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ABSTRACT

In 1969, Leighton developed a quasi-1D mathematical model of the solar dynamo, building upon

the phenomenological scenario of Babcock published in 1961. Here we present a modification

and extension of Leighton’s model. Using the axisymmetric component (longitudinal average) of

the magnetic field, we consider the radial field component at the solar surface and the radially

integrated toroidal magnetic flux in the convection zone, both as functions of latitude. No as-

sumptions are made with regard to the radial location of the toroidal flux. The model includes the

effects of (i) turbulent diffusion at the surface and in the convection zone, (ii) poleward meridional

flow at the surface and an equatorward return flow affecting the toroidal flux, (iii) latitudinal dif-

ferential rotation and the near-surface layer of radial rotational shear, (iv) downward convective

pumping of magnetic flux in the shear layer, and (v) flux emergence in the form of tilted bipo-

lar magnetic regions treated as a source term for the radial surface field. While the parameters

relevant for the transport of the surface field are taken from observations, the model condenses

the unknown properties of magnetic field and flow in the convection zone into a few free param-

eters (turbulent diffusivity, effective return flow, amplitude of the source term, and a parameter

describing the effective radial shear). Comparison with the results of two-dimensional flux trans-

port dynamo codes shows that the model captures the essential features of these simulations. We

make use of the computational efficiency of the model to carry out an extended parameter study.

We cover anextended domain of the four-dimensional parameter space and identify the parame-

ter ranges that provide solar-like solutions. Dipole parity is always preferred and solutions with

periods around 22 years and a correct phase difference between flux emergence in low latitudes

and the strength of the polar fields are found for a return flow speed around 2 m·s−1, turbulent

diffusivity below about 80 km2·s−1, and dynamo excitation not too far above the threshold (linear

growth rate less than 0.1 yr−1).

Key words. Magnetohydrodynamics (MHD) – Sun: dynamo

1. Introduction

Babcock (1961) proposed a scenario describing the cyclic solar dynamo in terms of a consistent

physical approach based on observational results. These were basically the (latitudinal) differential

rotation, the polarity rules of sunspot groups and their systematic tilt with respect to the East-West

direction, the reversals of the global dipole field in the course of the solar cycle together with the

relationship between its orientation and the sunspot polarities. In Babcock’s scenario, the poloidal

magnetic field represented by the global dipole is wound up by differential rotation. Loops of the
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resulting azimuthal field rise owing to magnetic buoyancy and break through the surface, thus

forming sunspot groups and bipolar magnetic regions (BMRs). These are tilted in the observed

sense because of the poloidal field component provided by the global dipole.1 The BMR tilt leads

to a preferential cancellation of leading-polarity magnetic flux across the equator, leading to an

amount of net following-polarity flux on each hemisphere. As this flux spreads over the hemisphere

and migrates polewards, it eventually cancels and reverses the global dipole field. This field is the

source of the (reversed) toroidal field of the next activity cycle, thus leading to a 22-year magnetic

cycle.

Leighton (1969, hereafter referred to as L69) condensed Babcock’s scenario into a mathemat-

ical model in the form of two coupled partial differential equations (in time and latitude), repre-

senting the toroidal and poloidal components of the azimuthally averaged (axisymmetric) magnetic

field. He added radial shear to the differential rotation and treated the transport of surface magnetic

flux by supergranular flows in terms of a diffusion model (random walk of flux elements, Leighton

1964).

The dynamo model of Parker (1955) differs conceptually from that of Babcock and Leighton

in the mechanism envisaged for the reversal and regeneration of the poloidal field. He consid-

ers correlations between small-scale convective motions brought about by the systematic effect of

the Coriolis force in a rotating system. This approach was later systematically worked out by the

Potsdam group in terms of mean-field turbulence theory (see, e.g., Krause & Rädler 1980), leading

to the α-effect paradigm (‘turbulent dynamo’). Although the resulting dynamo equations (in the

1D case with only latitudinal dependence) are mathematically similar to the corresponding equa-

tions of Leighton (see Stix 1974), this must not obscure the fundamental conceptual difference

between the two approaches: while the turbulent dynamo relies on the collective effect of small-

scale correlations throughout the convection zone, the Babcock-Leighton (BL) approach is based

upon the actually observed properties and evolution of active regions at the solar surface. In partic-

ular, it is the big bipolar regions emerging not too far from the equator that contribute most to the

(re)generation of the poloidal field in the BL model.

The structure of the dynamo equations for both approaches permits cyclic solutions with prop-

agating dynamo waves resembling the latitudinal propagation of the activity belts in the course of

the solar cycle, provided that rotational shear is mainly in the radial direction.2 When helioseismic

observations proved this assumption wrong (Duvall et al. 1984) and a systematic poleward merid-

ional flow was detected at the surface (starting with Howard 1979), the propagation of the activity

belts was alternatively ascribed to equatorward magnetic flux transport by a deep latitudinal return

flow towards the equator (Wang et al. 1991; Choudhuri et al. 1995). In parallel, numerical models

treating the evolution of the large-scale surface magnetic field as a result of the combined effects

of flux emergence in tilted bipolar regions, differential rotation, meridional flow, and supergran-

1 Interestingly, Babcock does not comment on the fact that the latitude dependence of the resulting BMR

tilt according to his model is in conflict with observation (Joy’s law). Nevertheless, although he neglected the

effect of the Coriolis force on rising flux bundles, his original scenario can work as a proper dynamo owing to

the non-axisymmetric character of flux emergence.
2 Actually, in Leighton (1969) there is a model with a latitudinally propagating dynamo wave in the absence

of radial shear. However, this result is due to an unphysical feature in his formalism, which leads to a violation

of the condition ∇ · B = 0 (see Appendix).
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ular random walk (treated as turbulent diffusion) successfully reproduced observations, including

the reversals of the polar fields during cycle maxima, and thus validated a central concept of the

Babcock-Leighton scenario (for reviews, see Mackay & Yeates 2012; Jiang et al. 2014; Wang

2016). This led to a revival of interest in this concept (Wang & Sheeley 1991) with a first update

of the L69 dynamo model by Wang et al. (1991). Eventually, this brought about the development

of spatially two-dimensional Babcock-Leighton-type flux-transport dynamo (FTD) models (see re-

views by Charbonneau 2010; Karak et al. 2014), which recently have been extended to include 2D

surface transport (Lemerle et al. 2015) or even to spatially three-dimensionsal treatment (Miesch &

Teweldebirhan 2015). Such models are able to reproduce key features of the solar activity cycle if

their parameters are properly ‘tuned’. In particular, the results depend strongly on the assumptions

about the turbulent diffusivity and about the spatial structure of the meridional circulation in the

convection zone (Charbonneau 2010; Karak et al. 2014).

