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Abstract

In this paper, we explore the quantum spacetimes that are potentially connected with the

generalized uncertainty principles. By analyzing the gravity-induced quantum interference

pattern and the Gedanken for weighting photon, we find that the generalized uncertainty

principles inspire the effective Newton constant as same as our previous proposal. A char-

acteristic momentum associated with the tidal effect is suggested, which incorporates the

quantum effect with the geometric nature of gravity. When the simplest generalized uncer-

tainty principle is considered, the minimal model of the regular black holes is reproduced by

the effective Newton constant. The black hole’s tunneling probability, accurate to the second

order correction, is carefully analyzed. We find that the tunneling probability is regularized

by the size of the black hole remnant. Moreover, the black hole remnant is the final state

of a tunneling process that the probability is minimized. A theory of modified gravity is

suggested, by substituting the effective Newton constant into the Hilbert-Einstein action.

Keywords: generalized uncertainty principle, effective Newton constant, characteristic

momentum, regular black hole, quantum tunneling, WKB approximation.
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1 Introduction

On the ground of dimensional analysis[1], the Planck length is defined as ℓp ≡
√
h̄G/c3, where

c is the speed of light, G Newton constant, and h̄ Planck constant. This unit of length should

appear in any theory reconciling general relativity and quantum theory. It is generally believed

that ℓp is the shortest measurable length, and quantum gravity effects( or quantum fluctuations

in spacetimes) become crucial to understanding the physics on this length scale. As a classical

theory, general relativity involves only c and G, and the minimal length cannot be predicted

naturally by the theory itself. There are some problems are somewhat related to the defect that

the Planck length is absent in the classical spacetimes.

One of problems is the spacetime singularity[2]. Following from Penrose and Hawking’s

theorems, the spacetime singularity is inevitable in the framework of classical general relativity.

In a certain extent, the singularity is characterized by the divergence of Kretschmann scalars

(K2 = RρλµνR
ρλµν). For a Schwarzschild black hole, K2 ∼M2/r6 become divergent, as r → 0.

Another problem is the fate of black hole evaporation[3]. In the case of Hawking’s tem-

perature expression( TH ∼ M−1), the negative capacity( C ∼ −M−2) makes the black hole

evaporation faster and faster. Both the temperature and the mass loss rate( Ṁ ∼ −M−2)

become divergent, if the black hole vanishes.

The third problem is related to the tunneling picture of the black hole radiation[4, 5, 6, 7,

8, 9]. The tunneling probability accurate to the first order correction becomes explosive[7, 9], if

the final size of the black hole is allowed to be arbitrary small. When the second order correction

to the tunneling probability is considered, the situation becomes worse[9]. We are confronted

with an unacceptable picture that a black hole of any mass could vanish in an instant. This

difficulty is associated with the absence of the minimal length, and then it is not necessarily

overcome by improving the WKB method.

These problems are expected to be solvable at the presence of quantum gravity effects. The

generalized uncertainty principle(GUP[10]), as one of methods of quantum gravity phenomenol-

ogy, has been applied to the black hole thermodynamics in some heuristic manners[11, 12, 13].

GUP imposes a lower bound on the size of the black hole, and modifies the black hole’s thermo-

dynamics. However, it is hard to understand that the temperature approaches a value of order

of Planck temperature, while the heat capacity of the minimal black hole vanishes. In other

words, GUP predicts the existence of black hole remnant, but the temperature puzzle has not

been solved completely.
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This dilemma may be associated with such a working hypothesis in the literature that the

matter is dominated by GUP, while the spacetimes are classical. This hypothesis can be named

as the GUP-revised semiclassical theory. However, the corrections to classical spacetimes should

be considered seriously, especially on the Planck scale. After all, a spacetime dominated by

quantum gravity effects may be essentially different from the classical and smooth background.

The quantum spacetime should reflect the existence of the minimal length, when the GUP is

considered in an appropriate manner.

Some regular black holes with finite Kretschmann scalars have been suggested in the

literature[14, 15, 16, 17, 18, 19, 20, 21, 22], and they give rise to the zero temperature remnants.

As a tentative attempt, we suggest a regular black hole which is connected with the GUP by an

effective Newton constant[19]. This suggestion is based on an observation upon the role that the

GUP plays in the relation between the gravitational acceleration and Newton potential, in the

context of operators. The effective Newton constant is motivated by substituting the GUP for

Heisenberg commutator. However, this direct substitution of commutators is in the shortage of a

clear physical picture. Moreover, it not consistent with the GUP-modified Hamiton equation[23],

and its reliability should be checked by other methods. We expect that the effective Newton

constant can be inspired by the GUP in some concrete physical processes. Another limitation of

our previous work is that the simplest GUP(as presented in the next section) doesn’t give rise

to a regular black hole, although it means the existence of the minimal length. This shortage

is related to such a characteristic momentum as ∆p ∼ h̄/r. Although this momentum scale is

motivated by Heisenberg’s principle, it is irrelevant to the quantum fluctuations in spacetime,

because it doesn’t involve the Newton constant and the mass of source of gravitational field.

