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Abstract. Details of a theory of self-broadening of hydrogen
lines are presented. The main features of the new theory are that
the dispersive-inductive components of the interaction (van der
Waals forces) have been included, and the resonance compo-
nents have been computed by perturbation theory without the
use of the multipole expansion. The theory is applied to lower
Balmer lines and the theoretical and observational impact of the
new broadening theory is examined. It is shown that this theory
leads to considerable differences in the predicted line profiles
in cool stars when compared with previous theories which in-
clude only resonance interactions. In particular, the effect is
found to be very important in metal poor stars. The theory pro-
vides a natural explanation for the behaviour of effective tem-
peratures derived from Balmer lines by others using a theory
which includes only resonance broadening. When applied to
Balmer lines in the solar spectrum the theory predicts an im-
proved agreement between observed and computed profiles for
models which also match limb darkening curves and rules out a
model which does not. However significant discrepancies still
remain which could be due to inadequacies in our theory or the
atmospheric model or both.

Key words: Atomic processes – Line:profiles –
Stars:atmospheres

1. Introduction

Hydrogen line wings are one of the strongest tests of model
stellar atmosphere structure. In the majority of stars hydro-
gen is a dominant source of continuous opacity and thus for
strong hydrogen lines the abundance parameter is excluded.In
hot stars, where the broadening of hydrogen lines is dominated
by protons and electrons produced by the ionisation of hydro-
gen, the hydrogen line profiles are dependent only on atmo-
spheric structure and properties of the hydrogen atom. In cool
stars the metallicity is important as ionisation of metals is the
principal source of ions and electrons which contribute to the
Stark broadening of the lines while hydrogen atoms in their
ground state produce self-broadening of the lines. Further, hy-
drogen lines can be observed in all stars, unlike for example
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limb darkening curves which are one of the strongest tests for
solar photosphere models. The large range of opacities within
a single line means that many different depths are probed.

If the behaviour of the hydrogen atom in the conditions
of stellar atmospheres is understood, the hydrogen absorption
lines can be a powerful diagnostic. The transition probabili-
ties are known with extremely high accuracy. Furthermore, the
line profile shape is particularly sensitive to atmosphericstruc-
ture, due to the unique situation of the broadening which de-
rives from the “accidental degeneracy” of states in the hydro-
gen atom. However, this degeneracy means that the broadening
is extremely complex by comparison with metallic lines.

Recently there have been a number of applications of hy-
drogen lines, particularly lower Balmer lines, to the analysis of
stellar photospheric models, and in particular models of stellar
convection (Fuhrmann et al. 1993, 1994, Van’t Veer-Menneret
& Mégessier 1996, Castelli et al. 1997, Gardiner et al. 1999).
Of course, such analyses will be dependent on the accuracy of
the theories describing the hydrogen atom properties. Of par-
ticular importance for analyses of photospheres is the broad-
ening of the wings in stellar photospheric conditions. Thisis
especially true when testing convection theories, as convection
affects the atmosphere in the deeper layers which do not con-
tribute to the core of the line.

It was pointed out by Lortet & Roueff (1969) that the ef-
fect of neglecting dispersive-inductive forces should be sig-
nificant, however, this seems to have gone largely unnoticed.
They showed that relative to resonance broadening, disper-
sive interactions make a significant contribution to the self-
broadening of Balmer lines. For Paschen lines they demon-
strated that dispersive interactions should dominate the self-
broadening. However, in their analysis they used an inadequate
theory of the dispersive-inductive interaction which is known
to underestimate this type of broadening by typically a factor
of two. In this paper a theory of self-broadening of hydrogen
lines which includes a better treatment of both resonance and
dispersive-inductive interactions, which was announced in an
earlier letter (Barklem et al. 2000, hereafter Paper I), is pre-
sented. It is shown that the inclusion of these interactionshas
a significant effect on the predicted profiles of Balmer linesin
cool stars.

http://lanl.arXiv.org/abs/astro-ph/0010022v2
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2. Hydrogen Line Wing Broadening Mechanisms

Hydrogen lines are broadened by a number of different mecha-
nisms. In the wings of the lines the collisional processes dom-
inate the line profile shape. The more important of the known
broadening mechanisms for hydrogen line wings in stellar at-
mospheres are

– quasistatic broadening by collisions with ions/protons
– impact broadening by collisions with electrons
– impact broadening by collisions with hydrogen atoms
– radiative broadening
– impact broadening by collisions with helium atoms
– impact broadening by collisions with hydrogen molecules

The first three of these are expected to dominate with rela-
tive contributions depending on the effective temperatureand
metallicity of the star, and the particular line under study.

The quasistatic ion field splits the line up into Stark com-
ponents which are broadened by collisions with fast moving
electrons, hydrogen atoms and helium atoms. As they carry an
overall electric charge, electrons are substantially moreeffec-
tive at broadening than hydrogen atoms. However, in cool stars
like the sun, with a solar composition, hydrogen atoms out-
number electrons by typically four orders of magnitude and by
perhaps six orders of magnitude if the star is metal deficient.
This results in collisions with hydrogen atoms being very im-
portant. In cool stars, helium atoms usually have a number den-
sity about an order of magnitude less than hydrogen atoms, they
have no resonance interaction with hydrogen and have only half
the polarisability and speed of hydrogen atoms so their contri-
bution to the broadening is relatively unimportant. Broadening
by collisions with hydrogen molecules will only become im-
portant in very cool stars which are not considered here.

3. Unified Stark Broadening Theories

Due to it’s importance in later analysis and discussions, wefirst
make a brief summary of the situation for the Stark broadening,
which includes the effects of the ion field and the electrons.
Stark broadening of hydrogen lines has received considerable
attention. The most used of the treatments are those of Vi-
dal et al. (1970, 1971, 1973), and more recently Stehlé (1994).
The theory of Vidal et al. (1970) was the first “unified theory”
of electron and ion collisional broadening of hydrogen lines.
This theory was for the first time capable of computing the line
profile over the whole line, from the impact limit at line centre
to the quasistatic limit in the line wings, including the tran-
sition region. The calculations of Stehlé (1994) are basedon
the theory of Frisch & Brissaud (1971a, 1971b), the so called
Model Microfield Method (MMM). The major advantage of
these calculations, over the Vidal et al. (1973) calculations, is
the modelling of the dynamics of ions and non-Markovian ef-
fects (overlapping collisions). As stated by Stehlé & Jacque-
mot (1993), “MMM can be seen as an interpolating formalism
between well described asymptotic ’static’ and ’impact’ lim-
its”. By comparison the Vidal et al. (1970) theory is simply a
unified treatment of the two limits.