Recently, additional information concerning the operation of the solar dynamo has become

available. Wang & Sheeley (2009) and Muñoz-Jaramillo et al. (2013) showed that the polar fields

(or proxies thereof, such as the minima of the open heliospheric flux or of geomagnetic activity) at

activity minimum is a good proxy for the strength of the following solar cycle. Thereafter Cameron

& Schüssler (2015) showed by a mathematical argument that the net toroidal flux in a solar hemi-

sphere that produced by differential rotation is determined by the emerged magnetic flux at the

solar surface. They also found that the latitudinal differential rotation is the by far dominant gen-

erator of net toroidal flux, while the near-surface shear layer (Thompson et al. 1996; Barekat et al.

2014) plays only a minor role. Considering the observed distribution of magnetic flux at the solar

surface, these authors also showed that the poloidal flux relevant for the generation of net toroidal

flux is mostly connected to polar fields, i.e., the axial dipole field. These results strongly support

the validity of the Babcock-Leighton scenario.

Cameron & Schüssler (2016) used the observed properties of the sunspot butterfly diagrams

observed since 1874 to infer the turbulent magnetic diffusivity affecting the toroidal field in the

convection zone. They found the turbulent diffusivity to be in the range 150–450 km2s−1, which is

consistent with simple estimates from mixing-length models and thus puts the solar dynamo in the

‘high-diffusivity’ regime (cf. Charbonneau 2010).

Given the relevant observational results obtained since 1969, namely, the systematic poleward

meridional flow at the surface (which actually was already conjectured by Babcock in his 1961

paper), the measurement of the differential rotation in the convection zone by helioseismology,

together with the inference of a high turbulent diffusivity, a new update of the L69 model seems in

order. The simplicity of the spatially 1D approach minimizes the number of free parameters (and

functions) and yet allows us to include all relevant physical ingredients. Since it is computationally

inexpensive, extensive parameter studies can be carried out and very long runs covering thousands

of cycles can be performed, thus permitting statistical studies, e.g. to compare with long-term

results obtained from cosmogenic isotopes (Usoskin 2013).

This paper is structured as follows. In Sec. 2 we outline the model assumptions and the math-

ematical formulation of our model. As a validation, the results of the model are compared to those

of 2D flux transport dynamo codes in Sec. 3. Results of an extended parameter study are shown

in Sec. 4. Our conclusions are given in Sec. 5. The Appendix points out an unphysical feature
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in Leighton’s original formulation that leads to latitudinal dynamo waves in the absence of radial

shear.

2. Model

2.1. The model of Leighton (1969)

The basic concept of the original L69 model is to condense the Babcock scenario into a system

of two partial differential equations (depending on time and latitude) for the azimuthally averaged

radial magnetic field at the surface, Br, and azimuthal field, Bφ, located in a narrow layer below the

surface. While the surface field undergoes a random walk described as turbulent diffusion, there is

no diffusion for Bφ, which is built up by latitudinal differential rotation as observed at the surface

and latitude-dependent radial shear in a narrow sub-surface layer. The source of the radial field is

provided by flux eruption in tilted bipolar magnetic regions, which is described by a double-ring

formalism. Flux eruption is assumed to require a minimal azimuthal field strength and contains a

random element.

2.2. The updated model

The model described here follows the general concept of the L69 model. Modifications and new

features reflect results obtained after the publication of the original model. The key features of our

updated model are summarized in the following list.

– As second variable besides the radial field at the surface we consider the radially integrated

toroidal flux (per unit length in the latitudinal direction) in the convection zone.

– Radial surface field and toroidal flux in the convection zone are both affected by turbulent

diffusion and meridional flow. The turbulent diffusivities at the surface and in the convection

zone can take different values. There is no diffusive emergence of toroidal flux at the surface

and no radial transport of toroidal flux at the bottom of the convection zone. The meridional

flow is poleward at the surface and equatorward in the part of the convection zone where the

toroidal flux resides.

– The rotation rate varies latitudinally according to the surface rate and radially according to the

near-surface shear layer (NSSL) found by helioseismology (Thompson et al. 1996).

– Effects of downward convective pumping are included.

– Flux emergence in tilted BMRs is described by a source term for the radial surface field for-

mally similar to the α-term of mean-field theory. Its specific form reflects the latitude depen-

dences of the Coriolis force and of the azimuthal length of toroidal flux bundles. There is no

threshold toroidal field strength for flux emergence.

– Flux emergence does not deplete the reservoir of toroidal subsurface flux (Parker 1984).

Toroidal field is removed by cancellation and ‘unwinding’ (Wang & Sheeley 1991; Cameron &

Schüssler 2016).

In contrast to the earlier update to the L69 model by Wang et al. (1991), who already incorporated

meridional flow and diffusion of the toroidal field, our treatment does not require us to make as-

sumptions about the location and structure of the toroidal flux in the convection zone. Furthermore,

we now include the effect of the NSSL as well as of downward convective pumping.
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2.3. Equations

The mathematical model consists of two coupled equations representing the evolution of the ax-

isymmetric component (azimuthal average) of the magnetic field a a function of time and colatitude

under the influence of differential rotation, meridional flow, and turbulent diffusion. The first equa-

tion characterizes the evolution of the radially integrated toroidal flux in the convection zone per

unit colatitude. The second equation describes the evolution of the radial component of the field at

the visible solar surface, Br,R� , in terms of the surface flux transport (SFT) model.

