
ar
X

iv
:a

st
ro

-p
h/

03
05

12
1v

2 
 2

1 
A

ug
 2

00
3

Black hole versus cosmological horizon entropy

Tamara M. Davis, P. C. W. Davies & Charles H. Lineweaver

Abstract. The generalized second law of thermodynamics states that entropy always

increases when all event horizons are attributed with an entropy proportional to their

area. We test the generalized second law by investigating the change in entropy when

dust, radiation and black holes cross a cosmological event horizon. We generalize

for flat, open and closed Friedmann-Robertson-Walker universes by using numerical

calculations to determine the cosmological horizon evolution. In most cases the loss of

entropy from within the cosmological horizon is more than balanced by an increase

in cosmological event horizon entropy, maintaining the validity of the generalized

second law of thermodynamics. However, an intriguing set of open universe models

show an apparent entropy decrease when black holes disappear over the cosmological

event horizon. We anticipate that this apparent violation of the generalized second

law will disappear when solutions are available for black holes embedded in arbitrary

backgrounds.

PACS numbers: 04.70.Dy, 98.80.Jk, 02.60.Jh, 04.20.Cv

http://lanl.arXiv.org/abs/astro-ph/0305121v2
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1. Introduction

A significant advance in physical theory was made by Bekenstein with the suggestion

(Bekenstein 1970) that the area of the event horizon of a black hole is a measure of

its entropy. This hinted at a deep link between information, gravitation and quantum

mechanics that remains tantalizingly unresolved today. Bekenstein’s claim was bolstered

by Hawking’s application of quantum field theory to black holes (Hawking 1975),

from which he deduced that these objects emit thermal radiation with a characteristic

temperature,

Tb =
1

8πmb

, (1)

for a Schwarzschild hole, where mb is the mass of the black hole, and we use units

G = h̄ = c = k = 1. Hawking’s calculation enabled the entropy of a black hole Sb to be

determined precisely as,

Sb = 16πm2

b
, (2)

=
Ab

4
, (3)

where Ab is the event horizon area. Eq. 3 also applies to spinning and charged black

holes. It was then possible to formulate a generalized second law of thermodynamics

(GSL),

Ṡenv + Ṡb ≥ 0, (4)

where Senv is the entropy of the environment exterior to the black hole and an overdot

represents differentiation with respect to proper time, t. Thus when a black hole

evaporates by Hawking radiation its horizon area shrinks, its entropy decreases, but the

environment gains at least as much entropy from the emitted heat radiation (Hawking,

1975). Conversely, if a black hole is immersed in heat radiation at a higher temperature,

radiation will flow into the black hole and be lost. The corresponding entropy reduction

in the environment is offset by the fact that the black hole gains mass and increases in

area and entropy.

Gibbons & Hawking (1977) conjectured that event horizon area, including

cosmological event horizons, might quite generally have associated entropy. A prominent

example is de Sitter space, a stationary spacetime which possesses a cosmological event

horizon at a fixed distance (3/Λ)1/2 from the observer, where Λ is the cosmological

constant. It was known (see e.g. Birrell & Davies 1981) that a particle detector at rest

in de Sitter space responds to a de Sitter-invariant quantum vacuum state as if it were

a bath of thermal radiation with temperature,

TdeS =
1

2π Λ1/2
. (5)

It thus seemed plausible that the GSL could be extended to de Sitter space. Subsequent

work by Davies (1984), and Davies, Ford and Page (1986) supported this conclusion.

There were, however, some problems. Although the de Sitter horizon has thermal
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properties, the stress-energy-momentum tensor of the de Sitter vacuum state does

not correspond to that of a bath of thermal radiation (unlike for the black hole

case). Instead, it merely renormalizes the cosmological constant. Secondly, there is

no asymptotically flat external spacetime region for de Sitter space, which precludes

assigning a mass parameter to the de Sitter horizon. This makes it hard to interpret

trading in energy and entropy, as is conventional in thermodynamic considerations,

between de Sitter space and an environment. A final problem is that in the black

hole case Bekenstein attributed the entropy of the hole to its total hidden information

content, which is readily evaluated. For a cosmological horizon, which may conceal

a spatially infinite domain lying beyond, the total hidden entropy would seem to be

ill-defined. Some of the most recent work addressing these issues can be found in

Padmanabhan (2002).