The Vidal et al. (1973) and Stehlé (1994) calculations are
in reasonable agreement, mostly showing differences in theline
core due to ion dynamics. In cool stars the ions are produced
by the ionisation of heavy metals like iron which move rel-
atively slowly so the effects of ion motion will be very small.
The Stehlé calculations show quite good agreement with exper-
iment (Stehlé 1994), noticeably better than Vidal et al. (1973)
in the line core. However, this difference is often lost in astro-
physical applications when the profiles are folded with Doppler
profiles (Lemke 1997). Both theories show reasonable agree-
ment in the wings.

4. Self-Broadening Theory

In the case of hydrogen, self-broadening refers to the broad-
ening of hydrogen lines by collisions with other neutral hy-
drogen atoms. It has been known for some time, that similar
atoms undergo a resonance interaction when the states of the
two atoms are capable of optical combination (Eisenschitz &
London 1930). It is also well known that two neutral atoms
have dispersive and inductive interactions, often called the van
der Waals interaction. The dispersive interaction corresponds to
the simultaneous fluctuation of the atoms brought about by the
repulsive electrostatic interaction of the electrons in each atom
which promotes and demotes the electrons to virtual states.At
long range the dispersive interaction dominates and a multi-
pole expansion of the electrostatic interaction is valid whose
first term leads to an interaction of the formC6/R6. There are
also components of the interaction which correspond to the in-
duction of virtual transitions in one atom due to the static field
of the other, such interactions are usually less important.

We now outline a new theory of self-broadening in the im-
pact approximation which includes both resonance and disper-
sive and inductive interactions, in a single theory.

4.1. Overlapping Lines in the Impact Approximation

As already explained, in stellar spectra the hydrogen linesare
split into components by the quasistatic ion field and these
components are then impact broadened by electrons, hydrogen
atoms, and to a negligible extent, helium atoms. The combined
impact broadening of the Stark components by electrons and
hydrogen can be handled in a consistent way by the use of over-
lapping line theory.

Baranger (1958) was first to examine the problem of pres-
sure broadening of overlapping lines in the impact approxi-
mation. The review by Peach (1981) covers many aspects of
line broadening theory including the case of overlapping lines.
Adopting the notation of Peach the line shape for a transition
between states of principle quantum numberni andnj is given
by

L(ω) =
1

π
Re

∑

ℓiℓjℓ′
i
ℓ′

j

〈〈niℓi(njℓj)
∗||δ||niℓ

′
i(njℓ

′
j)

∗〉〉

×〈〈niℓ
′
i(njℓ

′
j)

∗|| [h − i(ω − h0/h̄)]
−1 ||niℓi(njℓj)

∗〉〉 (1)
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in the reduced line/doubled-atom space, withδ the opera-
tor corresponding to the electric dipole operator, andh0 the
Hamiltonian. The operatorh is the operator corresponding to
N{1−SiS

†
j}av in line space, whereN is the perturber density

and{}av indicates averaging over all possible orientations of
the collision.S is the collision or scattering matrix, and here
the subscript refers to the two different upper and lower state
subspaces.

The dipole operator determines the strength of each com-
ponent’s contribution to the complete line, including possible
interference between components. In the reduced line spacethe
matrix elements ofδ are related to the reduced state space ma-
trix elements by

〈〈niℓi(njℓj)
∗||δ||niℓ

′
i(njℓ

′
j)

∗〉〉
= 〈niℓi||d||njℓj〉〈niℓ

′
i||d||njℓ

′
j〉 (2)

where via the Wigner-Eckhart theorem (eg. Edmonds 1960)
one can find

〈niℓi||d||njℓj〉 = (−1)ℓi [(2ℓi + 1)(2ℓj + 1)]
1

2

×
(

ℓi 1 ℓj

0 0 0

)

〈niℓi|r|njℓj〉 (3)

where〈niℓi|r|njℓj〉 is now simply the radial component which
can be computed by standard methods such as those discussed
by Condon & Shortley (1935). We use the readily available
computer code from Vidal et al. (1971).

4.2. Semi-classical Treatment

The second matrix in Eq. (1) determines the line profile shape
characteristics for each component. In the semi-classicalthe-
ory, assuming straight line trajectories we can show that

〈〈niℓ
′
i(njℓ

′
j)

∗|| [h − i(ω − h0/h̄)] ||niℓi(njℓj)
∗〉〉 =

N

∫ ∞

0

vf(v) dv

∫ ∞

0

2πb db

×



1 −
∑

mimjm′

i
m′

j
µ

(

ℓj 1 ℓi

−mj µ mi

) (

ℓ′j 1 ℓ′i
−m′

j µ m′
i

)

〈niℓ
′
im

′
i|SI |niℓimi〉〈njℓ

′
jm

′
j |S†

J |njℓjmj〉
]

−δℓ′
i
ℓi

δm′

i
mi

δℓ′
j
ℓj

δm′

j
mj

i(ω − ωij) (4)

whereb is the impact parameter of the collision, andf(v) the
distribution of velocitiesv. This matrix is a complex square
matrix of orderninj , and once computed can be inverted easily
by standard numerical techniques to give the matrix required in
Eq. (1).

Determination of theS matrices can be simplified if it is
assumed that there are noℓ-changing collision-induced tran-
sitions so that theS matrices are block diagonal. We com-
pute these matrices via the method proposed by Roueff (1974)
which accounts for changes in the orientation of the atoms dur-
ing the collision relative to the single orientation in which the
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Fig. 1. Model for electrostatic interaction between the two hy-
drogen atoms.

State C3 (a.u.)
1s2pσ −1.1098579
1s2pπ 0.5549290
1s3pσ −0.1779785
1s3pπ 0.0889893
1s4pσ −0.0618475
1s4pπ 0.0309238
1s5pσ −0.0290382
1s5pπ 0.0145191

Table 1.The computed values ofC3 for resonance interactions
due to ground state hydrogen perturbers.

potentials are computed, via theS matrix. The relevant ex-
pressions for the evolution have been presented in Anstee &
O’Mara (1991) and Barklem & O’Mara (1997).

In our treatment of the broadening of metallic lines it is
assumed that there are no collision-induced transitions, an as-
sumption which is justified by the collisions being too slow.In
hydrogen, due to the accidental nearℓ degeneracy, this assump-
tion may break down. This is discussed in Sect. 4.5.