In spherical polar coordinates (r, θ, φ), the φ-component of the induction equation for the mean

(azimuthally averaged) magnetic field is given by

∂Bφ
∂t

=
1
r

∂
[
r
(
UφBr − UrBφ

)]
∂r

+
∂
(
UφBθ − UθBφ

)
∂θ

+
∂

∂r

[
η
∂(rBφ)
∂r

]
+
∂

∂θ

[
η

r sin θ
∂(Bφ sin θ)

∂θ

]}
. (1)

The components of the mean velocity correspond to differential rotation, Uφ = Ω(r, θ)r sin θ, mean

meridional flow, Uθ, and convective pumping, Ur. The symbol η(r) represents the turbulent diffu-

sivity, for which we allow a radial dependence. We consider the toroidal flux (per unit colatitude)

integrated radially between the bottom of the convection zone at r = Rb and the solar surface, viz.

b(θ, t) =

∫ R�

Rb

Bφ(r, θ)rdr . (2)

Integrating Eq. (1) we obtain

∂b
∂t

=

∫ R�

Rb

sin θ
∂(Ωr2Br)

∂r
dr +

∂

∂θ

∫ R�

Rb

Ω sin θ Bθ rdr

−

∫ R�

Rb

∂(rUrBφ)
∂r

dr −
∫ R�

Rb

∂(UθBφ)
∂θ

dr

+

∫ R�

Rb

∂

∂r

[
η
∂(rBφ)
∂r

]
dr

+

∫ R�

Rb

∂

∂θ

[
η

r sin θ
∂(Bφ sin θ)

∂θ

]
dr . (3)

The first two terms on the right-hand side represent the generation of toroidal flux by radial and

latitudinal differential rotation, Ω(r, θ). The third and fourth terms refer to transport of toroidal flux

by convective pumping (radial) and meridional flow (radial and latitudinal). The last two terms

describe the effect of (turbulent) diffusion.

The formulation in terms of integrated toroidal flux avoids the need to specify a storage re-

gion for the toroidal flux. In order to further evaluate Eq. (3) we nevertheless have to make some

assumptions about the magnetic field and flows in the convection zone. These are:

– Magnetic flux does not penetrate into the radiative interior beneath the convection zone. This

entails Br = 0 at r = Rb, together with the absence of radial transport (Ur = 0 at r = Rb), as well

as by radial diffusion (∂rBφ/∂r = 0 at r = Rb). These are reasonable assumptions considering

the strong entropy barrier at the interface to the radiative interior.

– Downward convective pumping expels the horizontal field components in the near-surface shear

layer (NSSL) located in the uppermost part of the convection zone, so that Bθ = Bφ = 0 in the

NSSL (cf. Karak & Cameron 2016). This entails Bφ = ∂(rBφ)/∂r = 0 at r = R�).
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– The poloidal field (Br, Bθ) does not penetrate into the convection zone part of the tachocline.

This assumption is justified since, firstly, most of the tachocline is located below the convection

zone in lower latitudes and, secondly, unless convective pumping is extremely strong, only a

minor part of the radial magnetic flux actually reaches down to the convection zone part of the

tachocline in the higher latitudes. Furthermore, it is unclear whether the tachocline shear can at

all generate a substantial amount of toroidal flux (Vasil & Brummell 2009; Spruit 2011), and

the presence of a tachocline does not prevent solar-like cyclic dynamo action in fully convective

stars (Route 2016; Wright & Drake 2016).

– The radial shear vanishes between the NSSL and the top of the tachocline. In low and middle

latitudes, this is justified by the results of helioseismology. Some deviation from this assump-

tion is taken into account by introducing an additional parameter, ε. Anyway, such deviations

can only affect the latitudinal distribution, but not the total amount of the net toroidal flux in

each hemisphere (Cameron & Schüssler 2015).

These assumptions locate the generation of toroidal flux by radial shear in the NSSL while the

generation by latitudinal shear occurs in the bulk of the convection zone below the NSSL. Using

these assumptions, the generation of toroidal flux by differential rotation, which is described by the

first two terms on the right-hand side of Eq. (3), has been worked out by Cameron & Schüssler

(2016, Appendix), who obtained(
∂b
∂t

)
DR

= sin θR2
�Br,R�

(
ΩR� −ΩRNSSL

)
−
∂ΩRNSSL

∂θ

∫ θ

0
sin θR2

�Br,R�dθ , (4)

where ΩRNSSL (θ) and ΩR� (θ) are the latitudinal angular velocity profiles at the bottom of the NSSL,

RNSSL, and at the surface, respectively. For the surface rotation rate we use the synodic rate for

magnetic fields determined by Hathaway & Rightmire (2011),

ΩR� (θ) = 14.30 − 1.98 cos2 θ

−2.14 cos4 θ [◦/day] . (5)

To define the latitude profile of the angular velocity at the bottom of the NSSL we start from the

near-surface profile determined from helioseismology by Schou et al. (1998) and add a latitude-

independent value of 0.53◦/day following Barekat et al. (2014), who found that radial shear in the

NSSL is independent of latitude. Thus we obtain

ΩRNSSL (θ) = 14.18 − 1.59 cos2 θ

−2.61 cos4 θ + 0.53 [◦/day] . (6)

Next we consider the transport terms on the right-hand side of Eq. (3). The third term, describing

radial advection, can be directly integrated and vanishes since Ur = 0 at the bottom and Bφ = 0 at

the top. The fourth term (latitudinal advection) is rewritten in the form

−
∂

∂θ

∫ R�

Rb

UθBφdr = −
∂

∂θ

(Uθ

r

) ∫ R�

Rb

Bφrdr
 ≡ − ∂

∂θ

(
Vθ

R�
b
)
, (7)

where Vθ = R�Uθ/r is a weighted average of the latitudinal meridional flow in the depth range

where the toroidal flux resides. We assume this to represent the equatorward return flow of the
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meridional flow at the surface and write, for simplicity, Vθ = V0 sin(2θ), where V0 > 0 is a free

parameter of the model.

