximately at unity,
compared to the ratios of 50 − 200 found in favour of LL
GRBs (Liang et al. 2007; Virgili, Liang & Zhang 2009; How-
ell & Coward 2013); varying the limits of normalisation of
the LFs has a small effect on the derived KGRB efficiencies
and is not a solution to the discrepency. Despite a sample of
72 GRB pulses, we are unable to constrain uncertainties in
the fitted parameters. Although reproducing the observed
L− z GRB pulse distribution, the overall combined Akaike
weights for the Type II models (wi(AICC) = 0.1332), versus
the non-evolving Type I-1 LF models (wi(AICC) = 0.8668)
strongly suggests that a single, non-evolving population of
GRB pulses is a better representation of the L − z distri-
bution and is not a suitable explanation to the observed
evolution of the break luminosity. We do not rule out that
LL GRB pulses are a separate subgroup, however our data
does suggest that it is highly unlikely.

7 THE TYPE III GRB MODELS

7.1 No Evolution Model (Type III-1)

We find that our fit utilising the Type III-1 GRB forma-
tion rate model, with χ2

r values of 2.14, and 2.13, produces
a strong rise in GRB pulse formation rates from the current
epoch, plateauing at z = 1.5, before decaying strongly away
at z = 2.6. This follows a similar shape as the CSFRD and
produces similar L0, α, and β values as the equivalent Type
I/II models fitted in Section 5, and 6. On initial inspection
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BPL Type I-1 Type II

KHL
GRB 1.18+0.10

−0.09 × 10−8 1.18+0.10
−0.09 × 10−8

LHL0 1.69+1.29
−0.73 × 1052 1.70+0.40

−0.32 × 1052

αHL −0.79+0.04
−0.04 −0.79

βHL −1.94+2.04
−2.04 −1.94

KLL
GRB - 0.50× 10−8

LLL0 - 7.21× 1046

αLL - −0.79

βLL - −1.94

χ2
r 1.81 1.91
wi(AICC) 0.3587 0.0088

PLEC Type I-1 Type II

KHL
GRB 1.13+0.10

−0.10 × 10−8 1.12+0.10
−0.09 × 10−8

LHL0 4.31+1.18
−0.92 × 1052 4.23+0.85

−0.71 × 1052

αHL −0.75+0.05
−0.05 −0.75

KLL
GRB - 1.11× 10−8

LLL0 - 1.10× 1047

αLL - −0.75
χ2
r 1.83 1.85

wi(AICC) 0.5081 0.1244

Table 2. The fitted Type I-1, non-evolving model GRB LF for a

single population of GRBs (Table 1) and a Type II, bimodal popu-
lation of high-luminosity (L > 1050 ergs s−1) and low-luminosity

(L < 1050 ergs s−1) GRBs. KGRB is given in units of GRBs M−1
�

and L0 is in units of ergs s−1. Uncertainties in α and β for the
bimodal population are not given as these parameters were fixed

beforehand. The fitted LL GRB LF parameters are quoted with-

out associated errors as they are unconstrained. The χ2
r values,

and Akaike weights, wi(AICc), are derived from the bins shown

in Figure 4.

the Type III-1 models perform less well in fitting, as it re-
quires more than twice the number of model parameters to
achieve similar likelihoods, and suffers from the same inabil-
ity to reproduce GRB pulse formation rates at the extrema
of the L−z pulse distribution as that of extra rate evolution
for Type I-2 models. Whilst this would lead to one assum-
ing that a phemonenological model is better than an em-
pirical one, it is important to note that the CSFRD models
have significant uncertainties which are almost universally
ignored when propagating errors, creating a false impression
of greater quality; it is for this reason that we do not cast
any favourable opinion on Type I over Type III models. The
combined Akaike weight of AICc = 5.61×10−6 for both non-
evolving type III-1 LF models reinforces the conclusion that
evolution in the break luminosity are required to reproduce
the observed pulse L − z distribution. This becomes more
clear when looking at the probability, and cumulative den-
sity functions (Figure 8); the dashed lines, corresponding
to a non-evolving type III-1 model produces a CDF that
fails to reproduce the clear luminosity evolution seen across
the three redshift bins, with distinct underestimation of the
luminosities of high-z pulses, and overestimation of the lu-
minosities of low-z pulses.