4.3. The Interaction Potential

We model the interaction between two hydrogen atoms as
shown in Fig. 1. With reference to Fig. 1 the electrostatic in-
teraction is

V =
1

R
+

1

r12
− 1

r2
− 1

p1
. (5)

The resonance interaction occurs between like atoms due
to a possible exchange of excitation. When one considers the
interaction of a ground state hydrogen atom with an excited
hydrogen atom the states|100〉|nℓm〉 and|nℓm〉|100〉 are de-
generate. If the excited state is a p state it has an allowed dipole
transition to the ground state and the off-diagonal elements are
quite large compared to the diagonal matrix elements ofV
which at large separations can be neglected. It can be shown
(see for example Margenau & Kestner 1969, Fontana 1961)
that the strength of the resonance interaction∆En1m,100 to
first order is given by the matrix elements ofV between these
two states. Analytic expressions for these matrix elements, to
within a final numerical integration over the radial co-ordinate
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have been calculated fromV in Eq. (5) with the assistance of
the Mathematica package without resort to a multipole expan-
sion ofV . These matrix elements must, at long range, reduce
to the form

∆En1m,100 ≈ C3(n, m)

R3
(6)

whereC3 is a constant that must be computed. Table 1 shows
values computed forC3 for lower lying states of hydrogen in-
teracting with a ground state perturber. These were computed
by direct evaluation of the dipole-dipole matrix element inte-
grals using Mathematica. Then = 2 and n = 3 elements
were computed entirely analytically. The higher states required
some numerical evaluation. These values are in excellent agree-
ment with Stephens & Dalgarno (1974) and Kolos (1967) for
the 1s2p and 1s3p interactions and with our calculations based
on an unexpandedV when the interatomic separation is large.
Note that the interaction can be of either sign and declines dra-
matically with increasing principal quantum number which re-
sults in a multipole expansion ofV being invalid for all but 2p
states when employed in line broadening calculations.

For those perturbed atom states which are not connected to
the ground state by an allowed dipole transition, the off diag-
onal matrix elements ofV (corresponding to forbidden transi-
tions) are zero or negligible. Thus the interaction potential to
second order for these states is

∆Enℓm,100 = 〈nℓm|〈100|V |100〉|nℓm〉

+
∑

ij

〈nℓm|〈100|V |ai〉|bj〉〈bj |〈ai|V |100〉|nℓm〉
E100 + Enℓm − Ei

a − Ej
b

(7)

The summation excludes the states|ai〉|bi〉 = |100〉|nℓm〉 and
|ai〉|bi〉 = |nℓm〉|100〉. At large separation this expression is
dominated by the second term and behaves as

∆Enℓm,100 ≈ C6(n, ℓ, m)

R6
(8)

whereC6 is always negative implying an attractive force unlike
the situation for the resonance interaction where the forcecan
be attractive or repulsive.

For p states, only the second order term above applies.
Thus, as suggested by Margenau & Kestner (1969), the inter-
action energy to second order is the sum of the resonance in-
teraction and the second order dispersive-inductive term such
that

∆En1m,100 = 〈n1m|〈100|V |n1m〉|100〉

+
∑

ij

〈n1m|〈100|V |ai〉|bj〉〈bj |〈ai|V |100〉|n1m〉
E100 + En1m − Ei

a − Ej
b

(9)

the summation excluding the degenerate states as above. For
these states however, the first order term dominates due to the
resonance interaction.

In order to simplify the infinite sum over all product states
of the system in the above second order expressions we employ
the first of two approximations suggested by Unsöld (1927)

State C6 (a.u.) Ep (a.u.)
1s1s −6.499027 −0.9232
1s2s −204.7356 −0.4103

1s2pσ −174.1659 −0.4823
1s2pπ −94.4574 −0.5082
1s3sσ −920.477 −0.4498
1s3pσ −1117.789 −0.4509
1s3pπ −632.963 −0.4550
1s3dσ −725.402 −0.4466
1s3dπ −629.676 −0.4574
1s3dδ −393.8156 −0.4571

Table 2. Implied Ep values for long range H–H interac-
tions computed from theC6 calculations of Stephens & Dal-
garno (1974).

where, at a fixed separationR between the atoms, the energy
denominator is replaced by a constant valueEp(R). The in-
finite sum in the above second order expression can then be
completed using the closure relation reducing the expression to
the simpler form

∆E(2)(R) =
1

Ep(R)
[〈nℓm|〈100|V 2|100〉|nℓm〉−

〈nℓm|〈100|V |100〉|nℓm〉2] (10)

Furthermore we make the approximation that we may use the
value ofEp at infinite separation,Ep(∞), at all separationsR.

For the first few states of hydrogen we have inferred the
value ofEp from previous calculations of the van der Waals
coefficientC6 by Stephens & Dalgarno (1974), and these are
tabulated in Table 2. For higher states the value ofEp is well
approximated by−4/9 atomic units, a value obtained by ne-
glecting the contribution to the energy denominator made by
virtual states of the excited atom, the second approximation
suggested by Unsöld (1955). In the case of the long range H–H
interaction being considered here it is expected that the value
of Ep will converge towards this value for higher lying states,
and this is seen to be the case in Table 2, particularly for states
with σ-symmetry which make the largest contribution to the
interaction and hence the line broadening.

In Paper I anEp value of−4/9 was used for all states.
When Ep values from Table 2 are used we do not find any
significant change to the broadening and consequently the esti-
mate−4/9 is used for all higher states.

4.4. Potential Curves

The first and second order dispersive-inductive terms, in the
context of the Unsöld approximation, were computed using
methods described by Anstee & O’Mara (1991, 1995) and
Barklem & O’Mara (1997). For p states the total interaction
can be obtained by simply adding the second order interactions
to the resonance interaction.

We have made comparisons of a number of our spin-
averaged type potential curves with appropriate molecular-type
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spin dependent curves from the literature. Our potential curves
fulfilled our expectations from previous experience. That is,
they show excellent agreement at long range. They then have
reasonable agreement with molecular curves at “intermediate”
separations (we define these separations as where the poten-
tial starts to deviate from the long range asymptotic expansion
behaviour), far better agreement than the multipole expansion
results. At shorter range we see generally poor agreement asthe
use of perturbation theory breaks down at these separations. For
1s2ℓm interactions good agreement was observed forR greater
than 10–15a0. It will be shown however that our curves are of
acceptable accuracy in the region that is predicted by the model
to be important in broadening.

Following Anstee & O’Mara (1991) the interatomic sepa-
rations important in the determination of the line broadening
cross-sections have been identified by multiplying potentials
by a Gaussian ”lump” of unit peak amplitude and width of
2 Bohr radii and adding them to original potentials thus am-
plifying them by up to a factor of two. The line broadening
cross-section can then be calculated as a function of the lump
position and plotted against the lump position. A correspond-
ing lump appears in this plot which clearly identifies the inter-
atomic separations important in the line broadening.