Finally, we consider the diffusion terms in Eq. (3), i.e., the fifth and sixth terms on its right-hand

side. The fifth term vanishes since we assume that there is no diffusive flux of toroidal field over

the radial boundaries of the convection zone. To rewrite the sixth term we assume that the turbulent

diffusivity has a radial profile given by η(r) = η0(r/R�)2. This leads to∫ R�

Rb

∂

∂θ

[
η

r sin θ
∂(Bφ sin θ)

∂θ

]
dr

=
η0

R2
�

∂

∂θ

[
1

sin θ

∫ R�

Rb

∂(sin θBφr)
∂θ

dr
]

=
η0

R2
�

∂

∂θ

[
1

sin θ
∂

∂θ
(sin θ b)

]
. (8)

Adding all contributions together, we obtain

∂b
∂t

= sin θR2
�Br,R�

(
ΩR� −ΩRNSSL

)
−
∂ΩRNSSL

∂θ

∫ θ

0
sin θR2

�Br,R�dθ

−
1

R�

∂

∂θ
(Vθ b) +

η0

R2
�

∂

∂θ

[
1

sin θ
∂

∂θ
(sin θ b)

]
. (9)

To describe the evolution of the radial component of the azimuthally averaged field at the visible

solar surface, Br,R� , we consider the axisymmetric component of the SFT model (see, e.g. Cameron

& Schüssler 2007; Jiang et al. 2014) given by

∂Br,R�

∂t
= −

1
R� sin θ

∂

∂θ

(
Uθ,R�Br,R� sin θ

)
+

ηR�

R2
� sin θ

∂

∂θ

(
sin θ

∂Br,R�

∂θ

)
+ S (θ, t) . (10)

Here Uθ,R� is the poleward meridional flow velocity at the surface, for which we take Uθ,R� =

−U0 sin(2θ) with U0 = 15 m·s−1 according to observations (e.g. Gizon et al. 2010). The surface

diffusivity, ηR� , describes the random walk of magnetic flux elements transported by supergranular

flows (Leighton 1964). The source term S (θ, t) represents the emergence of new flux at the solar

surface in the form of tilted bipolar magnetic regions. It is convenient to introduce the quantity

a(θ, t) =
1

sin θ

∫ θ

0
sin θR2

�Br,R�dθ , (11)

which is proportional to the φ-component of the vector potential for Br,R� . In terms of a(θ, t),

Eq. (10) is

∂a
∂t

= −
U0 sin(2θ)

R� sin θ
∂(a sin θ)

∂θ

+
ηR�

R2
�

∂

∂θ

(
1

sin θ
∂(a sin θ)

∂θ

)
+ aS(θ, t) , (12)

where aS is the source term due to flux emergence written in terms of a. Here we take

aS(θ, t) = α cos θ sinn θ b(θ, t) , (13)

where the proportionality constant α and the integer n are free parameters of the model. The source

term, which is formally similar to the α-effect term in mean-field turbulent dynamo theory, is as-

sumed to be proportional to the amount of radially integrated toroidal flux. The factor cos θ reflects

7
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the latitude-dependence of the Coriolis force thought to be responsible for the tilt of bipolar mag-

netic regions. The factor sinn θ reflects the latitude dependence of the probability of flux emergence.

In most cases we assume n = 1, which corresponds to a constant emergence probability per unit

length of the toroidal field lines.

Introducing the definition of a(θ, t) into Eq. (9), we obtain the final equation for the integrated

toroidal flux, viz.

∂b
∂t

=
∂a sin θ
∂θ

ε
(
ΩR� −ΩRNS S L

)
−

(
∂ΩRNS S L

∂θ

)
a sin θ

−
1

R�

∂(V0 sin(2θ)b)
∂θ

+
η0

R2
�

∂

∂θ

[
1

sin θ
∂

∂θ
(sin (θ) b)

]
(14)

where the parameter 0 ≤ ε ≤ 1 accounts for the effect of radial differential rotation below the

NSSL.

Equations (12) and (14) are the coupled dynamo equations of our model. Owing to the simplic-

ity of this system, for the numerical treatment it suffices to use a straightforward finite-difference

scheme with equal spacing in θ.

Equation (12) contains three parameters. The amplitude of the poleward meridional flow,

U0 = 15 m·s−1 (Gizon et al. 2010), and the turbulent diffusivity at the surface, ηR� = 250 km2·s−1

(Komm et al. 1995), are constrained by observations and SFT simulations (e.g., Jiang et al. 2014).

The quantity α, which determines the strength of the dynamo excitation, is difficult to evaluate

empirically and therefore represents a free parameter of the model.

Eq. (14) depends on the radial (in the NSSL) and latitudinal differential rotation given by

Eqs. (5) and (6), the effective weighted amplitude of the equatorward return flow of the merid-

ional circulation, V0, and the effective turbulent diffusivity, η0, for the toroidal field. The latter two

quantities are treated as free parameters, although some observational constraints for them exist: a

typical speed of about 1 m·s−1 for the equatorward return flow in low latitudes may be estimated

from the mean latitudinal drift rate of the activity belts of about 2◦ per year, while a turbulent diffu-

sivity affecting the toroidal field of '150–450 km2·s−1 has been obtained by Cameron & Schüssler

(2016) from properties of the butterfly diagram. Note that the equatorward transp[ort of the toroidal

flux must not neccesarily be accomplished by a systematic meridional flow: equatorward convec-

tive pumping could provide a similar effect (Ossendrijver et al. 2002; Hazra & Nandy 2016).

