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Abstract. The MAXIMA cosmic microwave background anisotropy experiment had a significant im-
pact on cosmology. Results from the program have played a significant role in determining
the geometry of the universe, given strong supporting evidence to inflation, and, in com-
bination with other astrophysical data, showed that the universe is filled with dark matter
and energy. We present a subset of the internal consistency checks that were carried out
on the MAXIMA-1 data prior to their release, which demonstrate that systematics errors
were much smaller than statistical errors. We also discuss the MAXIMA-2 flight and data,
compare the maps of MAXIMA-1 and -2 in areas where they overlap and show that the two
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1. Introduction

MAXIMA was a balloon-borne experiment that measured temperature fluctuations in the cosmic mi-
crowave background (CMB) radiation. The instrument consisted of a 16 element array of bolometric pho-
tometers operating between frequencies of 150 and 410 GHz. It flew twice in 1998 and 1999 from NASA’s
National Scientific Balloon Facility in Palestine, Texas and the two flights and their corresponding data sets
have become known as MAXIMA-1 and MAXIMA-2, respectively. Direct results such as maps and power
spectra, as well as derivative results, such as analysis techniques, cosmological implications, and assess-
ment of foregrounds have been published in a number of papers. Jaffe et al. [1] have given a compilation
of MAXIMA papers and since their paper several more papers have been written [2, 3].

The MAXIMA-1 results had significant impact on cosmology. Together with the results from BOOMERanG
[4], they showed conclusively that the geometry of the universe is close to flat [5], and supported the evi-
dence of BOOMERanG [6] and DASI [7] for harmonic peaks in the power spectrum [8]. Figure 1 illustrates
this leap in information content. The top panel in the figure,which is a combination ofall the CMB data
prior to April 2000, shows that indications that the universe is flat were already evident in data of earlier
experiments. The middle panel showsonly the MAXIMA data as released in May of 2000 shortly after the
release of the BOOMERanG data. At the time of that first release the MAXIMA-1 data gave the highest res-
olution map of the CMB and had provided information over the broadest range of angular scales compared
to any other experiment. To date MAXIMA has the highest reported sensitivity of any CMB photometer
and the highest combined sensitivity of any CMB receiver1. Hanany et al. [5] report photometer sensitivities
as low as 80µK

√
s and a combined sensitivity of 46µK

√
s for the MAXIMA-1 data set.

Jaffe et al. [9] analyzed the accuracy with which the COBE-DMR, MAXIMA and BOOMERanG data
constrain cosmological parameters when the datasets were analyzed separately and together. They found
that the combination of COBE-DMR and MAXIMA data constrained both the flatness of the universe and
the spectral index of the power spectrum of spatial fluctuationsn to within 9% error (at1σ). The inclusion
of the BOOMERanG data improved the determination to within 6and 9%, respectively. The combination
with other astrophysical data showed that the universe is dominated by dark matter and energy [11, 9] . A
year later, MAXIMA and BOOMERanG simultaneously released more of their data and DASI released
new results. The power spectrum results of MAXIMA essentially have not changed, but were extended to
higherℓ values. This 2001 collection of the data is shown in the bottom panel of Figure 1. Where they
overlapped, all three power spectra were remarkably consistent with each other. DASI and BOOMERanG
gave higher signal-to-noise ratio on the harmonic acousticpeak structure while MAXIMA had a broader
coverage inℓ.

The impact of all of these data was that within a span of one year cosmology radically changed. Inflation
gained strong supporting evidence, the framework of a universe overwhelmingly dominated by unknown
forms of dark matter and energy had been transformed from a debated possibility to an essentially accepted
fact, and the precision of the determination of the cosmological parameters ushered what had been called
the ’era of precision cosmology’. Subsequent data from other experiments and recently from WMAP
have confirmed these conclusions and significantly improvedthe accuracy of the determination of all the
cosmological parameters.