The aim of this paper is to gain a better understanding of the GUP-inspired effective

Newton constant and quantum spacetimes, at the level of quantum gravity phenomenology.

Firstly, the effective Newton constant inspired by the GUP will be reexamined in two Gedankens

involving gravitation and quantum theory, i.e. COW phase shift and Einstein-Bohr’s box.

Secondly, the momentum scale will be reconsidered. In our opinion, an appropriate scale should

reflect the amplitudes of the quantum fluctuations in the curved spacetime, and may be related

to the geometric character of gravity. It would be different from that suggested in Ref.[19].

Thirdly, we will consider a regular black hole, which is inspired by the simplest GUP, i.e.

the most popular version. Finally, quantum radiation from this black hole will be discussed

seriously in this work. For a mini black hole, the temperature may lose its usual meaning in the

thermodynamics. It is more reasonable to consider the quantum tunneling from this black hole.
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We are interested in the role that the minimal length plays in the tunneling process, and in the

question of whether the explosion of tunneling probability occurs in the quantum spacetime.

2 Effective Newton constant inspired by the generalized uncer-

tainty principles

Based on some theoretical considerations and gedanken experiments for incorporating gravita-

tion with quantum theory, Heisenberg’s uncertainty principle is likely to suffer a modification

as follows[10]

∆x ∼ h̄

∆p
+
αℓ2

p

h̄
∆p, (1)

Where α is a dimensionless number of order of unity. Since GUP means the minimal length of

order of ℓp, it should be crucial for the Planck scale physics. Corresponding to (1), Heisenberg’s

commutator is extended to[26, 27]

[x̂, p̂] = ih̄

(
1 +

αℓ2
p

h̄2
p̂2
)
, (2)

which will be considered seriously in this paper. However, there are some other types of the

generalized uncertainty principles[24][25], and the commutation relations are not necessarily the

same as (2). So we begin with a more general commutator as follows[19]

[x̂, p̂] = ih̄z, (3)

where z = z(p̂) is a function of momentum. The average value of z, should ensure a lower bound

on the measurable distance,

∆x ≥ zh̄

∆p
≥ ℓp, (4)

which suggests the discreteness of the spacetime[28]. Considering the relation between Heisen-

berg’s principle and the wave-particle duality, let us derive the modified de-Broglie formula from

the generalized commutator (3).

2.1 Modified wave-particle duality

It is well known that the proposal of uncertainty principle is closely related to the wave par-

ticle duality. Uncertainty relation can be derived from de Broglie formula, by analyzing the

Heisenberg’s microscope gedanken experiment or the single slit diffraction of light. However,
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once the framework of quantum mechanics is established and Heisenberg’s uncertainty relation

is regarded as a fundamental principle, de Broglie formula becomes a deduction[29]. Concretely

speaking, the momentum eigenstate ψp = exp(ipx/h̄) can be derived from the canonical com-

mutation relation [x̂, p̂] = ih̄, and de Broglie formula is obtained by comparing the momentum

eigenstate with a plane wave function exp(2πix/λ). It is expectable that de Broglie formula

should suffer a modification, when the Heisenberg’s commutator is changed. Corresponding to

the generalized commutator (2), the modified de Broglie relation is given by[26, 27]

λ =
2πℓp

√
α

arctan(ℓp
√
αp/h̄)

. (5)

It is easy to check that Eq.(5) satisfies the following relation

d

dp

(
2π

λ

)
= h̄−1

(
1 +

αℓ2
p

h̄2
p2
)−1

. (6)

As argued in the following, a more general formula associated with the commutator (3) is given

by

d

dp

(
2π

λ

)
= h̄−1z−1. (7)

In order to explain this formula, we first construct a commutator as follows

[x̂, k̂] = i, (8)

where k̂ = k(p̂) is a function of momentum operator. Following from the law of operator algebra,

we obtain

[x̂, p̂] = [x̂, k]
dp̂

dk
= i

dp̂

dk
. (9)

Comparing (3) with (9), we have

dk

dp̂
= h̄−1z−1,

and then

k(p̂) = h̄−1
∫
z−1dp̂. (10)

Obviously, [p̂, k(p̂)] = 0, this means that there is a common eigenstate ψp of eigenvalue p, which

satisfies

p̂ψp = pψp,

k(p̂)ψp = k(p)ψp, (11)
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where

k(p) = h̄−1
∫
z−1(p)dp, (12)

is the eigenvalue of the operator k(p̂). Since [x̂, p̂] 6= ih̄, the momentum operator is no longer

represented by p̂ = −ih̄∇. However, comparing (8) with Heisenberg’s commutator, we obtain

k̂ = −i∇. For one dimensional case, the second equation of (11) becomes

−idψp

dx
= k(p)ψp. (13)

So the momentum eigenstate is given by

ψp = exp(ikx), (14)

which describes a plane wave of wavelength λ = 2π/k. Thus k(p̂) introduced in (8) can be

viewed as the wave-vector operator, and (12) is just the wave-number. The modified wave-

particle duality is characterized by (7) or (12), which is the basis for the following discussions.