In addition, we have the free parameter 0 ≤ εNSSL ≤ 1 which multiplies the radial change of

angular velocity in the NSSL, thus permitting deviations from the assumption that there is no radial

rotational shear below the base of the NSSL. In Sec. 4 we constrain the values of these parameters

(i) by requiring that the dynamo is excited and (ii) by comparing the results of the model with key

observational quantities, namely the dynamo period and the phase relation between the emergence

rate of bipolar regions (sunspot activity) and the polar field.

3. Comparison with 2D FTD simulations

In this section we test our model by comparison with results reported in Karak & Cameron (2016)

obtained with the the 2D axisymmetric flux transport dynamo code SURYA, and with a case ob-

tained using the code developed at the MPS and previously used in Cameron et al. (2012) and

Jiang et al. (2013). These studies employ (different) 2D models of the meridional flow and the

differential rotation. The studies of Karak & Cameron (2016) uses a simplified analytical form for
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the differential rotation mimicking results from helioseismology (see their Eq. 7) and a one-cell

meridional flow profile similar to that of Hazra et al. (2014). For the 2D run with the code of Jiang

et al. (2013) we used the meridional flow pattern given in Jouve et al. (2008) and a differential

rotation according to Hathaway & Rightmire (2011) above r/R� = 0.94 and according to Schou

et al. (1998) below.

The simulations with both 2D codes include downward convective pumping between the sur-

face and r0 = 0.88R� with a constant effective radial velocity γ, so that toroidal flux is pushed

into the region below r0. The codes use radial profiles of the magnetic diffusivity that reach an

essentially constant value, ηCZ, below r0.

The relevant value of η0 for our model was determined by requiring that the radially integrated

diffusion term (the sixth term in Eq. 3) agrees in the 2D case and in our model. Assuming that

Bφ below r0 does not significantly vary with radius (which is justified by the results of Karak &

Cameron 2016, see their Fig. 6), this leads to

η0 = ηCZR2
�

∫ 0.88R�

0.7R�
r−1dr

/∫ 0.88R�

0.7R�
rdr ' 1.609ηCZ (15)

The amplitude of the meridional flow at the surface, U0, was determined by averaging the 2D flow

profiles, v2D(r, θ), between r = R� and the depth, d, for which the Reynolds number of the pumping,

Rm = γd/η, becomes unity, and then taking the maximum in latitude. Similarly, the amplitude of

the return flow, V0, was calculated by averaging v2DR�/r for 0.7 ≤ r/R� ≤ 0.88 (i.e., up to the

bottom of the pumping region) and taking the maximum in latitude. The latitudinal profiles of both

averaged quantities are reasonably well approximated by sin 2θ.

We consider three cases for the comparison. Cases KC1 and KC2 correspond to the results

shown in Figs. 9 and 11, respectively, of Karak & Cameron (2016). Run KC1 represents a case

with high diffusivity in the convection zone (100 km2·s−1), which reproduces many features of the

solar cycle if the flux emergence is strongly restrictued to low latitudes (n = 12 in Eq. 13). Run KC2

has a two times lower diffusivity, allows for a broader latitude range of flux emergence (n = 2),

and no return flow of the meridional circulation. In contrast to case KC1, the equatorward drift of

the toroidal field in this case in due to the latitudinal propagation of a dynamo wave driven by the

radial shear in the NSSL. Run J carried out with the code used by Jiang et al. (2013) is similar to

case KC1, albeit with a lower diffusivity, stronger return flow, and a no artificial restriction of the

latitude range for flux emergence (n = 1). All 2D runs are linear with values of the near-surface

α-effect chosen such that the dynamos are marginally excited (i.e, growth rate near zero). Since

the parameter values corresponding to marginal dynamo excitation are not identical, we performed

the calculations with the updated L69 model for two values of the diffusivity affecting the toroidal

field: a) for the diffusivity η0 determined on the basis of ηCZ as given by Eq. 15 and b) for an

enhanced value, η∗0, chosen such that the dynamo excitation is near marginal. The parameters used

for the 2D runs and the comparison runs with our updated L69 model are given in Table 1.

Figures 1 and 2 show the results of the runs for the cases KC1 and KC2, respectively, while

Fig. 3 gives the corresponding results for test case J. In all cases, time-latitude diagrams of the

radial field at the surface are represented in the upper row of the figure. The lower row gives time-

latitude diagrams of the radially averaged toroidal field in cases KC1 and KC2, while the radially

integrated toroidal flux is shown in case J. The 2D results are shown in the left columns of the

9
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Table 1. Parameters for the test cases.

Parameter KC1 KC2 J

α [m·s−1] 1.4 2.5 1.

n 12 2 1

ηR� [km2·s−1] 300. 300. 250.

ηCZ[km2·s−1] 100. 50. 40.

η0 [km2·s−1] 160.9 80.5 64.

η∗0 [km2·s−1] 210. 210. 81.

U0 [m·s−1] 15.9 15.9 15.

V0 [m·s−1] 1.6 0. 4.7

γ [m·s−1] 35. 35. 30.
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Fig. 1. Test case KC1: comparison of the updated Leighton model with the results of the 2D dy-

namo run presented in Fig. 9 of Karak & Cameron (2016). The left column gives the results of the

2D run, showing time-latitude diagrams for the radial field at the surface (upper panel) and the ra-

dially averaged toroidal field (lower panel). The other two columns show the results of the updated

Leighton model: using parameters corresponding to those of the 2D model (middle column) and

with the diffusivity in the convection zone increased so that the dynamo has zero linear growth rate

(right column). The quantities are normalized by a common factor, such that the extrema of 〈Bφ〉

become ±1.

figures while the results obatined with the updated L69 model are given in the middle columns (for

diffusivity η0) and in the right columns (for diffusivity η∗0 providing about zero growth rate).

In all cases, the results of the 2D runs and those from our updated L69 model are very similar:

dynamo periods, the shape of the butterfly diagrams, and the phase relation between the polar fields

and the low-latitude toroidal field (representing flux emergence and solar activity) are reasonably

well represented by our much simpler L69 model. There are some minor differences, e.g., the

periods are slightly longer and the low-latitude surface fields somewhat stronger relative to the

polar fields in the L69 cases, but a perfect agreement is obviously not expected. We thus conclude

that the updated L69 model captures the essential features of these moderately diffusive 2D models.