The foregoing concerns are amplified in the case of more general cosmological

horizons that are non-stationary and do not even have an associated well-defined

temperature. Consider the general class of Friedmann-Robertson-Walker (FRW) models

with scalefactor R(t),

ds2 = −dt2 +R2(t)
[

χ2 + S2

k(χ)(dθ2 + sin2 θdψ2)
]

, (6)

where Sk(χ) = sinχ, χ, sinhχ for closed, flat and open models respectively. One may

define a conformal vacuum state adapted to the conformally flat geometry of these

spaces, and consider the response of a quantum particle detector (Birrell & Davies

1981, Section 3.3) to such a state. The response will generally be non-zero, but the

perceived spectrum will not be thermal. This raises the question: just how far can one

extend the GSL to event horizons? Could it apply even to non-stationary cosmological

models in spite of the absence of a clear thermal association? And if the GSL cannot

be thus extended, what are the criteria that determine the limits of its application?

We consider these questions to be of significance to attempts to link information,

gravitation and thermodynamics, and in recent discussions about the total information

content of the universe (Lloyd 2002). They may also assist in attempts to formulate a

concept of gravitational entropy, and to clarify the status of the holographic principle

(Susskind, 1995; Bousso 2002).

In this paper we explore the range of validity of the GSL. We assume cosmological

event horizons do have entropy proportional to their area, as Gibbons and Hawking

(1977) proposed. The total entropy of a universe is then given by the entropy of the

cosmological event horizon plus the entropy of the matter and radiation it encloses. In

Sect. 2 and Sect. 3 we assess the loss of entropy as matter and radiation disappear over

the cosmological event horizon and show that the loss of entropy is more than balanced

by the increase in the horizon area. We then consider in Sect. 4 the case of a FRW

universe filled with a uniform non-relativistic gas of small black holes. This enables

a direct entropic comparison to be made between black hole and cosmological event

horizon area. As the black holes stream across the cosmological horizon, black hole

horizon area is lost, but the cosmological horizon area increases. We may thus assess
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Figure 1. The comoving distance, proper distance, area and volume of the

cosmological event horizon is shown for three different cosmological models.

The models’ matter (energy) density and cosmological constant (ΩM,ΩΛ) is

given in the legend in the upper right corner. The dimensionless comoving

distance is not shown for the (ΩM,ΩΛ) = (0.3, 0.7) case since R0 is undefined in

this model. Note that although the radius and volume within the cosmological

event horizon both decrease for periods in the (ΩM,ΩΛ) = (0.3, 1.4) universe,

the area always increases.

the relative entropic ‘worth’ of competing horizon areas.

2. Dust filled universe

The simplest case to consider is the classic homogeneous, isotropic FRW universe filled

with pressureless dust. The dust in this model is assumed to be comoving. The dust

is therefore in the most ordered state possible and has zero entropy which allows us to

restrict our thermodynamic considerations to the cosmological event horizon alone.

The time dependence of the scalefactor, R(t), is given by the Friedmann equations,

ρ̇ = − 3H(ρ+ p), (7)

3H2 = 8πρ+ Λ − 3k/R2, (8)

where ρ and p are the density and pressure of the cosmological fluid respectively

and H = Ṙ/R is Hubble’s constant. We assume the present day Hubble’s constant

H0 = 70 kms−1Mpc−1 throughout. The radiation density and cosmological constant can

be normalized to ΩM = 8πρ0/3H
2
0 and ΩΛ = Λ/3H2

0 respectively so that ΩM + ΩΛ = 1

represents flat space at the present day. The dimensionless scalefactor a(t) is defined as

a(t) = R(t)/R0 where R0 is the present day radius of curvature of the Universe,

R0 =
c

H0

∣

∣

∣

∣

1

1 − ΩM − ΩΛ

∣

∣

∣

∣

1/2

. (9)
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Figure 2. This is a close-up of the region near the origin of Fig. 1 for the

(ΩM,ΩΛ) = (0.3, 1.4), k = +1 case, which appears to show a curious rise and

fall in event horizon area at early times. However, this is an artefact of the

finite spatial size of closed FRW universes. When the comoving distance to the

event horizon exceeds π it is possible for an observer to see past the antipode.

The event horizon appears at the antipode at the finite time 1.0Gyr in our

example.