Our pulse luminosity function is consistent with other
studies that fit a triple power-law to the GRB formation
rate. Although we utilise all pulses within a GRB lightcurve
and our redshift breaks in the GRB formation rate dif-
fer, we find good agreement with the low-redshift, and
high-redshift indexes of Butler, Bloom & Poznanski (2010)

BPL Type III-1 Type III-2

a1 2.69+0.45
−0.45 2.48+0.90

−0.90

z1 1.5 1.5

a2 0.08+0.33
−0.33 0.23+0.51

−0.51

z2 2.6 2.6

a3 −1.83+1.01
−1.01 −1.97+1.43

−1.43

ρ0 7.02+3.94
−2.52 × 10−2 8.29+8.13

−4.10 × 10−2

L0 1.71+0.52
−0.39 × 1052 0.15+0.20

−0.09 × 1052

δ - 2.04+0.45
−0.45

α −0.72+0.12
−0.12 −0.69+0.09

−0.09

β −1.79+0.22
−0.22 −1.88+0.25

−0.25

χ2
r 2.14 1.43

wi(AICC) 1.1× 10−7 0.0415

PLEC Type III-1 Type III-2

a1 2.23+1.32
−1.32 2.39+1.25

−1.25

z1 1.5 1.5

a2 0.73+0.38
−0.38 0.85+0.44

−0.44

z2 2.6 2.6

a3 −2.20+0.95
−0.95 −2.27+0.82

−0.82

ρ0 7.98+15.19
−5.23 × 10−2 7.42+14.06

−4.86 × 10−2

L0 4.02+1.25
−0.96 × 1052 0.36+0.48

−0.21 × 1052

δ - 2.06+0.70
−0.70

α −0.71+0.07
−0.07 −0.66+0.06

−0.06

χ2
r 2.13 1.42
wi(AICC) 5.5× 10−6 0.9585

Table 3. The fitted parameters for the Type III GRB LF models
using a triple broken power-law function that is directly fitted to

the GRB formation rate, either excluding (Type III-1) or includ-

ing (Type III-2) evolution of the LF break. a1, a2, and a3 are
the gradients of the three power-laws; z1, and z2 are the redshift

breaks, set at the bin edges discussed in Section 4.1; and ρ0 is

the GRB formation rate density at redshift z = 0. L0 is given in
units of ergs s−1, and ρ0 in units of GRBs Gpc−3 yr−1.

(BBP), and Wanderman & Piran (2010) (WP). We derive
an α1, and α3 of 2.69+0.45

−0.45, −1.83+1.01
−1.01 respectively, com-

pared to: 3.35+0.74
−0.74, −2.51+1.60

−2.25 (BBP); and 3.1+0.7
−0.7, −2.9+1.6

−2.4

(WP) for their models that include GRBs with known red-
shifts. The intermediate-redshift indexes, α2, derived by
those studies (1.32+0.58

−0.58, BBP; and 1.4+0.6
−0.6, WP) are sig-

nificantly stronger than the 0.08+0.33
−0.33 we find, and can be

explained by the difference in position of the first redshift
break those authors utilise, who, like ourselves, do not set
as a free parameter in their fitting.

Our luminosity functions produce a stronger low-
luminosity index than these studies, possibly due to the large
number of low-luminosity BAT and XRT pulses we incorpo-
rate, with α = −0.72+0.12

−0.12 compared to −0.27+0.19
−0.19 (BBP),

and 0.22+0.18
−0.31 (WP). Our low-luminosity index is however

consistent both with our Type I and Type II models, and
other studies that utilise a CSFRD. The high-luminosity in-
dex, β, derived by Butler, Bloom & Poznanski (2010) at
−3.46+1.53