4. Parameter study

The computational efficiency of the updated L69 model allows us to systematically cover wide

ranges of the parameter values relevant for the dynamo behaviour. Since many of these parameters

10
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Fig. 2. Test case KC2: same as Figure 1, but for the 2D dynamo run shown in Fig. 11 of Karak &

Cameron (2016).
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Fig. 3. Test case J: same as Figure 1, but for a 2D dynamo run carried out with the code used by

Jiang et al. (2013). In this case, the lower row gives the (normalized) radially integrated toroidal

flux.

(e.g., meridional flow pattern and magnetic diffusivity in the convection zone, amplitude of the

source term) are uncertain, this is a big advantage in comparison to the numerically more demand-

ing 2D models. We have thus carried out a parameter study in order to identify those regions of

the parameter space providing dynamo models that are consistent with basic properties of the solar

cycle. For the latter, we require a) preference of the (antisymmetric) dipole mode, b) equatorward

propagation of the activity belts, c) cycle period P ' 22 years, and d) phase difference between the

maxima of flux emergence (solar activity) and polar field ∆φ ' 90◦, meaning that the polar fields

reverse around activity maxima and reach their peak levels around activity minima. Of course, the

dynamo also must be excited (i.e., growth rate γ > 0).

A first representation of the results is given in Fig. 4. For fixed values of α = 1.4 m·s−1 and

ε = 1., the upper panels give period, P, and phase difference, ∆φ, for dipole parity. The lower

panels show the dynamo growth rate, γ, for the dipole (left) and for the quadrupole (right) modes,

respectively. The lines in the upper panels indicate ranges relevant for the solar case. The lines in the

lower panels separates regions of excited (below) and non-excited (above) dynamo solutions. The

figure shows that the updated L69 model has a clear preference for dipolar parity in the sense that

it is excited in a broader range of diffusivities (i.e., for lower dynamo number) and that its growth

rate is always higher than that of the corresponding quadrupole mode. Furthermore, the results are

consistent with the period and phase difference in the case of the Sun for diffusivities below about
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Fig. 4. Properties of linear dynamo solutions as functions of the amplitude of the effective return

meridional flow (V0) and of the magnetic diffusivity in the convection zone (η0) for values of

α = 1.4 m·s−1 and ε = 1. Color shading represents the dynamo period (P, upper left panel), the

phase difference between the maximum of the polar field and the maximum rate of flux emergence

(∆φ, upper right panel), and the dynamo growth rate (γ, lower left panel), all for dipole parity.

The growth rate for quadrupolar parity is given in lower right panel. The lines in the lower panels

indicate γ = 0, thus dividing regions of excited (reddish) and decaying (blueish) dynamo solutions.

The lines in the upper panels indicate ranges relevant for the solar dynamo: 21 yr ≤ P ≤ 23 yr for

the period and 80◦ ≤ ∆φ ≤ 100◦ for the phase difference.

80 km2·s−1 and an effective return flow of the meridional circulation affecting the toroidal field in

the range 2–3 m·s−1.

An example for a solution with solar-like properties is shown in Fig. 5. It has a period of

20.3 years and the correct phase difference between polar field and flux emergence (∆φ = 92◦).

Since the amplitude of this linear dynamo model is arbitrary, we fixed the maxima of the surface

field, Br, to 1 G. The corresponding values of the integrated toroidal flux, Fφ, are consistent with

the expected amount of flux residing in the solar convection zone. This flux is mainly located in

latitudes below 45◦, so that, in agreement with observation, flux emergence is also largely restricted

to low latitudes. This behaviour results mainly from the fact that Bφ is generated by the latitudinal

rotational shear, which is maximal in mid latitudes, together with the equatorward flux transport

by the meridional return flow. Flux-transport dynamos relying on radial differential rotation near

the bottom of the convection zone, on the other hand, face the problem that the generation of the

toroidal flux mainly takes place in high latitudes (e.g. Nandy & Choudhuri 2002).

The full results of our parameter study are summarized in Fig. 6. Here we show only the results

for dipole parity because it invariably is the preferred mode. The four parameters describing the

subsurface dynamics that we consider are the source amplitude, α, the diffusivity, η0, the effective
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Fig. 5. Example of a solar-like dynamo solution for the parameter values η0 = 80 km2·s−1,

α = 1.4 m·s−1, ε = 1, V0 = 2.5 m·s−1. Shown are time-latitude diagrams of the radial field at

the surface (normalized to a maximum value of 1 G, upper panel) and of the radially integrated

toroidal magnetic flux (per radian, lower panel).

return flow amplitude, V0, and the quantity 0 ≤ ε ≤ 1, which represents radial differential rotation

below the near-surface shear layer. We represent the results in a similar form as in Fig. 4 with panels

indicating phase difference, period, and dynamo excitation as functions of V0 and η0. We now give

a number of such panels for various values of α and ε, which are indicated by the black bars at the

bottom and at the left side of the figure. The individual panels represent the dynamo growth rate

(positive in the orange shaded regions) and indicate relevant ‘solar’ ranges for the dynamo period

(P between 21 und 23 years, green bands) and the phase difference (∆φ between 80◦ and 100◦,

purple bands). For each panel, we have calculated 153 models (using 17 values for V0 in the range

0–8 m·s−1 and 9 values for η0 in the range 10–90 km2·s−1).