2.2 COW phase shift

In 1975, Colella, Overhauser, and Werner(COW) observed the gravity-induced quantum inter-

ference pattern of two neutron beams[30]. When the plane of two beams is vertical to the

horizontal plane, the phase shift is given by[31, 32]

∆ϕ =
mgA

h̄v
, (15)

where g denotes the earth’s gravitational acceleration, v the average speed of neutrons, and A

the area enclosed by two interfering neutron beams that propagate on two paths on a plane.

This famous experiment may be regarded as a test of the property of gravity in the micro-

scopic world[33]. It is naturally expected to shed light on the quantum structure of spacetime,

by attaching the GUP’s significance to the gravity-induced phase shift. In the following dis-

cussions, COW experiment will be revisited in a heuristic manner[32]. Let us consider two

interfering neutron beams. For simplicity, the plane of two beams is set to be vertical to the

horizontal plane. The first (upper) beam propagates on a horizontal path and a vertical down-

ward path in sequence. The second (lower) beam propagates on a vertical downward path and a

horizontal path in sequence. The area enclosed by two beams is A = yl, where l is the length of

each horizontal path, and y is the height of the upper horizontal path with respect to the lower

horizontal one. It is shown by simple analysis that the change in the phase of one vertical beam
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cancel out that of another vertical beam, and then the phase shift is completely attributed to

the gravity-induced difference in the wavelength of two horizontal beams,

∆ϕ′ = 2π

(
l

λ2
− l

λ1

)

= l(k2 − k1)

= l∆k = l
∆k

∆p
∆p, (16)

where ∆p = p2− p1 is the difference in momentum of two horizontal beams. Since ∆p is a small

quantity, Eq.(16) can be expressed as

∆ϕ′ ≈ l
dk

dp
∆p

= h̄−1z−1l∆p, (17)

where Eq.(7) has been considered. The neutron beams propagate in the earth’s gravitational

field, and obey energy conservation law, so we have

mgy =
p22 − p21
2m

= v∆p, (18)

where the earth’s rotation is neglected, and v = (p1 + p2)/2m. Substituting (18) into (17), we

obtain

∆ϕ′ =
mgyl

zh̄v
=
mg′A

h̄v
, (19)

where g′ = g/z,A = yl. When z = 1, Eq.(19) returns to (15), which is just the earlier result

predicted by usual quantum theory.

As shown by Eqs.(15) and (19), the expression for the corrected phase shift is almost

the same as the usual result, except a momentum-dependent factor z. The latter can be ob-

tained from the former by replacing g with g/z. The GUP’s significance to COW experiment is

equivalent to the situation that two neutron beams propagate in a modified gravitational field

characterized by the effective field strength g′ = g/z.

2.3 Weighting photon

In 1930, Einstein devised a subtle gedanken experiment for weighting photon[34, 35], and tried to

demonstrate the inconsistency of quantum mechanics. Einstein considered a box that contains

photon gas and hangs from a spring scale. An ideal clock mechanism in the box can open a
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shutter. Einstein assumed that the ideal clock could determine the emission time exactly (i.e.

∆t → 0), when a photon was emitted from the box. On the other hand, the energy of the

emitted photon can be obtained by measuring the difference in the box’s mass. This seemed to

result in ∆E∆t→ 0, and violate the uncertainty relation for energy and time.

However, as pointed out by Bohr[34, 35], Einstein neglected the time-dilation effect, and

then his deduction was incorrect. Following from general relativity, the time-dilation is at-

tributed to the difference in the gravitational potential. Two clocks tick at different rates if

they are at different heights. For the clock in the box, the time uncertainty due to the vertical

position uncertainty ∆x is given by[34, 35]

∆t =
g∆x

c2
t, (20)

where t denotes a period of weighting the photon. Bohr argue that the accuracy of the energy

of the photon is restricted as

∆E ≥ c2h̄

gt∆x
. (21)

When Eq. (20) is considered, the inequality (21) gives rise to the uncertainty relation ∆E∆t ≥ h̄,

and the consistency of quantum theory is still maintained. Obviously, gravity plays an important

role in the Bohr’s argument.

In the following, GUP will be considered along the line of Bohr’s argument, and its sig-

nificance to gravitation will be analyzed in the gedaken experiment for weighting the photon.