Equation 8 can then be rewritten as,

ȧ = H0

[

1 + ΩM(1/a− 1) + ΩΛ(a2 − 1)
]1/2

. (10)

Eternally expanding models possess event horizons if light can not travel more than a

finite distance in an infinite time,

χc(t) =
∫

∞

t

dt′

a(t′)
<∞. (11)

Our cosmological event horizon is the distance to the most distant event we will ever

see (the distance light can travel between now and the end of time) in contrast to our

particle horizon, which is the distance to the most distant object we can currently see

(the distance light has travelled since the beginning of time). The integral in Eq. 11

represents the comoving distance to a comoving observer’s cosmological event horizon

at time t. The proper distance to the cosmological event horizon is then rc = R(t)χc.

The area of the cosmological horizon generalized to curved space is,

Ac = 4πR2(t)S2

k(χc), (12)

which reduces to Ac = 4πr2
c in flat space. Gibbons and Hawking (1977) suggested that

the entropy of the cosmological event horizon is Ac/4, analogous to the black hole case

(Eq. 3).
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Davies (1988) showed that the cosmological event horizon area of a FRW universe

never decreases, assuming the dominant energy condition holds, ρ + p ≥ 0. This is

analogous to Hawking’s area theorem for black holes (Hawking 1972). In black holes

the dominant energy condition is violated by quantum effects, allowing black holes to

evaporate and shrink. There is no analogous shrinking in cosmological horizon area

known.

It is interesting to note that the area of the cosmological event horizon increases

even in models in which the radius of the event horizon decreases. Closed eternally

expanding universes have a decreasing event horizon radius at late times, but the effect

of curvature forces the area to increase nevertheless, e.g. (ΩM,ΩΛ) = (0.3, 1.4) in Fig. 1.

3. Radiation filled universe

To investigate the interplay of entropy exchange between the cosmological event horizon

and an environment we consider an eternally-expanding FRW universe with a positive

cosmological constant, filled with radiation of temperature T (t). Such a universe has

an event horizon radius that tends toward the de Sitter value, rdeS = 1/H , at late

times. Most Λ > 0 universes tend toward de Sitter at late times except the few that

have a large enough energy density to begin recollapse before they become cosmological

constant dominated. We include constants in this and subsequent sections to explicitly

ensure environment and horizon entropy are being compared in the same units. The

entropy of the cosmological event horizon is,

Sc =

(

kc3

h̄G

)

Ac

4
. (13)

Radiation energy density obeys ρr = σT 4 (where the radiation constant σ =

π2k4/15c3h̄3) while entropy density follows sr = (4/3)ρr T
−1. This means the total

entropy within an event horizon volume, Sr = srVc, is given by,

Sr =
4

3
σ1/4 ρ3/4

r
Vc. (14)

The equations for the volume of the cosmological event horizon in various FRW models

are shown in Appendix A. We take p = ρr/3 for radiation in the Friedmann equations

(Eq. 7 and Eq. 8). The radiation density decays as ρr = ρ0a
−4 (or T ∝ 1/a) as

the universe expands so the radiation entropy within a constant comoving volume

(V ∝ a3) remains constant. However, the radiation entropy within the cosmological

horizon decreases as the comoving volume of the event horizon decreases (χc decreases

in Eq. A.2) and radiation crosses the cosmological event horizon.

The evolution of the universe is dependent on the density of radiation, so the model

universe we choose constrains the radiation density according to Ωr = 8πGρ0/3H
2
0 .

(The normalized radiation density, Ωr, replaces ΩM in Friedmann’s equation with the

difference that Ωr decays as a−4.) Allowing for this constraint we replace the dust of

Sect. 2 with radiation and calculate the loss of entropy over the cosmological event

horizon as the universe evolves. Although the radiation represents much more entropy
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Figure 3. This shows the radiation entropy Sr compared to the horizon entropy

Sc in three radiation filled FRW universes. Each graph is labeled with the

model, (ΩM,ΩΛ). Only early times are shown because that is the only time

that the radiation entropy is comparable to the horizon entropy. The radiation

entropy is not constant but decreases rapidly. However, the decrease is orders

of magnitude slower than the increase in cosmological event horizon entropy,

so does not show up on this scale. Total entropy Sc +Sr never decreases so the

GSL holds for these models.