Before its release the MAXIMA-1 data were subjected to a battery of systematic tests to ensure its
validity. The availability of data from several independent photometers as well as the high redundancy of
the scan strategy provided multiple ways to cross-check theresults and to ensure that the contribution of
systematic errors was negligible. In Section 2. of this paper we present the results of many of these tests for
the first time.

An even stronger systematic test is to cross-check the results against those from an independent experi-
ment. We chose the scan region of MAXIMA-2 to partially overlap that of MAXIMA-1 to allow a detailed

1’Receiver sensitivity’ is defined as
[
Σi

(
1/σ2

i

)]
−1/2 whereσi is photometer sensitivity and the sum is over photometers from

which combined data is published.
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Figure 1: A combination ofall CMB data prior to the first release of the MAXIMA and BOOMERanGdata
(top panel, courtesy of A. Jaffe), the MAXIMA data alone in 2000 [5], and the 2001 data of MAXIMA,
BOOMERanG, and DASI [6, 7, 8]. No calibration adjustments have been made to the power spectra.

comparison. In Section 3. we give details of the MAXIMA-2 flight and data analysis and present some
comparisons between the MAXIMA-1 and -2 data sets. A recent,more detailed analysis has shown conclu-
sively that the MAXIMA-1, -2 and WMAP maps have detected the same spatial fluctuations in a common
region of the sky [2].

2. Systematic Tests of the MAXIMA-1 Data

The MAXIMA instrument was reviewed in detail elsewhere [3, 5, 10]. The MAXIMA-1 map, power
spectrum [5, 8], and cosmological results [11, 12] are basedon the analysis of the combination of data
collected by the four photometers (three photometers for the Lee et al. paper [8]) that had the lowest noise
equivalent temperatures (NET) [5]; hereafter we refer to them asb34, b25, b45 andb33, whereb stands
for ’bolometer’ and the two digits define the position of the bolometer in the4 × 4 array. The first three
detectors (b34, b45 andb25) operated at a frequency band centered on150 GHz, and the forth (b33) at a
frequency band centered on240 GHz (data fromb33 was not included in the results of Lee et al.)

We will discuss the following subset of systematics tests that have been carried out on the data:
• a comparison of the maps and power spectra that were calculated from the data of individual pho-

tometers (Section 2.1.),

• a comparison of maps and power spectra of a given region of thesky, but for which the data was taken
at different times during the flight (Section 2.2.),

• a comparison of the power spectra of different regions of themap (Section 2.3.).

3
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Figure 2: Left to right: the final map made from the data from all four detectors combined, the map of the
pixel noise computed from the difference of two maps where each is made from the combination of data
from only two detectors (i.e.b34 + b45 andb25 + b33), map from the data ofb34 only, and map from the
data ofb33 only. Similar spatial fluctuations are present in all of the three maps that have a CMB signal and
are absent in the map of the noise.

We will also discuss the effects of pixelization and noise asthey relate to the extraction of highℓ information
from the data (Section 2.4.).

All the maps presented in this section were computed using a variation of the optimal maximum likeli-
hood map-making using the circulant noise approach [13, 14]. The maps have been pixelized using square
pixels of 8 arcminutes on a side and unless otherwise noted are made from the data of all four photometers.
When estimating a power spectrum we deconvolved a circular top-hat pixel with an area equal to that of
the pixel [15]. ’Sum maps’ are noise-weighted co-addition of constituent maps, and ’difference maps’ are
half of the unweighted difference of the pixels common to both maps. Power spectra were computed using
the quadratic estimator approach [16, 17] with the MADCAP implementation [18] and are presented with
bins in spherical harmonic numberℓ of width ∆ℓ = 75. The spectral bin amplitudes have been decorrelated
[17]. The theoretical power spectrum shown for reference indotted line in some of the figures is the best fit
cosmological model to the MAXIMA-1 data as given by Stompor et al. [12].