We first read the original position of the pointer on the box before the shutter opens. After

the photon is released, the pointer moves higher than its original position. In order to lower

the pointer to its original position, we hang some little weights on the box. The pointer re-

turns to its original position after a period t. The photon’s weight g∆m equals the total weight

that hangs on the box. Obviously, the accuracy of weighting the photon is determined by the

minimum of the added weight. The measurement becomes meaningless, if the added weight is

too small to be observable. The weight g∆m should be restricted by quantum theory. Let ∆x

denote the accuracy of measuring the position of the pointer(or of the clock), the minimum of

the momentum uncertainty is given by

∆pmin =
zh̄

∆x
, (22)

where (4) has been considered. Over a period t, the smallest weight is ∆pmin/t, which is the

quantum limit of weighting the photon. Thus we obtain

zh̄

t∆x
=

∆pmin

t
≤ g∆m,
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or

zh̄ = ∆x∆pmin ≤ ∆m(g∆x)t. (23)

Substituting (20) into (23), the latter becomes

zh̄ ≤ c2∆m∆t = ∆E∆t. (24)

Such a modified uncertainty relation means the shortest interval of the time. It can be explained

as follows. Since GUP is required to ensure the shortest observable length, we have (4), and then

zh̄ ≥ ℓp/∆p. The time uncertainty is restricted by ∆t ≥ zh̄/∆E ≥ ℓp(∆p/∆E) ≈ ℓp(dp/dE).

dE/dp is the speed of the box, so we obtain ∆t ≥ ℓp/v ≥ ℓp/c = tp =
√
Gh̄/c5.

Now we turn our attention to the inequality (23), from which the accuracy of the energy

of the emitted photon is restricted as

∆E ≥ zc2h̄

gt∆x
=

c2h̄

g′t∆x
, (25)

Comparing it with (21), the difference is only that g is replaced by g′ = g/z. Let us define

p′ = h̄k, which denotes the canonical momentum and satisfies Heisenberg’s commutation relation

as follows

[x̂, p̂′] = ih̄. (26)

The corresponding uncertainty ∆p′ can be expressed as

∆p′ = h̄∆k ≈ h̄
dk

dp
∆p = ∆p/z, (27)

where (12) has been considered. On the other hand, the inequality (23) can be rewritten as

h̄ = ∆x∆pmin/z ≤ ∆m(g∆x)t/z. (28)

Considering (27) and (23), we have

h̄ = ∆x∆p′min = ∆x∆pmin/z

≤ ∆m(g∆x)t/z = ∆m(g′∆x)t. (29)

We find that g′ is reproduced in the inequality (29), accompany with the return of Heisenberg

principle. The means that g′ should be understood in the context of usual quantum theory.

According to the formula (20), when g → g′, the time uncertainty becomes

∆t′ =
g′∆x

c2
t = ∆t/z. (30)
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Substituting it into (29), we obtain

h̄ = ∆x∆p′min ≤ ∆E∆t′, (31)

as required by usual quantum theory. The consistency of theory is maintained by the trans-

formation: g → g′, when the GUP’s significance is explained in the context of usual quantum

mechanics.

In summary, we suggest two pictures for understanding the COW phase shift and the

gedanken experiment of weighting the photon. One picture is that GUP is considered directly

in a classical gravitational field. In another picture, the usual quantum theory is retained by

introducing the effective gravitational field strength g′. Two pictures are equivalent, since an

observer cannot distinguish the effect of GUP from the effective field strength. This equivalence

inspires an effective Newton constant G′, since the effective field strength can be expressed as

g′ = g/z =
GM

zR2
=
G′M

R2
,

where G′ = G/z is just the same as the suggestion in Ref.[19].

In view of the above analysis, we introduce two working hypotheses: (i) the matters

obey Heisenberg’s uncertainty principle; (ii) quantum spacetimes are characterized by the GUP-

inspired effective Newton constant. They are the basis for the following discussions. When G is

replaced by G′, we obtain a modified Schwarzschild metric as follows

ds2 = −
(
1− 2G′M

c2r

)
c2dt2 +

(
1− 2G′M

c2r

)−1

dr2 + r2dΩ, (32)

G′ = G/z.

This metric describes a family of spacetimes that depend on different scales of momentum. In

the following section, we will propose a characteristic momentum to incorporate quantum effect

with geometric character of gravity.