Using this procedure it was found that the broadening of the
3d state is most sensitive to potentials at intermediate separa-
tions, ie. those where the potential curve starts to deviatefrom
the long range behaviour, around 10–30a0 in this case. This
is the same as has been observed in the broadening of metallic
lines by hydrogen collisions (Anstee & O’Mara 1991, Barklem
& O’Mara 1998). Due to the strong resonance interaction with
aR−3 dependence at long range for 2p states it was found that
the broadening is much more sensitive to the long range inter-
action. Even at a lump position of 60a0 the cross-section still
showed some sensitivity, not yet having converged to the value
of 1180 atomic units. It was also observed that the model ap-
pears to be more sensitive to the 1s2pπ curve than the 1s2pσ
at intermediate separations, however, we see that at largersep-
arations the broadening is more sensitive to the 1s2pσ curve.
This behaviour was somewhat unexpected and may be result
of the dispersive–inductive interaction being attractivefor each
of these states while the resonance interaction is attractive for
σ states and repulsive forπ states. In conclusion, it has been
shown that the model used here is insensitive to the accuracy
of the potentials at small separations where the curves usedin
this work are known to be inaccurate.

The dependence of the cross-section for the p–d component
of Hβ with Ep for the 2p and 4d states was also investigated.
This transition was chosen as theEp values for the upper state
are the most uncertain. It was seen that the broadening is prac-
tically independent of the 2p stateEp value, since this potential
is dominated by the first order resonance component which is
not dependent onEp. The dependence on theEp of the upper
state is actually reasonably strong when considering sayEp

varying over the range−0.8 to −0.4, however, it can be safely
assumed that theEp(∞) values for the 1s4d interactions lie be-

Line σ α ∆λmax
(a2

0) (Å)
Hα 1180 0.677 35.0
Hβ 2320 0.455 13.2
Hγ 4208 0.380 7.7

Table 3.The broadening characteristics of the p–d component
of lower Balmer lines. The cross-sectionσ is given in atomic
units for a collision speed of104 m s−1. The velocity parame-
terα gives the velocity dependence assumingσ(v) ∝ v−α. The
approximate maximum detuning for validity of the impact ap-
proximation for the self-broadening, computed forv = 14000
m s−1, is given.

tween−0.457 and−0.444. Within this range the cross-section
was found to deviate by only around 1 per cent.

Our calculations do not include exchange effects. Our in-
vestigations of metallic lines suggest that exchange effects start
to become important whenn∗ − ℓ > 3 wheren∗ is the effec-
tive principal quantum number which equalsn in hydrogen.
As shown by Lortet & Roueff (1969), the p–d transition domi-
nates the Balmer lines and exchange effects thus should not be
important in the broadening for Hα, Hβ and Hγ.

4.5. Validity of Approximations

The validity of approximations used in the calculations, isnow
considered. All of the assumptions or approximations used
in previous work for metallic lines are retained (Anstee &
O’Mara 1991). We have mentioned the various approximations
in the previous discussion of the theory. The approximations
made are the impact approximation (including the binary col-
lision assumption), use of Rayleigh–Schrödinger perturbation
theory, the classical straight path approximation and the neglect
of collision-induced transitions. In hydrogen lines the impact
approximation and neglect of collision-induced transitions may
breakdown. The impact approximation may be suspect in the
far line wings due to the fact that the lines are often so broad.
The neglect of collision-induced transitions becomes doubtful
as the levels areℓ degenerate. Hence we will discuss these two
approximations.

The validity of the impact approximation for self-
broadening of hydrogen lines was discussed by Lortet &
Roueff (1969). In view of our new calculations we can revisit
this analysis, now without the need to split the conditions into
resonance and van der Waals parts. The impact approximation
is strictly valid when the detuning (in angular frequency units)
is far less than the inverse collision duration. If one consid-
ers the detuning for which these quantities are equal, the abso-
lute maximum detuning for which the impact approximation is
valid can be estimated by

∆λmax =
λ2

2πc

v
√

σ(v)/π
(11)
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where as usualσ(v) is the broadening cross-section for colli-
sion velocityv. Using the cross-section data which we discuss
in the next section (see Table 3) we have computed∆λmax
for the lower Balmer lines and these are shown in Table 3 for
a collision speed of 14000 m s−1. Such a collision speed cor-
responds approximately to 5000 K temperature. For the sun,
hydrogen line wings are formed in regions of the atmosphere
which are typically hotter than this, and thus∆λmaxis greater
as v̄ ∝

√
T andσ ∝ T (1−α)/2 with 0 < α < 1, whereα is

defined in the caption to Table 3. The impact approximation is
only strictly valid when the detuning is far less, say aroundfive
times less, than the inverse collision duration. Using thisas the
criterion the impact approximation is only secure at detunings
of less than about 7.0̊A for Hα and about 2.6̊A for Hβ in these
conditions.

Examining the extent of the solar profiles one sees that the
approximation is valid for most of the Hα profile but is not
valid in the outer wings of the Hβ and Hγ profiles. Outside
of the limits set in Table 3 one could use methods which are
reviewed by Allard & Kielkopf (1982). However, outside the
impact regime collisions at very short range become important
where the method we use to calculate the interatomic interac-
tion is no longer valid.

In our calculations it is assumed that the collisions do not
cause transitions between nearly degenerate states of the same
n but differentℓ. Such transitions are only likely when the du-
ration of the collision is comparable with the Bohr period for
transitions between these nearly degenerate states whose split-
ting is brought about by the quasistatic ion field. This condition
is often termed the Massey criterion. If the collision duration
is either much greater (the adiabatic approximation) or much
smaller (the sudden approximation) than the Bohr period the
probability of a transition occurring is very low. In the present
context the collision duration is given bȳb/v, whereb̄ can be
estimated from the cross-section data in Table 3 and at unit op-
tical depth in the sun a typical collision speed is about 14000
m s−1. The appropriate Bohr periods for Hα, Hβ and Hγ can
be estimated from linear Stark shift parameters for hydrogen
(for example see Condon & Shortley 1935) and an estimate
of the quasistatic ion field at unit optical depth in the sun. A
comparison of the collision durations and Bohr periods show
that the Bohr period is about 400 times greater for Hα, 100
times greater for Hβ, and 50 times greater for Hγ, than the col-
lision duration at unit optical depth in the solar photosphere.
These results indicate that above unit optical depth in the sun,
the sudden approximation is valid and that for these linesℓ-
changing collisions can be neglected. Due to the increasing
Stark effectℓ-changing collisions may become important for
the higher Balmer lines. Due to the lower quasistatic ion field
in metal deficient starsℓ-changing collisions will be even more
unlikely.