than dust, in a realistic cosmological model this entropy is minuscule compared to that

of the cosmological event horizon. At the present day in a (Ωr,ΩΛ) = (0.3, 0.7) radiation

dominated FRW universe the radiation entropy would be 14 orders of magnitude

smaller than the entropy of the horizon. At early times the event horizon was tiny

and the radiation was very hot – it is only at early times that we could expect

the radiation entropy to be significant enough to compete with the increase in event

horizon area. Figure 3 shows some numerical solutions typical of a wide class of

radiation-filled models. In all cases we find that the total entropy increases with

time (Ṡr + Ṡc > 0) in conformity with our extended interpretation of the generalized

second law of thermodynamics. Davies and Davis (2002) show analytically that thermal

radiation crossing the cosmological event horizon satisfies the GSL in the limit of small

departures from de Sitter space as long as the radiation temperature is higher than

the cosmological horizon temperature. A rigorous analytical proof for the general FRW

case, however, is lacking.
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4. Black hole-de Sitter spacetimes

A way to directly compare the entropic worth of cosmological horizons and black hole

horizons is to assess the change in entropy as black holes cross the cosmological horizon.

To this end we examine FRW universes containing a dilute pressureless gas of equal mass

black holes. We ignore the Hawking effect which would be negligible for black holes larger

than solar mass over the timescales we address‡. As the universe expands the density of

the black hole gas decreases (ρb ∝ a−3) and black holes disappear over the cosmological

event horizon, resulting in a decrease in the black hole contribution to the total entropy

within a horizon volume. The area of the cosmological event horizon increases in turn§.

To ascertain whether the GSL is threatened we ask: does the cosmological event horizon

area increase enough to compensate for the loss of black hole entropy?

We find that for realistic cosmological models the increase in cosmological horizon

area overwhelms the loss of black hole horizon area, in clear conformity with the extended

GSL. Greater interest, then, attaches to the case where the black holes are relatively

large enough to represent a significant fraction of the total horizon area. In a realistic

case this would refer only to very early epochs, on the assumption that primordial black

hole formation had taken place. In what follows we concentrate on the case where the

ratio of black hole horizon area to total horizon area is large.

Davies and Davis (2002) show that black holes crossing the cosmological event

horizon maintain the GSL in the limit of small departures from de Sitter space as

long as rb <
∼ rc (the black holes are smaller than the cosmological event horizon). Here

we summarize numerical investigations that extend this work to general cosmological

models.

The area of the cosmological event horizon is easy to calculate in arbitrary (eternally

expanding) FRW universes, as shown in Sect. 2. Not so the event horizon area

of black holes because the solutions require us to deal with an overdensity in an

homogeneous, time-dependent background. The Schwarzschild metric applies for a black

hole embedded in empty space and the relationship between black hole mass and event

horizon radius, rb, is mb = rbc
2/2G. The Schwarzschild-de Sitter solution applies for a

black hole embedded in a de Sitter universe (a universe with zero mass density and a

constant positive cosmological constant, Λ). This solution should therefore be a better

approximation than pure Schwarzschild at late times in a FRW universe with Λ > 0.

The mass of a black hole in such a space is (Gibbons & Hawking, 1977),

mb =
rbc

2

2G

(

1 −
Λr2

b

3c2

)

. (15)

‡ Black hole evaporation time ∼ (m/msolar)
3 × 1066yr.

§ Cause and effect become confused when we try to assess cosmological event horizons in an analogous

way to black holes. The normal language used for cosmological event horizons would be to say that

the matter density and cosmological constant of the universe determine the rate of expansion of the

universe and thus determine the increase in distance to the event horizon. Alternatively we can state

that the loss of matter (energy) over the cosmological horizon results in the increase in distance to the

event horizon.
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Figure 4. The evolution of total horizon area is shown as a function of time for

three FRW models filled with a pressureless gas of black holes. The upper row has

rb = 0.1rdeS while the lower row has rb = 0.01rdeS. The vertical axis has been scaled

to the de Sitter horizon area, AdeS, in each model. The dotted line shows the total area

of black hole horizons within the cosmological event horizon. The dashed line shows

the area of the cosmological event horizon. The thick solid line shows the sum of the

black hole and cosmological horizon areas. The thin, solid vertical lines mark turning

points in the total horizon area curve. Corrections have been made for the three

assumptions listed in Sect. 4. The gray shading indicates the region that should be

neglected because black holes overlap. The black hole contribution to area starts from

zero and peaks because black holes initially have a radius larger than the cosmological

horizon radius and so are excluded from the area calculation by Eq. B.2. Here the

areas of black holes have been calculated assuming they were in the geometry of the

type of universe they are embedded in (using Eq. 19). The results are qualitatively

unchanged when Ab = 4πr2

b
is used.