3 Gravitational tidal force and the characteristic momentum

Now we consider a black hole described by (32), with z = 1+αℓ2
p
p2/h̄2. Let T denote the black

hole temperature, and the characteristic momentum is identified with kBT/c[36, 37], the metric

(32) becomes

ds2 = −
(
1− 2GM̃

c2r

)
c2dt2 +

(
1− 2GM̃

c2r

)−1

dr2 + r2dΩ, (33)

M̃ =
M

1 + αℓ2
p
k2BT

2/c2h̄2
.
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The horizon is located by rT = 2GM̃/c2. The temperature, proportional to the surface gravity,

is determined by

T =
m2
p
c2

8πkBM̃
=

m2
p
c2

8πkBM

(
1 +

αℓ2
p
k2BT

2

c2h̄2

)
, (34)

where mp =
√
h̄c/G is the Planck mass. So we obtain

T =
4πM −

√
(4πM)2 − αm2

p

αkB/c2
, (35)

which returns to the usual formula TH = m2
p
c2/(8πkBM), as α → 0. Except an inessential

factor, the modified temperature (35) is consistent with the previous work in the literarure[11,

12, 13, 36, 37]. Certainly, those old problems have yet not been solved. The expression (35)

gives rise to the maximum temperature when the mass approaches the minimal value
√
αmp/4π.

Furthermore, the metric (33) indicates that there is still a singularity at r = 0. However, the

minimal mass means a lower bound on the size of black hole, rT ≥ √
αℓp/4π. It is of order

of the shortest observable distance derived from GUP. This make us believe that quantum

spacetime is still characterized by the effective Newton constant G′ = G/z, if an appropriate

characteristic scale is taken into account. The shortage of the metric (33) may be attributed

to the fact that the black hole temperature is not an universal scale of meaning, since it can’t

describe an ordinary star. Moreover, the black hole temperature is position independent, and

doesn’t reflect the difference between strong gravitational field and weak field. It is necessary to

reinvest the momentum scale with new physical meaning, if we expect for something beyond the

previous efforts. As an observable quantity, p2 ≥ ∆p2. In view of the limitation of the black hole

temperature, we require the quantum fluctuation ∆p to satisfy some reasonable expectations.

Firstly, ∆p should be associated with the gravity, and should increase with the strength

of the gravitational field, i.e. ∆p ∼ r−s, s > 0.

Secondly, ∆p should play a crucial role that improves the spacetime singularity, and make

the black hole regular. As argued in Refs.[15, 17, 19], the asymptotic behavior of the regular

potential must satisfy φ→ r2+δ, as r → 0. This demands ∆p ∼ r−3/2−δ, and δ ≥ 0.

Thirdly, the minimal value of ∆p is intrinsic, and reflect the universal property of the

gravitational fields of black holes and ordinary stars. According to general relativity, the gravi-

tational field is regarded as the curved spacetime characterized by Riemann tensor Rρλµν . This

suggests ∆p be associated with those quantities constructed by Riemann tensor. Such a charac-

teristic momentum may be estimated by combining the gravitational tidal force with quantum

theory, since the tidal force is associated with the curvature of spacetime[1, 38].
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Let us consider a pair of virtual particles with energy ∆E. When the virtual particles

are separated by a distance ∆x, according to the geodesic deviation equation, the tidal force

reads[1, 38, 39]

F =
2GM

r3

(
∆E

c2

)
∆x. (36)

Let ∆t denote the life-time of the virtual particles, the momentum uncertainty due to the tidal

force is given by

∆p = F∆t =
2GM

r3

(
∆E

c2

)
∆t∆x. (37)

The observability requires ∆p∆x ≥ h̄, ∆E∆t ≥ h̄, when the virtual particles are subject to the

tidal force and become real. Following from (37), we obtain

(∆p)2 ≥ h̄∆p

∆x
=
h̄F

∆x
∆t

=
2h̄

c2

(
GM

r3

)
∆E∆t ≥ 2h̄2

c2

(
GM

r3

)
. (38)

The right hand side of the inequality suggests a characteristic momentum, ∆pm ∼
√
GMh̄2/c2r3.

We find that ∆pm → 0 as G → 0, which is associated with a free particle traveling in the flat

spacetime. This characteristic scale can be understood as the minimal momentum of those

particles produced from the quantum fields in the curved spacetime.

We can also analyze a real particle which is detected by a photon with energy ∆E. Let

∆x denote the uncertainty in the position of the particle, the momentum uncertainty of the

particle is given by

∆p̃ ≥ h̄

∆x
+

2GMm

r3
∆x∆t, (39)

where m is the mass of the particle, and ∆t ≥ h̄/∆E is the characteristic time in the process

of the photon-particle collision. On the right hand side of the inequality (39), the first and the

second terms belong different stories respectively. The second term is attributed to the tidal

effect of gravity, and it vanishes in a flat spacetime. Following from (39), we obtain

∆p̃ ≥ 2

√
2GMh̄m∆t

r3
≥ 2

√
2GMh̄2

r3

(
m

∆E

)
, (40)

where the time-energy uncertainty relation is considered. In order to avoid the production of

new particles, the energy should be restricted as ∆E < mc2, otherwise it becomes meaningless

to measure the position of the particle[40]. So we obtain

∆p̃ > 2

√
2GMh̄2

c2r3
. (41)
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The difference between (38) and (41) is only a constant coefficient. This inessential difference

is caused by a rough estimate of the amplitude of ∆E. It will vanish, if we take a different

estimate, such as ∆E < mc2/4.