−1.53 is significantly stronger than our own derived re-
sults of −1.79+0.22

−0.22; however our results are consistent with
−1.4+0.3

−0.6 of Wanderman & Piran (2010) and is most likely
due to both our studies utilising peak luminosities rather
than the time-averaged luminosities used by Butler, Bloom
& Poznanski (2010). The break luminosity, L0, derived in

this paper at 1052.23+0.12
−0.12 ergs s−1 is lower than either stud-
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Figure 8. The observed, and derived GRB pulse probability densities (top) for the three redshift bins, and the equivalent cumulative

probability densities (bottom) for a type III GRB pulse formation models with a broken power-law LPDF. Black data, and lines correspond

to the 0.125 < z 6 1.505 whilst red, and blue data correspond to the 1.51 < z 6 2.6 and 2.612 < z 6 9.4 bins respectively. The solid lines
denote the type III-2 model with an additional (z + 1)δ evolution in the break of the LPDF, whilst the dashed line is a non-evolving

type III-1 model. The turn-off at low luminosities is due to the convolution to the Swift detection profile.
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ies finds and is consistent with 1052.5+0.2
−0.2 ergs s−1 (WP) but

not with 1052.95+0.31
−0.31 (BBP).

7.2 Break Luminosity Evolution (Type III-2)

Like the Type I-3 model, inclusion of evolution in the break
of the luminosity function significantly improves the quality
of fits (χ2

r = 1.43, 1.42 for the BPL, and PLEC respectively),
with improvement at the high-L, high-z extrema of the pulse
L − z distribution (bottom right panel, Figure 6). With a
combined Akaike weight of wi(AICC) ∼ 1 for the BPL, and
PLEC models, the evolving Type III-2 luminosity functions
are 1.7× 105 times more likely than the non-evolving Type
III-1 models to reproduce the observed pulse distribution. As
shown in Figure 8, the CDF for a BPL LPDF model with
break luminosity evolution is able to reproduce the observed
CDFs for all redshift bins, within 1σ uncertainties. The evo-
lutionary index of the break luminosity, at δ = 2.04+0.45

−0.45,
and 2.06+0.7

−0.7 for the BPL, and PLEC models is weaker than
that found using the fully evolving Type I-5 model but re-
mains consistent with other Swift studies (see Section 5.4 for
references).

8 LGRBS AND THE CSFRD

The fitted GRB formation rate densities for Type I-5 and
Type III-1 models derived in this paper are shown in Fig-
ure 9 overlain with observed cosmic star formation rate
densities, the parameterised CSFRD model of Hopkins &
Beacom (2006), and GRB formation rate models of Sal-
vaterra et al. (2012); Butler, Bloom & Poznanski (2010);
Wanderman & Piran (2010). Normalised to the CSFRD, our
Type I-5 (including rate and luminosity evolution) and Type
III-1 models trace the observed CSFRD well, especially at
low/intermediate redshifts (z < 5), with up to a factor 2
deviation between derived high-z (z > 5) pulse rates and
cosmic star formation rates for the Type III-1 model; sug-
gestive of a redshift break at an earlier epoch than that
which was assumed.

The parameterised model of Hopkins & Beacom (2006),
common in the GRB literature as a model for CSFRD, traces
the CSRFD at low redshifts, with noticible drop-off at high-
redshifts. Assuming that the GRB formation rate follows the
CSFRD only, requires the addition of GRB formation rate
evolution to the Type I-1 models to boost high-z GRB for-
mation rates. This addition may, however, suggest that the
parameterised CSFRD models are incorrect at high-z rather
than implying the rate of GRB formation was greater at ear-
lier epochs. Comparing the performance of our rate density
evolving Type I-2 model, and the CSFRD as parameterised
by Hopkins & Beacom (2006) to the observed CSFRD shows
that our Type I-2 model with rate density produces a log-
likelihood of 106.67 compared to a log-likelihood of −17.78
for Hopkins & Beacom (2006). The corresponding Akaike
weights for the Type I-2 model is ∼ 1.09, indicating that the

9 The log-likelihood for the Type I-2 model is calculated after
the unknown conversion factor from GRB formation rate density

to CSFRD is accounted for, and as such the comparison is with
regards to the shape of the CSFRD.

GRB formation rate evolution seen is not real but is, instead,
an artifact of utilising inappropriate CSFRD models. Utilis-
ing GRB formation rates as a probe to high-z star-formation
is therefore highly speculative: conversion from GRB forma-
tion rates to star-formation rates are often cyclical; a star-
formation rate and GRB evolution rate are assumed in order
to derive a GRB formation rate, with which a star-formation
rate is derived (Kistler et al. 2008; Robertson & Ellis 2012);
as such, careful consideration is required when attempting
to derive CSFRD models using high-z burst rates.