5. Results

In the absence of ions and electrons, profiles, for a given tem-
perature and hydrogen atom perturber density, have been com-

Fig. 2. Hydrogen broadened profiles for Hα (top), Hβ (mid-
dle) and Hγ (bottom) at 8000 K and1018 perturbers per cu-
bic cm. Shown are the complete profile from Eq. (1) (full), the
p–d component (dashed), the s–p component (dotted) and the
p–s component (dot-dash). The full vertical line is the linebi-
sector of the full line profile. All profiles are area normalised.
Note the different scales, and that due to the different central
wavelengths of the lines the above widths should not be di-
rectly compared with each other.
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puted for Hα, Hβ and Hγ using overlapping line theory. Not
only are such profiles valuable in examining the contributions
made by the component lines to each profile but these profiles
represent a limiting real situation in the spectra of cool stars as
the metallicity is reduced to zero. In Fig. 2 the profiles obtained
from overlapping line theory are plotted along with profilesfor
the three component lines which contribute to the overlapping
line profile. These three components, each weighted by the ap-
propriate dipole matrix element, sum to give the profile.

It was pointed out by Lortet & Roueff (1969) that the
p–d component of the Balmer lines is by far the strongest.
This is clearly seen in Fig. 2, where the total profile and p–
d component profile are very similar. In Fig. 2 we see that
each component (all Lorentzian and therefore symmetric) has
a different predicted pressure induced line shift. This leads to
a very small predicted asymmetry in the total predicted line
profile. However, we should comment that we expect that the
shift calculations of our method are less reliable than those for
widths, as shifts are perhaps more dependent on strong colli-
sions and hence the short range interaction potential (Anstee &
O’Mara 1991).

One also sees a marked difference in the relative width of
the p–s component of Hγ compared to the other two lines. This
component is relatively narrow, whereas in the other lines it is
the broadest component. We expect the broadening of this com-
ponent to be seriously overestimated in both Hβ and Hγ due to
neglect of exchange effects. Fortunately however, this compo-
nent has almost negligible effect on the overall line profile.

5.1. Temperature Dependence

Previous theories of resonance broadening predict a line width
which is independent of temperature. This is a result of the in-
teraction decreasing with increasing separation likeR−3 which
leads to a cross-section which is inversely proportional tothe
collision speed. For the 2p state (resonance interactions only)
we obtain essentially the same result but for more excited p
states we observe a temperature dependence which increases
with increasing excitation. This temperature dependence be-
comes quite significant for the 5p state. This difference is a
result of increasing departure in our calculations from anR−3

dependence of the interaction on the interatomic separation in-
dicating that the multipole expansion used in previous calcula-
tions is only strictly valid for the 2p state.

When one introduces the dispersive-inductive interactions
the self-broadening is found to be no longer temperature inde-
pendent even for the low lying states. This result is of astro-
physical importance as we will discuss later.

5.2. Comparison with Ali & Griem

Fig. 3 compares line widths from our treatment of self-
broadening with those of Ali & Griem (1966, corrected), which
include only the resonance broadening of the lower 2p state,for
Hα and Hβ as a function of temperature. We find that our re-
sults are in quite good agreement with the Ali & Griem (1966)

Fig. 3. Comparison of the line width (HWHM) per perturber
with temperature computed in this work for the dominating 2p–
3d component of Hα (lower full) and 2p–4d component of Hβ
(upper full) with that of the resonance broadening theory ofAli
& Griem (dashed) for the 2p state, and our calculation of the
resonance broadening (dot-dash) for this state.

Fig. 4. Comparison showing the ratio of our results for reso-
nance broadening and the Ali & Griem (1966) theory. The full,
dashed, dot-dash and dot-dot-dot-dash lines correspond tothe
2p, 3p, 4p and 5p levels respectively.

theory when we only consider the resonance interactions as
they did. However, we find that the effect of the dispersive–
inductive interaction of other states involved in the transition
is quite substantial, particularly that resulting from thed state
of the upper level in Balmer lines. The dispersive contribution
relative to the resonance contribution for Hβ is greater than for
Hα and this is reflected in the stronger temperature dependence
of the line width.

Fig. 4 shows the ratio, as a function of temperature, of the
line widths resulting from our treatment of resonance broad-
ening of the 2p, 3p, 4p, and 5p states with those of Ali &
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Griem (1966). The difference can be attributed to a failure of
the multipole expansion of the electrostatic interaction between
the two atoms which is used by Ali & Griem (1966). Lortet &
Roueff (1969, Fig. 3) show calculations that suggest that the
multipole expansion should breakdown for all p states but the
2p state. Our calculations suggest that the break down is seen
for these states but is not severe until the 5p state for the colli-
sion speeds of interest here.

5.3. Approximation by p–d Component in Balmer lines

Using overlapping line theory, grids of profiles which result
from self-broadening alone have been computed for a range of
temperatures and hydrogen atom number densities from which
one can interpolate the appropriate profile for a given set of
physical conditions. However, we have already seen that these
complete profiles obtained from overlapping line theory are
very closely approximated by the p–d component of the rel-
evant Balmer line. When applied to synthetic Balmer lines in
the solar spectrum for Hγ the maximum difference is less than
0.2 percent of the continuum flux, less for Hβ, and even less
for Hα. Errors resulting from employing the p–d approxima-
tion in the interpretation of real stellar spectra will lie in the
noise associated with the observational data.

A possible objection to the p–d approximation is that it has
been developed in the limit of a zero quasi-static ion field. The
quasi-static ion field destroys spherical symmetry leadingto ℓ
no longer being a good quantum number so that it is no longer
strictly possible to talk about a p–d transition. This will cer-
tainly be the case in hot stars where the ions are protons pro-
duced by the almost complete ionisation of hydrogen leadingto
a strong quasi-static ion field. However, our interest is in cool
stars where the ions are produced by thermal ionisation of met-
als. The quasistatic ion field is proportional toN

2/3
i whereNi

is the ion number density which in cool stars is smaller than
that in hot stars, where the ions are largely protons, by four
orders of magnitude for a star with solar composition and by
perhaps six orders of magnitude for cool stars of low metal-
licity. Therefore in this work we are working in the limit of
very weak quasistatic ion fields. Under these circumstancesthe
p and d states are only very weakly mixed by the weak qua-
sistatic ion field with states of otherℓ with the samen. Thus in
the limit of very weak quasistatic ion fieldsℓ is an almost good
quantum number and the p–d approximation is acceptable.