Fig. 6 shows that the domain of excited dynamos (positive growth rate) grows for increasing

values of ε, reflecting the contribution of the NSSL to dynamo excitation. The band of ‘solar’ val-

ues for the phase difference between maximum polar field and maximum flux emergence (purple

bands) is not strongly affected by changes in α, η0, and ε: in the domain of excited dynamos, permit-

ted values are in most cases reached for return flow amplitudes in the range 2–4 m·s−1. Similarly, the

dynamo period lies in the solar regime for the same range of return flow velocities. For the highest

values of α and not too low ε, periods around 22 years are only reached for very slow return flow,

indicating that the character of the dynamo in this regime (represented by the panels located in the

upper right part of the figure) has changed from transport-dominated to a dynamo wave driven by

the NSSL. However, in these cases, the phase difference does not match the required value around

90◦, so that they cannot be considered as possible models for the solar dynamo.

The panels enclosed by the thick red contour in Fig. 6 show an overlap of the bands of ‘solar’

values for period and phase difference. For lower values of ε (less effect of the NSSL), higher values
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Fig. 6. Results of the complete parameter study, for which all four parameters describing the sub-

surface dynamics were varied. For each set of parameters, a simulation was performed and the

dynamo period, growth rate, and phase difference between the emergence rate and polar fields

was determined. The green bands indicate the range of periods between 21 and 23 years, the pur-

ple bands the range of the phase difference between 80◦ and 100◦. The regions shaded in orange

indicate dynamo excitation (positive growth rate). The red outline encloses those panels where

solutions matching all three constrains exist.

of α are required to achieve solar-like behaviour. In the overlap regions, the return flow amplitude

typically has a speed of 2–3 m·s−1. Considering the sinusoidal profile of the return flow (∝ sin 2θ)

with the extrema reached at ±45◦ latitude, this value is consistent with the observed latitudinal

propagation of the activity belts of about 2◦ per year (corresponding to about 1 m·s−1). The overlap

regions are typically located not far away from the line of marginal dynamo excitation (border of

the orange region). Table 2 gives the parameter ranges for which the simulations match the solar

values of the period, phase difference, and growth rate.
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Table 2. Ranges of η and V0 for which the different observational constraints (on period, phase

and growth rate) overlap in Figure 6, for different values of α, and ε. The growth rates, phases, and

periods from the grid of simulations were interpolated to a resolution in V0 of 0.05 m·s−1.

α [m·s−1] ε η [km2·s−1] V0 [m·s−1]

1.4 0.6 60 – 70 2.10-2.40

1.4 0.8 40 – 70 2.05-2.45

1.4 1.0 10 – 70 2.00-2.40

1.8 0.2 50 2.20-2.25

1.8 0.4 20 – 60 2.05-2.45

1.8 0.6 10 – 40 2.05-2.40

1.8 0.8 10 – 20 2.20-2.30

2.2 0.0 40 2.20-2.25

2.2 0.2 10 – 40 2.05-2.45

2.2 0.4 10 – 50 1.95-2.40

2.6 0.0 10 – 30 2.05-2.35

2.6 0.2 10 – 20 2.20-2.45

3.0 0.0 10 – 30 2.15-2.50

3.4 0.0 10 2.30-2.35

5. Discussion an conclusions

We have shown that the dynamo model of Leighton (1969) can be updated to include further rele-

vant ingredients (meridional circulation, convective pumping, near-surface shear layer), so that the

results are consistent with those of more involved 2D flux transport dynamo models. The uncer-

tainties of the structure of magnetic field and flows in the convection zone can be condensed into

a few free parameters while the computational simplicity of the model allows us to systematically

scan the associated parameter space. Requiring some essential properties of the solutions (such

as period, parity, phase relation between flux emergence and polar fields, positive linear growth

rate) to agree with their observed solar counterparts, we were able to strongly narrow down the

parameter space relevant for the solar dynamo.

We find that the Sun most probably hosts a flux-transport dynamo (as opposed to a dynamo

wave driven by the NSSL) operating not too far from the threshold of marginal excitation. The latter

property is consistent with recent results for other active stars (van Saders et al. 2016; Metcalfe

et al. 2016). The effective equatorward return flow amplitude for the toroidal flux (at whichever

depth the flux is located in the convection zone) should be around 2 m·s−1, which is consistent

with the latitudinal drift rate of the activity belts. Solar properties are achieved for values of the

effective magnetic diffusivity for the toroidal flux as high as 80 km2·s−1, which puts the dynamo in

the class of ‘high-diffusivity dynamos’ (e.g. Choudhuri 2015). High diffusivity is also indicated by

the observed properties of the solar activity belts (Cameron & Schüssler 2016).

The assumption that the tachocline shear is mostly irrelevant for the generation of toroidal

magnetic flux (Spruit 2011; Cameron & Schüssler 2015; Wright & Drake 2016) leads to toroidal

field and flux emergence concentrated in low latitudes (as observed) in a natural way: the rotational
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shear due to latitudinal differential rotation peaks at mid latitudes and the deep meridional return

flow transports the toroidal flux equatorwards.

As developed here, our updated L69 model is still linear. In reality, the cycle amplitudes are lim-

ited by a nonlinear back-reaction of the magnetic field on its sources. There are various possibilities

for such a nonlinearity. While significant suppression of the rotational shear seems unlikely given

the small variations of solar rotation during the activity cycle (Howe 2009), the most promising

candidate appears to be a back-reaction on the active-region tilt angle, which is central ingredient

of the poloidal field source. Dasi-Espuig et al. (2010) and McClintock & Norton (2013) indeed

found indications for such an effect by analysing historical sunspot data (see, however Wang et al.

2015). Possibilities for the physical mechanism are enhanced resistance of stronger fields against

the Coriolis force (before emergence), thermal effects near the base of the convection zone (Işık

2015), or the effect of active-region horizontal inflows (Cameron & Schüssler 2012; Martin-Belda

& Cameron 2016). Nonlinear effects could modify the parameter space identified here for the op-

eration of the solar dynamo. However, given that the dynamo probably operates near the excitation

threshold, we do not expect very strong nonlinear effects.