8.1 The Local GRB Formation rate

The GRB formation efficiency parameter, in combination
with the star formation rate density at z = 0, produces the
local GRB formation rate density, ρ0. For the Type I mod-
els excluding rate density or metallicity density evolution
(I-1, I-3), the formation efficiency, KGRB , was derived to be
KGRB = 1.18+0.10

−0.10 × 10−8 GRBs M−1
� , in good agreement

to the values of 1.07 ± 0.11 × 10−8 and 1.05 ± 0.05 × 10−8

GRBs M−1
� (Salvaterra & Chincarini 2007; Salvaterra et al.

2009). This equates to a local formation rate density of
ρ0 = 0.22+0.02

−0.02 GRBs Gpc−3 yr−1; for models including rate
density (I-2, I-4) this drops to ρ0 = 0.12+0.05

−0.04 GRBs Gpc−3

yr−1. For the Type III models, the local GRB formation rate
is one of the model parameters, and for a non-evolving BPL
LF model this produces a ρ0 of 0.07+0.04

−0.03 GRBs Gpc−3 yr−1,
increasing to 0.083+0.08

−0.04 GRBs Gpc−3 yr−1 for a Type III-2
evolving BPL LF model. These values are towards the lower
end of the distribution of values found in the literature for
models excluding jet-beaming (0.03 < ρ0 < 7.3 GRBsGpc−3

yr−1 Porciani & Madau (2001); Schmidt (2001); Guetta, Pi-
ran & Waxman (2005); Wanderman & Piran (2010); Cao
et al. (2011); Salvaterra et al. (2012); Yu et al. (2015)).

9 CONCLUSIONS

The lightcurves of Gamma-ray bursts exhibit wide variation
in temporal fluctuations with some showing single, bright
FRED-like profiles whilst others have multiple peaks, of-
ten with significant overlap. Utilising a physically moti-
vated model (Willingale et al. 2010) that considers the entire
prompt, and late-time emission as a series of pulses and/or
flares with corresponding emission spectra modelled by a
power-law with exponential cutoff, and in most cases an af-
terglow component, we fit 118 LGRBs covering the period
from 26/01/05 - 03/05/11. This produced 607 GRB pulses
spanning 1046 < L < 1054 ergs s−1 in bolometric luminosity,
with known redshifts up to z ∼ 10.

Traditionally, the brightest pulse of a GRB with known
redshift is used as the defining luminosity of the burst. Such
pulses however do not exhibit any other unique quality: they
are often not the first pulse to trigger the BAT, nor do they
solely occur within the prompt emission; they do not possess
the hardest spectrum within a lightcurve, nor do they see the
greatest hard-to-soft evolution of said spectrum; even their
brightness is, in some cases, hardly unique as some bursts
contain multiple pulses of comparable brightness. A great
deal of information is therefore lost when utilising solely
the brightest pulses, compounding the difficulties in popu-
lation analysis for a relatively rare phenomena which, un-
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Figure 9. Observed cosmic star formation rate densities normalised to the results collated by Hopkins & Beacom (2006) (solid black
line best fit) with data from Bouwens et al. (2003) (magenta squares), Hopkins & Beacom (2006) (black crosses), Baldry et al. (2005)

(yellow squares), Pérez-González et al. (2005) (blue circles), Bouwens et al. (2007) (cyan circles), Bouwens et al. (2008) (blue crosses),

Rujopakarn et al. (2010) (green diamonds), Zheng et al. (2012) (black pentagons), Coe et al. (2013) (green squares), Oesch et al. (2013)
(yellow diamonds), and Ellis et al. (2013) (red circles). Overplotted for comparison are the derived GRB formation rate densities using the

rate evolution GRB LF models (top panel) of Salvaterra et al. (2012) (equivalent to a Type I-2 model; PLEC LF, blue line), and the rate

& break luminosity evolution model derived in this work (Type I-5 model; PLEC LF, red line); and the direct GRB formation rate fitted
LF models (bottom panel), equivalent to a Type III-1 model, of Butler, Bloom & Poznanski (2010) (yellow line), Wanderman & Piran