The p–d approximation neglects the line shift and asym-
metry predicted using overlapping line theory. However, when
overlapping line theory and the p–d approximation are used in
the synthesis of Balmer lines in the solar spectrum the shifts
and asymmetries predicted by overlapping line theory are not
detectable due to the effects of Stark broadening and the pro-
files are in good agreement with those predicted using the p–d
approximation. Due to the reduced ion/electron density, syn-
thetic spectra for very cool stars (T< 4500 K) show some ev-
idence of shift and asymmetry when overlapping line theory is
used. However, the synthesis of the spectrum of very cool stars

is complicated by impact broadening due to molecular hydro-
gen which is not included in our calculations.

Although the p–d approximation does not significantly re-
duce computing time it does permit self-broadening data to be
presented in a way which is much more efficient than the pub-
lication of grids of line profiles. The data relevant to the appli-
cation of the p–d approximation to the first three Balmer lines
are presented in Table 3. Data in the form of grids can be ob-
tained from the authors. In spite of the advantages of the p–d
approximation grids have been used in all calculations in this
paper and in Paper I.

6. Comparison of Broadening Mechanisms

We now compare the relative strengths of broadening mecha-
nisms in the wings of lower Balmer lines through a model so-
lar atmosphere. As the profiles are not necessarily of the same
shape, the best way to do this is to compare the depth of the
normalised profile at some suitable detuning from line centre.

We plot the profile depth of each broadening mechanism
profile at 5Å detuning through the Holweger & Müller (1974)
model solar atmosphere in Fig. 5. When one considers that the
wings of the lines are formed in the region aroundlog τ

5000Å
=

0, we clearly see that the new theory makes a significant differ-
ence when compared with Ali & Griem’s theory. In this region,
rather than being weaker than the Stark broadening contribu-
tion, the contribution of self-broadening is now often compara-
ble.

In cool metal poor stars, the electrons and ions are out-
numbered by hydrogen atoms by an even greater number than
in stars around solar metallicity. Thus self-broadening inhy-
drogen lines becomes even more important. Fig. 5 also shows
similar plots to those shown for the solar model, for a MARCS
model (Asplund et al. 1997) with solar temperature (T =
5770 K) and surface gravity (log g = 4.44) but [Fe/H]= −2.0.
Here we see clearly that the new theory has a significant effect
on the contribution to broadening in the line forming region. At
great depth the Stark broadening always dominates due to the
higher ion/electron density while self-broadening (usingour
theory) dominates above an optical depth of 0.1 for solar com-
position and above an optical depth of 1 in the metal deficient
case.

7. Synthetic Stellar Spectra

The computation of synthetic stellar spectra requires the convo-
lution of all broadenings. We convolve our self-broadened pro-
files with appropriate Stark profiles from Stehlé (1994) which
are provided preconvolved with the Doppler profiles. The pro-
files are then further convolved with profiles for radiative and
helium collision broadening. In these calculations we approx-
imate the convolution in the far wings by adding the profiles
(Stark, self-broadening, radiative and helium broadening) to-
gether, following the Kurucz (1993) codes.

This procedure can be justified, for cool stars, in terms of
the p–d approximation which we know to be valid in the weak
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Fig. 5. The broadening mechanisms through the model solar atmosphere of Holweger & Müller (1974) (left) and a MARCS
(Asplund et al. 1997) model atmosphere of a metal poor [Fe/H]= −2.0 star of solar temperature and gravity (right) for Hα
(top), Hβ (middle) and Hγ (bottom). The lines plot the depth of the line profile for our self–broadening theory (full), the Ali &
Griem (1966) resonance broadening theory (dot-dash) and for the Stehlé (1994) Stark broadening theory (dash), at 5Å detuning
from the line centre. Note that the Stark profiles are folded with Doppler profiles, however, Doppler profiles make negligible
contribution at this detuning for these temperatures.

quasi-static ion field limit which we know to exist in such stars.
In the p–d approximation in the absence of ions the line is
well represented by the p–d component alone which will have a
Lorentz profile due to impact broadening by electrons and hy-
drogen atoms. In the presence of a given weak quasi-static ion
field this profile will be Stark shifted by an amount dictated by
the first order Stark shift of the p–d component. The final pro-
file can then be found by integrating this profile over the Holts-
mark distribution of quasi-static ion fields which in the weak
field limit will be well approximated by a Lorentzian with a
width which is the sum of the electron impact width and self-
broadening width somewhat enhanced by the smearing effect
of the quasi-static ion field. Using this as a guide an alterna-
tive procedure is to calculate the profile in the absence of self-

broadening using, for example, the profiles of Stehlé (1994).
In the weak quasi-static ion field limit these profiles shouldbe
well approximated by a Lorentzian (for example Stehlé 1996)
with the full impact width containing all line components (but
dominated by the p–d component) somewhat enhanced by the
smearing effect of the weak quasi-static ion field. As the profile
is Lorentzian in the wings the absorption will be proportional
to this enhanced impact width. The profile of the line in the ab-
sence of ions and electrons produced by self-broadening will
also be Lorentzian with a depth in the wings proportional to
the self-broadening impact width which again contains the ef-
fect of all components but dominated by the p–d component.
Thus all three sources of broadening can be represented by a
Lorentzian with a width which is simply the sum of the widths
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Teff Hα Hβ Hγ

(K)
5000 12.7 15.6 17.6
6000 10.3 7.7 7.6
7000 4.6 2.5 2.3

Table 4. Percentage increases in equivalent width using our
self-broadening theory compared with Ali & Griem (1966) for
the synthetic lower Balmer line profiles computed for MARCS
models of various effective temperature, with solar gravity and
metallicity.

of the two profiles or equivalently in the line wings by sim-
ply adding the profiles. The effect of radiative broadening and
broadening by helium collisions can be included in the same
way.

Test calculations show this procedure for the convolution
to be an excellent approximation for the cases considered here.
For example in the solar synthetic profile, no difference canbe
seen between the profile computed in this way and that com-
puted with a complete numerical convolution. The approxima-
tion gradually becomes worse in cool stars, and starts to break
down in models of effective temperatures around 4000 K, as
the lines are no longer strong enough for this approximationto
be valid.

We use the spectral synthesis code of Piskunov (1992) for
the radiative transfer, which assumes LTE. Radiative broaden-
ing and collisional broadening by helium are included in all
calculations, though are found to be negligible in most condi-
tions.