2.1. Data of Individual Photometers

2.1..1 Maps

Of the four photometers used for CMB data, the noise level ofb34 was the lowest, achieving an NET of
80µK

√
s for most of the flight, andb33 had the highest NET of 120µK

√
s. It is therefore interesting to

compare the maps and power spectra derived from the data of these photometers. In either case the time
domain noise properties were almost stationary throughoutthe entire CMB measurement, not exceeding
an end-to-end change in the white noise level of 10-20% in themost extreme cases. Maps made from
the data ofb34 & b33 are shown in Figure 2 and show similar structure throughout the map but more
predominantly in the low-noise central part of the maps. Thesame sky structure is also readily discernible
in the map made by combining the data of all four detectors, but the structure disappears in the four-detector
((b34 + b33) − (b45 + b25)) difference map. This visual impression is expressed quantitatively using the
following statistics:
• theχ2 statistic,

χ2 (m) ≡ m
TN−1

m, κ (m) ≡
(
χ2 (m) − nDOF

)
√

2nDOF

(1)

wherem andN denote a map and a pixel-pixel noise correlation matrix respectively. The statistic has
nDOF effective degrees of freedom, which are assumed to be equal to the difference between the number of
pixels and the lowℓ-modes that are removed from the map prior to the analysis. Assuming Gaussian noise,
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the coefficientκ quantifies the distance in units of standard deviation between the computed value ofχ2

and the value expected if no sky signal was present in the map;
• the “null buster” statisticν [19],

ν (m) ≡ m
TN−1SN−1

m − Tr
[
N−1S

]

{2Tr [N−1SN−1S]}1/2
, (2)

whereS is an arbitrary matrix, which is equal to the signal correlation matrix computed for the best fit
MAXIMA-1 power spectrum smoothed with a Gaussian beam of 10 arcminutes full-width at half maximum
and an axially symmetric (approximate) pixel window function [19]. This statistic determines the number
of standard deviations at which a given mapm is inconsistent with a hypothesis of only having noise, given
that the signal is described by the correlation matrixS (and it is therefore analogous to theκ statistic, with
which it coincides ifS = N );
• the one-dimensional Kolmogorov-Smirnov (KS) test appliedto noise-prewhitened maps [14] and defined
as,

m̂ ≡ F−1/2
m, whereF is assumed to be a symmetric matrix such asN ≡ F1/2F1/2. (3)

For each map we compute a KS significance coefficient giving the confidence level at which the hypothesis
that the prewhitened map has been randomly drawn from the Gaussian distribution with a unit variance can
be accepted;
• the probability enhancement factorβ [20],

β (mi,mj) ≡ ln






P
([

mi

mj

]
|
[

Ci Cij

Cji Cj

])

P (mi| Ci)P (mj| Cj)





(4)

where the matrixCi describes the CMB signal correlation matrix computed for a mapmi, andCij is the sig-
nal cross-correlation matrix for mapsmi andmj. In our case both are computed assuming the MAXIMA-1
best fit power spectrum smoothed with the antenna beam and thepixel window function for the null-buster
statistic. The quantityP (mi| Ci) represents the probability distribution of realizations of maps with signal
correlations given byCi and noise correlations given byNi; we assume that the probability distribution is
a multi-variate Gaussian. We assign a statistical significance to this statistic by computing its mean and
variance either under the assumption of no correlation or the assumption of full correlation of the sky signal
in both maps [20, 21]. We denote these valueβ0 (mi,mj) andβ∞ (mi,mj) respectively.

Due to the small size of the MAXIMA-1 maps the very low-ℓ content of the maps may not be reliable so
one may not want to include it in the tests described here. Therefore in the case of theχ2, “null-buster” and
KS statistics we “weighted out” [17] all theℓ-modes withℓ ≤ 35 by replacing the inverse noise correlation
matricesN−1 by