In the above discussion, we don’t discriminate the black hole from an ordinary star, so the

characteristic momentum appeared in (38) is suitable for both of the two spacetimes. A similar

scale has also been suggested by a different way[15], but its physical meaning is different from

our understanding. As one of two scales suggested in Ref.[15], it is identified with the inverse of

the proper time of an observer falling into the Schwarzschild black hole. Obviously, it is different

from that scale of an ordinary star.

Identifying the characteristic scale with the right hand side of (38), we obtain an effective

Newton constant as follows

G′ =
G

1 + 2αℓ2
p
∆p2m/h̄

2 =
G

1 + 2αℓ2
p
GM/r3c2

. (42)

Different from Ref.[15], the scale ∆p ∼ 1/r is no longer considered in the following discussions.

This is because it is motivated by Heisenberg principle, while Heisenberg principle has been

incorporated with the tidal effect in the inequalities (38) and (39). We will explore a black hole

characterized by the effective Newton constant as presented by (42).

4 Quantum tunneling from the regular black hole

In this section, we take the Planck units, G = h̄ = c = kB = 1. Substituting (42) into (32), we

obtain a modified Schwarzschild black hole as follows

ds2 = − (1 + 2Φ) dt2 + (1 + 2Φ)−1 dr2 + r2dΩ, (43)

Φ = − Mr2

r3 + 2αM
.

It is just the minimal model of the regular black hole suggested in Ref.[17]. Let ρ denote the

radius of this black hole and satisfy g11(ρ) = 0, we have

1− 2Mρ2

ρ3 + 2αM
= 0. (44)

The horizon is located by

ρ =
2M

3
+

4M

3
cos

[
1

3
arccos

(
1− 27α

8M2

)]
, (45)

providedM ≥Mc = 27α/16. WhenM ≤Mc, the metric (43) doesn’t describe a black hole, since

the equation (44) has no positive solution and then the horizon is absent in this spacetime[17].
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The critical mass is the lower bond on the mass of an object that forms a black hole. Corre-

sponding to this critical mass, there is a minimal radius of the black hole, ρmin = 4Mc/3 =
√
3α.

In the following, we will investigate the quantum tunneling of this regular black hole, and focus

on the question of whether the tunneling probability is regularized by the minimal length.

In the tunneling picture of black hole radiation[4, 5], the tunneling probability is deter-

mined by the imaginary part of the action for a particle which tunnels through the horizon along

a classically forbidden trajectory. At the zeroth order WKB approximation, the tunneling prob-

ability is suppressed by the change in the Bekenstein-Hawking entropy. This is consistent with

the unitarity of quantum theory. When the second order correction is considered, the tunneling

probability is given by[9]

Γ ∼ ρ2i
ρ2f

exp[−2Im(S0 − S2)], (46)

where ρi denotes the initial radius of black hole in the tunneling process, and ρf the final radius.

S0 − S2 is the action for a particle crossing the horizon from ρi to ρf . Concretely speaking, S0

is associated with the zeroth order term of WKB wave function, and S2 is related to the second

order correction. The first order term S1 doesn’t appear in the imaginary part of the action,

since it is real. In order to evaluate the emission rate of the regular black hole, we first introduce

the Painleve type coordinate[4, 6]

t̃ = t+

∫ √
−2Φ

1 + 2Φ
dr.

The metric (43) is therefore rewritten as

ds2 = −(1 + 2Φ)dt̃2 + 2
√
−2Φdt̃dr + dr2 + r2dΩ. (47)

It is appropriate for describing the particle which tunnels through the horizon, since the coordi-

nate singularity has been removed. Setting ds2 = 0 = dΩ, we obtain the equation of the radial

null geodesics as follows

ṙ =
dr

dt̃
= 1−

√
−2Φ, (48)

where the ingoing geodesics is neglected. When a particle is emitted from the black hole and

the energy conservation is considered, a shell with energy ω′ travals in a spacetime of mass

M ′ =M − ω′. So we have

1 + 2Φ =
r3 − 2M ′r2 + 2αM ′

r3 + 2αM ′

= − r2 − α

r3 + 2αM ′

(
2M ′ − r3

r2 − α

)
. (49)
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The zero order action is given by

S0 =

∫ ρf

ρi
S′
0dr =

∫ ρf

ρi
prdr, (50)

where

S′
0 = pr =

∫
dM ′

ṙ
=

∫ M−ω

M

dM ′

1−
√
−2Φ

. (51)

Substituting (49) into (51), we obtain

pr =

∫ M−ω

M

1 +
√
−2Φ

1 + 2Φ
dM ′

= −
∫ M−ω

M

(1 +
√
−2Φ)(r3 + 2αM ′)