7.1. The Impact of the Self-Broadening Calculations on Line
Profiles

The most interesting question, is how much difference the the-
ory makes to predicted stellar line profiles when compared to
the Ali & Griem (1966) theory, and thus the commonly used
Kurucz (1993)/Peterson (1969) codes.

Fig. 6 shows computed line profiles for MARCS mod-
els (Asplund et al. 1997) for a range of effective temperatures at
solar gravity and metallicity, using both our theory and theAli
& Griem (1966) resonance broadening theory. Table 4 shows
the increase in the equivalent width brought about by our self-
broadening theory. Although Fig. 3 indicates the effect of the
new theory on the self-broadening is larger in Hβ than Hα this
is not seen in the synthetic stellar spectra in Fig. 6 due to the
fact that the Stark broadening profile widths are increased by
an even greater amount, as shown in Fig. 5.

The decline in the difference between the two theories with
increasing temperature is due to the increase in the Stark broad-
ening resulting from ionisation of hydrogen as temperaturein-
creases. For stars earlier than F type the self-broadening will
become irrelevant as it will be completely overwhelmed by
Stark broadening.

Fig. 6. Synthetic flux profiles for Hα (top), Hβ (middle) and
Hγ (bottom) for MARCS models ofTeff = 5000, 6000 and
7000 K (top to bottom) for solar gravity and metallicity. The
full lines use our line broadening theory and dashed lines use
Ali & Griem’s resonance broadening theory for the hydrogen
broadening.
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7.2. Predicted Impact on Effective Temperature
Determinations

In Paper I we made preliminary estimates of the effect that
the new calculations would have on the determination of ef-
fective temperatures. Here we present an extended analysisin-
cluding Hγ calculations and covering higher effective tempera-
tures. Also included are new estimates for [Fe/H]= −1.0. The
low metallicity calculations have also been redone on a finer
model grid.

We computed a grid of MARCS models (As-
plund et al. 1997) over a range of temperatures, with
solar gravity, for metallicities of [Fe/H]= 0.0,−1.0 and−2.0.
We used the grid to estimate the difference inTeff determined
from our theory and the Ali & Griem (1966) theory. For each
model we computed synthetic profiles as described above
using both our theory and the Ali & Griem (1966) theory.
For each profile resulting from our theory we then found
the best matching profile (in the line wings) using the Ali &
Griem (1966) theory, and recorded the temperature difference
between the models used to generate the two profiles. The
results, plotted in Fig. 7, indicate that the new line broadening
calculations lead to a significant lowering of the derived
effective temperature.

We see that the new results for Hγ are extremely similar
to those for Hβ. This is explained by Fig. 5 where we see the
relative contribution of Stark and self-broadening through the
atmospheres are relatively similar in these two lines.

As pointed out in Paper I, the peak temperature “error” and
the difference in location of the peak for Hα from the other
two lines is of interest. Synthetic profiles obtained using our
theory are always stronger than those obtained using Ali &
Griem (1966) theory. In Ali & Griem (1966) theory the H-
atom broadening is resonance broadening only and is therefore
temperature independent while in our theory the dispersive-
inductive contribution leads to an increase with temperature.
At low Teff , H-atom broadening makes its greatest contribu-
tion and asTeff is raised the temperature “error” increases be-
cause of the growth in the H-atom broadening in our theory.
Eventually Stark broadening begins to dominate accountingfor
the peak followed by a decline as Stark broadening becomes
more and more dominant asTeff increases. As Stark broaden-
ing in Hβ and Hγ is greater than in Hα the peak occurs at
a lower Teff . The higher peak temperature “error” for metal
poor stars reflects the higher temperature required to increase
the ion/electron density sufficiently. This can be tested obser-
vationally. In agreement with this result Gardiner et al. (1999,
Fig. 9), with mixing length parameterα = 1.25 and using the
Ali & Griem (1966) theory, found thatTeff obtained from Hα
is larger than for Hβ atTeff around 6000–7000K while the situ-
ation is reversed for stars with a lowerTeff although admittedly
there is only a small sample of stars in this domain. It is perhaps
significant to note that Castelli et al. (1997) find, using Ali&
Griem (1966) theory and the solar KOVER model, thatTeff has
to be raised by 100–150K (consistent with the peak of 120K for
Hα in Fig. 7) in order to fit the observed solar profiles.

Fig. 7. The predicted difference in effective temperature deter-
minations from our new calculations, and calculations using the
resonance broadening theory of Ali & Griem (1966) for Hα,
Hβ and Hγ. Plots are shown for solar metallicity (top), 1/10
solar metallicity (middle) and 1/100 solar metallicity (bottom),
in both cases for solar surface gravity. The “reference tempera-
ture” is that which would be found using our broadening theory.
The plot then predicts how much higher the effective tempera-
ture derived using the Ali & Griem (1966) theory is expected
to be.
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8. Comparison with Solar Observations

The comparison with observed solar spectra requires the useof
a photospheric model. In this work we use one-dimensional
plane-parallel models which are freely available. Namely
these are the semi-empirical solar model of Holweger &
Müller (1974) hereafter HOLMUL, a MARCS theoretical so-
lar model (Asplund et al. 1997), and two Kurucz theoretical so-
lar models (Kurucz 1993; Castelli et al. 1997). The two types
of Kurucz models used, that with and that without convective
overshooting, are hereafter KOVER and KNOVER models re-
spectively. For both MARCS and Kurucz models we use the
default mixing length parametersα, namely1.25 for Kurucz
and1.5 for MARCS. We retain the default structure parame-
tersy, namely1/2 for Kurucz and3/(4π2) for MARCS.

It is expected that MARCS and KNOVER models are quite
similar as they are both based on essentially the same physics
and “standard” mixing length convection theory although with
different parameters. For the solar models used here, the com-
puted Balmer line profiles of MARCS and KNOVER were in
excellent agreement. Hence below we will only discuss the
KNOVER model. However we caution that this agreement may
not extend to other stellar parameters. In the KOVER models
Kurucz has introduced “approximate overshooting” to the con-
vection treatment. The approximate overshooting assumes “the
centre of a bubble stops at the top of the convection zone so that
there is convective flux one bubble radius above the convection
zone. That flux is found by computing the convective flux in
the normal way and then smoothing it over a bubble diameter”
(Kurucz 1992).

The purpose of this comparison is to test the broadening
theory, not the models or convection treatments. The validity
of the theory is tested by comparison of Balmer line results
with those of other model predictions such as limb-darkening
curves. This situation is clearly not ideal due to uncertainties
in the models and the particular sensitivity of Balmer linesto
deep layers and convection treatment. However, lack of labora-
tory data makes this our best option at present. 3D convective
models will be investigated in future.