N−1 −→ N−1 −
(
N−1B

)T [
BTN−1B

]
−1 (

N−1B
)
, where Bik ≡

∑

j

ψi
j

[
ψk

j

]T
(5)

and theψ constitute a set of linearly independent pixel vectors spanning the same space as all the spherical
harmonics withℓ ≤ 35; ψi

j is thei-th pixel component of the vectorψj . This correction corresponds to
assigning “infinite” noise to the spatial modes described bythe functionsψ [17, 14]. Consequently these
modes do not contribute to final results of any of the statistics. For the probability enhancement factor we
have applied an analogous correction to the inverse (signal+noise) correlation matrix,S + N . For the sky
patches considered here we usually find that there are only≃ 55 independent modes (and hence vectorsψ)
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m1 m2 κ KS ν β β0 β∞
b34 b45 -1.9 28% -0.4 -180 −166 ± 14 −2537± 201
b34 b25 -0.06 44% -0.8 -198−184 ± 15 −2557± 212
b34 b33 -0.2 49% -0.5 -146 −142 ± 14 −2644± 439
b45 b25 -0.7 91% -0.3 -172 −171 ± 15 −2444± 106
b33 b45 0.1 22% 0.6 -128 −129 ± 13 −2454± 121
b25 b33 -0.02 84% -0.9 -143−139 ± 13 −2464± 127

b34+b33 b45+b25 0.3 90% -0.6 -292−281 ± 18 −2973± 234
CMB1 CMB2 -1.6 81% 0.1 -168 −195 ± 15 −1858± 132

Table 1: Results of statistical tests that were applied to the differences of pairs of maps (columns 3, 4 and
5) that were produced from the data of photometers listed in columns 1 and 2, the probability enhancement
factor test (column 6) applied to the same pairs of maps, and the expected average and68% (“1σ”) con-
fidence ranges under the hypothesis of perfect (column 7) or lack of (column 8) correlations of the signal
in both maps. Columns 3, 4 and 5 have results for theχ2, Kolmogorov-Smirnov and null-buster statistics,
respectively, and show very good consistency with the hypothesis that the difference maps contain no sky
signal.

b34 b45 b25 b33 B34+b45 b25+b33 CMB1 CMB2 ALL
κ (m) 16 11 20 7 30 28 33 24 69

KS (m) 0% 0.5% 0% 1% 0% 0% 0% 0% 0%
ν (m) 70 60 100 35 130 135 140 140 317

Table 2: Results of the same statistical tests as shown in Table 1 but applied to single photometer maps.
Since these maps do contain sky signal, contrasting these results with those in Table 1 demonstrates the
sensitivity of each statistic to the presence of sky signal in the map. Zeros in the case of the KS statistics
stand for numbers less than10−7.

out of a total of1296 spherical harmonics withℓ ≤ 35. We have also found that although the particular
values of the statistical tests depend on whether the modes with ℓ ≤ 35 are rejected or not, the overall
conclusions remain essentially unchanged.

The results of these tests as applied to various pairs of mapsare given in Table 1. They confirm the
visual agreement between the maps that were produced from the data of different detectors. The absolute
values ofκ andν computed for the difference maps are usually<∼ 1, and always less then2, which is to be
interpreted as a “better than2σ” agreement. For the probability enhancement factor, the value ofβ always
agrees with the expected value ofβ0 within the quoted “1σ” uncertainty and always disagrees by more than
“6 σ” (and usually∼ 15 − 20σ) with the appropriateβ∞. The latter values are expected forβ if there
is no correlation between a given pair of maps. Note that boththe null-buster statistic and the probability
enhancement factor depend on the choice of the signal power spectrum. However we have found that if we
adopt a flat power spectrum rather than the best-fit spectrum chosen above then the numbers computed for
these statistics change by no more than 10-20% and their statistical interpretation remains the same [19].

We have also applied theχ2, null-buster and KS statistics to the single detector maps.The results are
collected in Table 2 and show that a strong signal is detectedin all cases. In the case of the null-buster test,
the numbers computed here can be compared with those obtained for the Saskatoon and QMAP experiments
which are21 and40, respectively [22]. It is clear that according to this statistic there is more information
content in a map made from a single detector of MAXIMA-1 than there is in the final maps produced
by either of those experiments. When contrasted with the values obtained for the difference maps, these

6
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Figure 3: Angular power spectra using the data ofb34 (b25) in triangles and ofb45 (b33) in diamonds in
the left (right) panel. The power spectrum from the combineddata from all four detectors (circles) [5] is
also shown for comparison. In each bin the triangles and diamonds have been displaced slightly from the
true central values (shown by the filled circles) to make the figure readable. The dotted curves is a best fit
cosmology to the MAXIMA-1 results [12].