(2010) (blue line), and the non-evolving Type III-1 model of this work (BPL LF, red line). Shaded regions denote 1σ uncertainties. All

GRB formation rates are are normalised to the observed star formation rates by maximising a minus log-likelihood function, producing
normalisation constants, in units of M� GRB−1, of 6.56 × 109 (Salvaterra et al. 2012), and 0.17 × 109 (this work, Type I-5 PLEC LF

model with rate & break luminosity evolution); and 2.74 × 109 (Butler, Bloom & Poznanski 2010), 1.34 × 107 (Wanderman & Piran
2010), and 2.53× 108 (this work, Type III-1 BPL LF model).
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til recently, was sparcely populated. We therefore choose to
compute the GRB pulse luminosity function, of which the
traditional GRB luminosity function can be considered as ei-
ther a high-luminosity, or high-flux sub-population. We con-
volve a GRB pulse luminosity probability density function
to a GRB formation rate model using three of the most pop-
ular GRB LF theories in the literature: Type I models that
traces the cosmic star formation rate, convolved with vari-
ous evolutionary effects such as break luminosity (I-3), rate
density (I-2) and metallicity density evolution (I-4); Type II
models that are bimodal in nature, allowing for distinct pop-
ulations of low-luminosity and high-luminosity GRB pulses;
and Type III models that are fitted directly to the GRB for-
mation rate. We consider both PLEC, and BPL luminosity
probability density functions, popular within the GRB lit-
erature, as they consistently produce similar quality of fits
and as such neither model is preferred in our conclusions.

We find that the inclusion of rate, and metallicity den-
sity evolution, which are popular solutions to the issue of
underprediction in the GRB formation rate of high-z bursts,
produces marginal improvement in our models however,
when compared to other solutions, are entirely inadequate
in explaining the observed evolution of GRB pulse luminosi-
ties. The derived GRB formation rate, either incorporating
rate density evolution as a Type I-2 model, or as a Type III-1
model, traces the CSFRD up to high-z and suggests that the
parameterisation of CSFRD models is poor at high redshift,
rather than indicating an intrinsic evolution in the GRB for-
mation rate on top of the CSFRD. We find that within Type
I or Type III models, evolution in the break of the LPDF, as
a function of (z+ 1)δ, is essential to reproduce the observed
L − z GRB pulse distribution, with δ exhibiting a strong
(> 2), positive evolution, consistent with studies that utilise
the single brightest GRB pulses. We evaluated the possibil-
ity that this evolution in the break luminosity was down to
the presence of a bimodal population of low/high luminosity
GRB pulses, however our results suggest that a single pop-
ulation of GRBs extending from the closest, least luminous
to the brightest, and furthest GRBs is preferred. We observe
that Type III models consistently produce poorer fits to the
data than their Type I counterparts, however we conclude
that this is an artifact of assuming that components of the
Type I progenitor models are known with absolute preci-
sion, which is not the case for the CSFRD. To this end we
do not attempt to conclude as to the effacy of one method
over another.

We conclude that treating each GRB pulse as an inde-
pendent event and utilising the entire GRB pulse popula-
tion in GRB LF models produces parameters in excellent
agreement to those derived using the single brightest pulse
within a GRB’s lightcurve; it is clear that there is no ad-
vantage to using solely the brightest GRB pulse as using all
GRB pulses can dramatically improve the statistics of GRB
luminosity functions, and may be extended to investigating
the properties of other intrinsic GRB relationships. Whilst
in reality each pulse cannot be truly independent from an-
other as they are powered from a single central engine, the
relationship between bright, and faint; late, and early pulses
is non-trivial.
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Mészáros P., 2006, Reports on Progress in Physics, 69, 2259

Natarajan P., Albanna B., Hjorth J., Ramirez-Ruiz E.,
Tanvir N., Wijers R., 2005, MNRAS, 364, L8

Norris J. P., Bonnell J. T., 2006, ApJ, 643, 266

Norris J. P., Bonnell J. T., Kazanas D., Scargle J. D.,
Hakkila J., Giblin T. W., 2005, ApJ, 627, 324

Norris J. P., Marani G. F., Bonnell J. T., 2000, ApJ, 534,
248

Oesch P. A. et al., 2013, ApJ, 773, 75
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