(r2 − α)[2M ′ − r3/(r2 − α)]
dM ′. (52)

There exists a singularity at 2M ′ = r3/(r2 − α). In order for the positive frequency modes to

decay with time[4], we deform the contour into the lower half ω′ plane, or into the upper half

M ′ plane. By residue theorem, we obtain

pr =

(−iπ
2

)
2× [r3 + αr3/(r2 − α)]

r2 − α

= (−iπ) r5

(r2 − α)2
. (53)

Substituting it into (50), we get the imaginary part of the action as follows

ImS0 = −π
2

[
r2 + 2α ln(r2 − α)− α2

r2 − α

] ∣∣∣∣∣

ρf

ρi

. (54)

Following the procedure of WKB method applied in Ref.[9], we can also evaluate the higher

order terms of the action. The first order term is determined by the following equation

S′
1 = − S′′

0

2S′
0

= − r2 − 5α

2r(r2 − α)
.

So we have

S′′
1 =

r4 − 14αr2 + 5α2

2r2(r2 − α)2
,

and then

S′
2 = −S

′2
1 + S′′

1

2S′
0

= (−i)× 3r4 − 38αr2 + 35α2

8πr7
. (55)

The imaginary part of the second order term is given by

ImS2 = Im

∫ ρf

ρi

S′
2dr

=
1

96π

(
18

r2
− 114α

r4
+

70α2

r6

) ∣∣∣∣∣

ρf

ρi

. (56)
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Substituting (54) and (56) into (46), and considering ρ2i /ρ
2
f = exp ln(ρ2i /ρ

2
f ), we obtain the

tunneling probability accurate to the second order correction, Γ ∼ e∆S , where

∆S =

[
πr2 − ln r2 +

3

8πr2
+ 2απ ln(r2 − α)− α2π

r2 − α
− 19α

8πr4
+

35α2

24πr6

] ∣∣∣∣∣

ρf

ρi

. (57)

In the consideration of the unitarity of quantum theory, ∆S should be understood as the change

in the entropy of the regular black hole. The entropy, including the first and the second order

corrections, reads

S = πρ2 − ln ρ2 +
3

8πρ2
+ 2απ ln(ρ2 − α)− α2π

ρ2 − α
− 19α

8πρ4
+

35α2

24πρ6
, (58)

where ρ is the radius of the black hole. The first three terms are similar to the expression for the

Schwarzschild black hole[9], while the last four terms are new. New corrections are relevant to

the parameter α, and denote the difference between the regular black hole and the Schwarzschild

black hole.

Let us make some remarks on the expressions (57) and (58). Let us consider the thermo-

dynamical entropy of the regular black hole. As the inverse period of the imaginary time of the

regular spacetime (43), the black hole temperature is given by

T =
1

2π

(
dΦ

dr

)

r=ρ

=
1

8πM
− α

2πρ3
=
ρ2 − 3α

4πρ3
, (59)

where (44) has been considered. The thermodynamical entropy is defined as

S(0) =

∫
dM

T
=

∫
T−1

(
dM

dρ

)
dρ

= 2π

∫
ρ5dρ

(ρ2 − α)2

= π

[
ρ2 + 2α ln(ρ2 − α)− α2

ρ2 − α

]
, (60)

which is different from (57). However, it is consistent with the entropy derived from the zero

order action of WKB method, as shown by (54). This is similar to the Schwarzschild black hole:

the zero order action for the tunneling particle is related to the change in the Bekenstein-Hawking

entropy[4, 9].

For the Schwarzschild black hole, the emission rate accurate to the second order approxi-

mation, is determined by the first three terms in (57). Since classical general relativity doesn’t

restrict the size of black hole, ∆S and Γ become divergent as ρf → 0. However, the tunneling
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probability of the regular black hole is finite, because it is regularized by the minimal radius of

the horizon. This conclusion is nontrivial, in view of the subtle relation between the entropy

expression (58) and the minimal radius ρmin. If ρmin is allowed to be less than
√
α, the entropy

would be ill defined for the black hole of radius ρ =
√
α, because of the divergence of the fourth

and the fifth terms in (58). It is gratifying that ρmin =
√
3α >

√
α, and those dangerous terms

such as (ρ2 − 3α)−1 don’t appear in the entropy expression.

According to the third law of thermodynamics, the entropy vanishes when a system of

matter is in the ground state and its temperature approaches zero. For a given excited state,

the probability of the transition to the ground state should be minimal, because it is greatly

suppressed by the change in the entropy. The regular black hole has similar property, if the

parameter α is not too small. This is because the entropy expression (58) is a monotonic

increasing function of the horizon area.1 For an initial black hole with radius ρi, the minimal

value of the tunneling probability is given by

Γ ∼ exp

[
−πρ2i + ln ρ2i −

3

8πρ2i
− 2απ ln(ρ2i − α) +

α2π

ρ2i − α
+

19α

8πρ4i
− 35α2

24πρ6i

]
, (61)

which points to the black hole remnant with final radius ρf =
√
3α.