In addition to scanning a large parameter space, the simplicity and computational efficiency of

the quasi-1D L69 model also allow us to perform computations covering thousands of cycles. In a

forthcoming paper, we will exploit this property to study how random variations of the source term

affect the variability of the solar cycle over long time scales.
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Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L. A., & DeLuca, E. E. 2013, ApJ, 767, L25

Nandy, D. & Choudhuri, A. R. 2002, Science, 296, 1671

Ossendrijver, M., Stix, M., Brandenburg, A., & Rüdiger, G. 2002, A&A, 394, 735

Parker, E. N. 1955, ApJ, 122, 293

—. 1984, ApJ, 281, 839

Route, M. 2016, ApJ, 830, L27

Schou, J., Antia, H. M., Basu, S., et al. 1998, ApJ, 505, 390

Spruit, H. C. 2011, in The Sun, the Solar Wind, and the Heliosphere, ed. M. P. Miralles & J. Sánchez Almeida, 39

Stix, M. 1974, A&A, 37, 121

Thompson, M. J., Toomre, J., Anderson, E. R., et al. 1996, Science, 272, 1300

Usoskin, I. G. 2013, Living Reviews in Solar Physics, 10, 1, http://www.livingreviews.org/lrsp

van Saders, J. L., Ceillier, T., Metcalfe, T. S., et al. 2016, Nature, 529, 181

Vasil, G. M. & Brummell, N. H. 2009, ApJ, 690, 783

Wang, Y.-M. 2016, Space Sci. Rev.

Wang, Y.-M., Colaninno, R. C., Baranyi, T., & Li, J. 2015, ApJ, 798, 50

Wang, Y.-M. & Sheeley, N. R. 2009, ApJ, 694, L11

Wang, Y.-M. & Sheeley, Jr., N. R. 1991, ApJ, 375, 761

Wang, Y.-M., Sheeley, Jr., N. R., & Nash, A. G. 1991, ApJ, 383, 431

Wright, N. J. & Drake, J. J. 2016, Nature, 535, 526

Yoshimura, H. 1975, ApJ, 201, 740

Acknowledgements.

Appendix A: A violation of the Parker-Yoshimura rule?

The first case discussed in the results section of Leighton (1969, henceforth L69) involves a model

with purely latitudinal differential rotation. It shows oscillatory solutions with latitudinally prop-

agating dynamo waves, leading to solar-like butterfly diagrams of the toroidal and radial field

components (cf. Fig. 1 and 2 of L69). However, if indeed Leighton’s model is mathematically

equivalent to the αΩ formalism as indicated by Stix (1974), then dynamo waves should always

propagate along isorotation surfaces (Yoshimura 1975). Since this property can be already be in-

ferred from the Cartesian model of Parker (1955), it is commonly known as the Parker-Yoshimura

rule. Consequently, a purely latitudinal gradient of the angular velocity should lead to radially prop-

agating dynamo waves (see, e.g., Köhler 1973) and no latitudinal propagation, in striking contrast

to Leighton’s result.

The origin of this apparent contradiction results from an error in Eq. (9) of L69,

∂Br

∂t
= −δ(Bφ)

FH
80R�τ

∂

∂µ

(
µBφ

)
+

1
TD

∂

∂µ

(
(1 − µ2)

∂Br

∂µ

)
, (A.1)
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where µ = cos θ and F, H, TD, and τ are parameters of the model. The critical quantity is the

function δ(Bφ), which expresses the assumption that bipolar regions contributing to the regeneration

of the poloidal field are only formed if the toroidal field exceeds a threshold value, Bc:

δ(Bφ) =

 1 for Bφ ≥ |Bc|

0 else
. (A.2)

Since Bφ depends on θ, this means that δ(Bφ) is an implicit function of θ. Consistent with the

double-ring formalism of L69, this quantity must therefore be placed within the differentiation

operator in the first term on the r.h.s. of Eq. (A.1), so that this term, R, should correctly read

R =
FH

80R�τ
∂

∂µ

[
µ δ(Bφ)Bφ

]
. (A.3)

Only for constant δ (i.e., Bc = 0), as apparently also assumed by Stix (1974), is Leighton’s formu-

lation correct (and consistent with the αΩ formalism). For Bc , 0, the regeneration term as written

in Eq. (A.1) leads to unphysical results. This can be most easily seen by considering the quantity

a(θ, t) =
1

sin θ

∫ θ

0
sin θR2Br,R�dθ , (A.4)

which is proportional to the vector potential for Br. Integrating Eq. (A.1), we obtain

∂a
∂t

= −
FHR�/80
τ sin θ

[
δ(Bφ)Bφ cos θ +

∫ θ

0

∂δ

∂θ
Bφ cos θ dθ

]
+

1
TD

∂

∂θ

(
1

sin θ
∂(a sin θ)

∂θ

)
. (A.5)

In the language of Yoshimura (1975), the first term on the r.h.s. of Eq. (A.5) represents the ‘regen-

eration action’ (see his Eq. 2.1). In this case, the term contains a spatial derivative (i.e., is not real

in Yoshimura’s sense), so that his theorem does not apply and latitudinal migration is not excluded

for purely latitudinal differential rotation.

Moreover, the incorrect term in Eq. (A.1) violates ∇ · B = 0, which requires ∂(a sin θ)/∂t = 0

for θ = π at all times, so that the radial flux integrated over the entire solar surface vanishes. This

condition is trivially satisfied for the first term in the angular brackets on the r.h.s. of Eq. (A.5) since

Bφ = 0 at the poles, but the second term involving ∂δ/∂θ does not necessarily vanish for θ = π. In

the case of the Heaviside function used by Leighton (see Eq. A.2) we have∫ π

0

∂δ

∂θ
Bφ cos θ dθ = Bc

∑
i

(± cos θi) (A.6)

where the sum is over the points where |Bφ| = Bc and the sign depends on whether δ jumps from 0

to 1 or vice versa. Clearly, this sum in most cases does not vanish, so that ∇ · B is not guaranteed.

Numerical experiments show that the dynamo solutions with no radial shear reported in L69 decay

when the correct form of Eq. (A.1), which maintains the divergence condition, is used.
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