There are two positive real solutions for rb. The outer is identified with the cosmological

event horizon radius, rc. We approximate a black hole embedded in an arbitrary FRW

universe using the Schwarzschild-de Sitter solution. At early times black holes would

have a smaller horizon area than this approximation due to the presence of other black

holes within the cosmological horizon.

We have the freedom to choose the mass of our black holes arbitrarily. The number

density of black holes is then constrained by the need to remain consistent with the

matter density of the universe. Recall, the normalized matter density of the universe,

ΩM, is related to the density by,

ρ0 =
3H2

0
ΩM

8πG
. (16)

We assume that the black holes are the only contribution to the matter density of the

universe, ρ0 = ρb0
. Let nb0

be the current number density of black holes. Then,

ρb0
= mb nb0, (17)
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nb0
=

3H2
0 ΩM

8πGmb

. (18)

The black hole number density drops like nb = nb0
a−3 as the universe expands. The

surface area of a single black hole’s event horizon will depend to some extent on the

spacetime geometry of the cosmological model. For a wide range of values of the ratio

rb/R the resulting corrections to the black hole horizon area are negligible. But for

very large black holes or very early epochs these corrections may be significant. A

full treatment of black hole solutions in time-dependent cosmological backgrounds is

beyond the scope of this paper. As a first approximation, however, we may correct for

the spacetime curvature of the embedding space by introducing the factor Sk such that,

Ab = 4πR2(t)S2

k(rb/R), (19)

(c.f. Eq. 12). This factor is chosen to make the areas of the black hole and cosmological

horizons the same when rb = rc. Thus the total surface area of all the black hole event

horizons, Ab,tot, is given from Eqs. 15–19 and Eq. A.2 by,

Ab,tot = Ab nb Vc (20)

We use numerical calculations to find the comoving distance to the cosmological event

horizon from which we can calculate both Ac (Eq. 12) and Vc (Eq. A.2), in turn allowing

us to use Eq. 20 for Ab,tot.

The de Sitter horizon at rdeS =
√

3/Λ is the horizon that would exist if the matter

density were zero in each model. As such it is the asymptotic limit in time of the

cosmological event horizon. We express the results of the numerical calculations in

terms of the radius and area of the de Sitter horizon. The results of these numerical

calculations are shown in Fig. 4. Black hole event horizon area, cosmological event

horizon area and the total horizon area are plotted against time for a variety of models.

Treating the problem as stated so far we find significant departures from the GSL at

early times in all models and at late times for large black holes. However, we believe these

departures are an artefact of the approximations we have used. Firstly, by treating the

black holes as dilute dust (and as solid spheres) we have neglected interactions between

them. At very early times the black holes in the simulation are so densely packed that

they overlap, which is clearly unphysical (see Appendix B). Secondly, we have assumed

that the disappearance of a black hole across the cosmological horizon is instantaneous,

but for black holes of size comparable to the cosmological horizon this is unrealistic. A

proper GR treatment of the merging of horizons, which will involve significant departures

from homogeneity and isotropy, is beyond the scope of this paper. However, as a first

approximation to compensating for this effect, we use a simple geometric argument

(see Appendix B). Taking both the above considerations into account removes almost

all the departures from the GSL.

A third approximation which we have used but cannot correct for is the assumption

that the Schwarzschild-de Sitter solution for the black hole radius holds. This neglects

the presence of matter density outside the black hole. This approximation is therefore

suspect at early times in FRW universes while the universe is dominated by matter
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Figure 5. An example in which the assumption of the Schwarzschild-de Sitter solution

for black hole area breaks down because of the presence of matter density outside the

black holes. The GSL appears to be violated by the entropy decrease at early times

even for small black holes.

rather than dark energy (Λ). An example of a GSL violation which we attribute to the

breakdown of the Schwarzschild-de Sitter assumption is shown in Fig. 5 for the spatially

open (k = −1) model where departures from the GSL are indicated at early times.

The Schwarzschild-de Sitter approximation also breaks down when the radius of the

black hole is comparable to the radius of the cosmological event horizon. This is because

the effect of the embedding spacetime on the mass-radius relationship of a black hole

becomes larger for larger black holes (see the term in brackets in Eq. 15). An example

is shown in the spatially closed (k = +1) model illustrated in Fig. 6, where departures

from GSL are indicated at late times.