In the expression (58), the fourth and the fifth terms is a part of the thermodynamical

entropy of the regular black hole. It is interesting and confusing that they tend to cancel

out the similar corrections to the entropy of the Schwarzschild black hole, such as the second

and the third terms in (58). This fact might indicate a subtle correlation between quantum

spacetimes and the quantum matters, but we don’t know how to explain it. We also notice that

the regular black hole gives rise to the higher order corrections to the entropy, such as the last

two terms in (58). We predict that the similar and opposite corrections might appears in the

tunneling probability of a Schwarzschild black hole, when the fourth order WKB approximation

is considered.

5 Summary and outlook

This work involves two parts. The first part is devoted to the question of what is the significance

of the GUP for the quantum spacetime. The answer may point to the a scale-dependent Newton

constant, which is motivated by analyzing the role that the GUP plays in the COW phase shift

and Einstein-Bohr’s Gedanken for weighting photon. It is consistent with our previous suggestion

1It can be shown by numerical method that dS/dρ > 0, when the parameter satisfies α > 0.024.
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in Ref.[19]. The minimal model of the regular black hole can be reproduced by considering the

simplest GUP and a momentum scale associated with the tidal force. The second part is to

calculate the tunneling probability accurate to the second order WKB approximation. The

tunneling probability is regular, because the black hole has a nonzero minimal radius. Not only

this, the tunneling probability of an initial black hole is minimized by the black hole remnant,

if the parameter α is of order of the unity. In other words, the tunneling probability is minimal,

if the final state of the black hole is a remnant.

Let us consider the matter source of the regular black hole. In this paper, the quantum

spacetime is understood by connecting the GUP with the running of Newton constant. It reflects

the quantum gravitational effects on the classical spacetime. According to the general theory of

relativity, the effective stress-energy tensor can be derived from Einstein’s field equation, when

the regular black hole is regarded as an input. The quantum gravitational effects are simulated

by a matter fluid described by the effective stress-energy tensor[15, 17]. We hope that this

matter fluid can be reproduced from the GUP dominated vacuum fluctuations. This problem

will be investigated in the future.

Besides constructing the above regular black hole, we also explore a theory of modified

gravity. This alternative theory is based on a generalization of the effective Newton constant,

and it may be characterized by a modified Hilbert-Einstein action as follows

I ′ =

∫
R− 2Λ

16πG′

√
−gd4x, (62)

whereG = c = 1, G′ = z−1(p), and Λ is the cosmological constant. In order for the Lagrangian to

be an invariant, the momentum scale p is restricted to be a scalar. For a Schwarzshild spacetime,

p2 ∼M/r3, as argued in the section 3. This suggests that the characteristic momentum should

be identified as p ∼
√
K, and then z = z(K), where K is the square root of the Kretschmann

scalar. Considering the simplest GUP[as given by (2)], the gravitational action can be expressed

as

I =
1

16πG

∫
(1 + γK)(R − 2Λ)

√
−gd4x, (63)

where γ is a parameter, which is not necessarily the same as that in the metric (43). The action

(63) belongs to a class of more general theories of modified gravity[41, 42, 43], and then the field

equation is given by

(1 + γK)(Gµν + Λgµν) + γHµν = 8πTµν , (64)
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where Gµν is the Einstein tensor, and

Hµν =
R− 2Λ

K
RρλσµR

ρλσ
ν + (gµν∇σ∇σ −∇µ∇ν)K − 2∇ρ∇σ

[
R− 2Λ

K
Rρ σ

(µν)

]
. (65)

Direct calculation shows that the metric (43) is not a solution for the field equation (64). It

is not strange, since the metric (43) and the equation (64) are suggested along different lines

of argument, even though they are motivated by the effective Newton constant. However, the

regular spacetime (43) has a de Sitter core near r = 0, which satisfies the field equation (64). This

implies that the field equation (64) permits the existence of the regular black holes. We also take

notice of those terms associated with the cosmological constant Λ in (64), i.e. (1 + γK)Λgµν .

Usually, the first term Λgµν is utilized to cancel out the huge contribution from the vacuum

energy on the right hand side of the field equation, where the bare Λ must be of order of unity.

Thus the second term of γKΛ play the role of the effective cosmological constant. It is interesting

that this term is of order of the observed value. The modified gravity with the square root of

Kretschmann scalar seems to be ignored in the literature. The field equation (64) and relevant

problems will be discussed in detail elsewhere. We hope that the spacetime singularities and the

cosmological constant problem can be improved in this alternative theory.
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