8.1. Profile Comparisons

Limb-darkening curves are a powerful test of solar mod-
els. On this basis alone HOLMUL is the preferred model
as it reproduces limb-darkening curves better than either
KOVER, KNOVER or MARCS (Blackwell et al. 1995;
Castelli et al. 1997). However Castelli et al. (1997) found that
in spite of KNOVER being unable to reproduce limb-darkening
curves as well as KOVER it produces a better fit to hydrogen
line profiles when Ali & Griem (1966) theory is used.

As HOLMUL is the preferred model on the basis of limb-
darkening data and its ability to reproduce the behaviour ofa
large sample of strong metallic lines, computed synthetic pro-
files for HOLMUL using both our self-broadening theory and
Ali & Griem (1966) theory are compared with the observed so-
lar flux spectrum of Kurucz et al. (1984, NSO/Kitt peak FTS

data) in Fig. 8. We do not adjust the Hβ continuum here as in
Paper I. It is seen that for all three lines our broadening the-
ory reduces the discrepancy with observation but the remain-
ing discrepancy is still significant. As line blending is signif-
icant, particularly in Hβ and Hγ profiles, computations were
performed which included all available lines from VALD, the
Vienna Atomic Line Database (Kupka et al. 1999) for all three
Balmer lines. The predicted residual fluxes with and without
blending were found to be in good agreement in the windows
between the blending lines, as shown for Hβ in Fig. 9. How-
ever the inclusion of blending lines does not change the con-
clusion that the synthetic profiles are too weak to match the
observations. As there are many blending lines without dataor
unidentified, particularly for Hβ and Hγ, there is some element
of uncertainty in this conclusion.

In Fig. 10 predicted Balmer line profiles using our theory
for HOLMUL, KOVER and KNOVER solar models are com-
pared with the observed spectrum. KNOVER predicts profiles
for all lines that are generally too strong. If blending lines are
included the discrepancy is even greater so KNOVER is now
a model which fits neither the limb-darkening nor the Balmer
line profiles and is therefore strongly ruled out by our line-
broadening theory. For Hα and Hβ the synthetic profiles ob-
tained using the KOVER and HOLMUL models are in good
agreement with each other but are insufficiently strong to match
the observed profiles. In the outer parts of these profiles the
discrepancy may be due the failure of the impact approxima-
tion (see Table 3) an inadequate temperature structure or both.
In the far wings of Hα the synthetic profiles obtained using
the KOVER and HOLMUL models are again too weak. Within
5 Å of line centre the profile predicted by the KOVER model is
too strong which weakly favours the HOLMUL model. The ob-
served core of the line, within 0.7̊A of line centre, the observed
profile is much stronger than any of the synthetic profiles. This
part of the line is formed in the low chromosphere which is not
included in our synthetic modelling.

In summary our self-broadening theory is superior to the
Ali & Griem (1966) theory because it reduces the discrep-
ancy between the observed and computed Balmer line profiles
when the preferred HOLMUL model is used and leads to the
KNOVER model being discarded thus resolving the dilemma
posed by a model which provides the best match to the Balmer
line profiles but fails to match limb-darkening curves when the
Ali & Griem (1966) theory is used. In spite of these successes
significant discrepancies remain between theory and observa-
tion. However the behaviour of the KNOVER model suggests
that it may be possible to construct a model with a temperature
structure somewhere between the HOLMUL and KNOVER
models which provides the best simultaneous match to the limb
darkening curves and the Hα profile where the validity of the
impact approximation is not an issue. The impact approxima-
tion is an important issue for Hβ and Hγ. Fitting of the profiles
of these lines should be confined to the detunings indicated in
Table 3 and even then with some caution as these detunings
correspond to the extreme limit of validity of the impact ap-
proximation.
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Fig. 8.Comparisons of synthetic flux profiles with observations (NSO/Kitt Peak FTS data) for the sun for Hα (top), Hβ (middle)
and Hγ (bottom). All models lines use the HOLMUL model. The full line uses our self-broadening theory while the dashed line
uses the Ali & Griem (1966) theory.

9. Concluding Remarks

We have presented a theory of self-broadening of hydrogen
lines, which includes both resonance and dispersive–inductive
interactions. The theory was used to synthesise Balmer lines in
cool stars and shown to make a considerable difference com-
pared to the commonly used Ali & Griem (1966) theory which
does not include the dispersive-inductive interactions.

The new theory perhaps explains behaviour observed by
Gardiner et al. (1999) and Castelli et al. (1997) when using
Balmer lines and Ali & Griem (1966) theory to obtain effec-
tive temperatures for stars including the sun. It is superior to

Ali & Griem (1966) theory when applied to Balmer lines in
the solar spectrum as it reduces the discrepancy between ob-
served and computed profiles when the HOLMUL model is
used and leads to the KNOVER model being classed as unac-
ceptable both for its failure to adequately model the observed
limb darkening and Balmer line profiles. However significant
discrepancies between theory and observation for the Balmer
lines still exist for the KOVER and HOLMUL models which
could be due to our theory or the photospheric models.

Work is in progress on the determination of the effective
temperatures of a sample of dwarf stars using our theory and
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Fig. 9. Comparison of synthetic flux profiles with observations (double line – NSO/Kitt Peak FTS data) for the sun for Hβ
both with (full line) and without (dashed line) blending lines from VALD, both employing the HOLMUL model and our self-
broadening theory. Macroturbulence of 1.6 km s−1 and rotational velocity ofv sin i = 1.8 km s−1 are used.

observed Balmer lines for the stars in the sample. Prelimi-
nary results indicate a stronger correlation between the effec-
tive temperatures obtained from the Balmer lines and the effec-
tive temperature obtained by other methods such as the infrared
flux method when our theory is used compared with that found
when Ali & Griem (1966) theory is used.

We plan to extend the theory to Paschen lines. We expect
that in these lines dispersive-inductive interactions will dom-
inate resonance interactions but not Stark broadening. Many
of the approximations made in developing the theory are only
valid in cool stars with weak quasistatic ion fields. For stars of
earlier spectral type it may be necessary to develop a Unified
Theory to correctly include self-broadening. The true limit of
validity of the impact approximation in Hα and Hβ needs to be
established.
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Stehlé C., 1994, A&AS 104, 509
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Fig. 10.Comparisons of synthetic flux profiles with observations (NSO/Kitt Peak FTS data) for the sun for Hα (top), Hβ (middle)
and Hγ (bottom). Full and dashed lines use the KOVER and KNOVER models respectively, and the dot–dashed lines use the
HOLMUL model.