A more accurate resolution of these departures from the GSL awaits the derivation

of horizon solutions for black holes embedded in arbitrary FRW spacetimes. An

indication of the magnitude of the effect of different embeddings can be gained by

comparing the Schwarzschild-de Sitter solution to the Schwarzschild solution. For a

particular black hole radius the difference in mass for the two embeddings is ∆mb/mb =

(mdeS
b

− mSch
b

)/mSch
b

= −Λr2
b
/3c2. That means that for H0 = 70kms−1Mpc−1 and

ΩΛ = 0.7 the difference between the two solutions is less than ∆m/m = 0.01 as long

as black holes are smaller than 1.7 billion light years across (the de Sitter horizon

for a Universe with ΩΛ = 0.7 sits at rdeS =
√

3/Λ = 16.7Glyr so 1.7Gyr represents

rb = 0.10rdeS, c.f. Fig. 4). Therefore to minimize the effect of the embedding spacetime

on the radius of a black hole we simply need to use “small” black holes (a “small” black

hole of 0.17Glyr radius is still on the order of 1021 solar masses).

The only GSL violation that does not disappear when black holes are restricted to

small sizes is the early time entropy decrease that occurs in open universes because of

the breakdown of the Schwarzschild-de Sitter solution in this regime. We emphasize that
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Figure 6. An model universe filled with large black holes for which the assumption

of the Schwarzschild-de Sitter solution breaks down. The GSL appears to be violated

by the entropy decrease at late times.

any other apparent departures from GSL are manifested only in the extreme cases where

the size of the black holes approach the size of the observable universe. In a realistic

cosmological model, the largest black holes formed by merger will still be orders of

magnitude smaller than the cosmological horizon. In those cosmological models that

permit primordial black hole formation from density perturbations, the size of the holes

is still generally much less that the cosmological horizon size at the epoch of formation.

5. Conclusions

We define total entropy to be the entropy of a cosmological event horizon plus the

entropy within it. Davies (1988) showed that the entropy of the cosmological event

horizon in FRW universes, subject to the dominant energy condition, never decreases.

We examined radiation filled FRW universes and showed that total entropy never

decreases for a wide range of models by testing the parameter space using numerical

calculations. We then assessed the entropy lost as black holes disappeared over the

cosmological event horizon. The lack of a black hole solution for arbitrary spacetime

embeddings restricts the application of this technique. Limiting the size of black holes

to those small enough that the difference in embedding in empty space compared to

de Sitter space is less than 0.1% allowed us to show that no GSL violation occurs in

any of the closed or flat models tested, but an apparent violation occurs at early times

in open FRW universes, probably due to the breakdown of the Schwarzschild-de Sitter

assumption in the presence of matter density outside a black hole. Further progress in

resolving this matter will require more realistic approximations of black hole solutions

in cosmological backgrounds. An associated issue that needs to be addressed is what

constitutes the appropriate surface that characterises horizon entropy when black holes

are situated in a time-dependent background.
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Appendix A. Volume within cosmological event horizon

The volume within a cosmological event horizon is given by:

Vc = 4π R3

∫ χc

0

S2

k(χ)dχ (A.1)

=



































2π R3 (χc − sinχc cosχc) closed,

4

3
πR3χ3

c
flat,

2π R3 (−χc + sinhχc coshχc) open.

(A.2)

Appendix B. Geometric considerations

We rule out the times when black holes are so close that they overlap as being unphysical.

The separation between black holes is given by separation = n
−1/3

b
. So we rule out any

regions for which,

2rb ≤ n
−1/3

b
. (B.1)

The unphysical region defined by Eq. B.1 is shaded gray in Figs. 4–6.

By considering a black hole to have crossed the cosmological horizon when its centre

passes over it we calculate too much black hole horizon area (averaged over all black

holes) to be inside the cosmological horizon. To fix this we need to calculate the point

at which exactly half the black hole horizon is outside the cosmological horizon. This

occurs when the black hole’s diameter makes a secant to the cosmological horizon.

rc

black
hole

cosmological
event horizonI �

rc − δ

rc

δ

rb
-�

black
hole

Therefore we should consider black holes to have left the horizon when they are a

distance δ from the horizon where δ is the length of the perpendicular bisector of the

secant between the secant and the perimeter of the event horizon. That is, when we

calculate the volume within which are black holes we should use the radius rc − δ,

rc − δ =
√

r2
c − r2

b
. (B.2)

This corrected calculation is shown in Fig. 4.
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Postscript

An inadvertant omission meant no reference to Padmanabhan (2002) appeared in the

published work. We have added the reference in this version.
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