Figure 4: Angular power spectra of the single detector difference maps. The left panel shows the three
combinations excluding, and the right panel including, theb45 photometer.

numbers can be viewed as a demonstration of the sensitivity of the tests. However it is important to bear
in mind that the noise level and correlations are different in the two-detector difference maps than in any
single detector map.

2.1..2 Power spectra

The power spectra for each of the detectors individually andcombined (Figure 3) are consistent through-
out the entireℓ range, with the scatter in the estimated bin power increasing at the higher and noisierℓ
bins. The error bars plotted here reflect minimally correlated statistical uncertainty only, and exclude any
fully correlated systematic uncertainties. Such systematic uncertainties could come from an overall mises-
timation of the calibration, which has the effect of renormalizing the entire power spectrum, or from beam
reconstruction uncertainty, which is important predominantly at highℓ. The calibration uncertainty is about
8% in power for the data of any single photometer and we have conservatively assumed a combined cali-
bration uncertainty of 8% for the combination of all photometers. The beam reconstruction uncertainty of
MAXIMA-1 has been investigated in great detail by Wu et al. [15] and Lee et al. [8].

7
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2.1..3 Difference maps

Differencing two maps of the same patch of the sky is a sensitive method of searching for systematic
problems in the data. Power spectra of such difference maps –unlike the “single number” statistics of the
Section 2.1..1 – may not only detect a problem but also locatethe angular scale at which it occurs, thereby
providing a useful diagnostic.

From the four single detector MAXIMA-1 maps we form six distinct, although not independent, differ-
ence maps; the power spectra of these difference maps are shown in Figure 4. Aχ2 with a null model
gives values of≃ 1 per degree of freedom for all differences. The only points deviating from zero by more
than2σ are found at the very low-ℓ end of the power spectra. This is not surprising given the difficulty
of estimating the lowest frequency noise modes in the time domain [14], which dominate the noise contri-
bution on large angular scales. If we interpret any residualpower as an estimate of a systematic error, we
find that the magnitude of such an error is much smaller than the statistical uncertainty in the power in the
corresponding bins.

The slight excess of positive detections over negative at highℓ (which may appear to be a trend, but in fact
does not continue to yet higherℓ, see for example the right panel of Figure 8) is most likely the residual of
sky signal that persists in the difference maps due to the somewhat different beams of the various detectors.
Although such a signal is expected to be rather small, it is amplified by the deconvolution of the beam
and pixel window function in the power spectrum estimation.The error budget of the final MAXIMA-1
spectrum [5] includes the effect of differences of beams between different detectors but the effect is not
included when calculating difference spectra such as shownin Figure 4.

2.2. Temporal Comparison

During the 1998 flight of MAXIMA each photometer observed thesame patch of the sky twice, with
an approximately 90 minute gap between observations. This provides a natural division of the data into
two parts, which we call CMB1 and CMB2. These scans are the twogreen shaded areas in left panel of
Figure 5, which are oriented at an angle of about 20 degrees toeach other. Because of the time lag between
the scans the maps of CMB1 and CMB2 may have different systematic errors and it is valuable to compare
them. The maps made from the combination of the data from fourphotometers are shown in the two right
panels of Figure 5. We can clearly see that the structure is generally well replicated in each map. The
visual impression is confirmed when we calculate the statistics of Section 2.1..1 to compare the maps, and
also when we calculate the corresponding power spectra, which agree well both with one another and with
the “canonical” MAXIMA-1 spectrum; see the left panel in Figure 6. Some concern might be raised by
the bright spot in the CMB2 map (at RA≃ 15.7 hours and DEC≃ 57 degree) which has no counterpart
in CMB1. We do not expect this feature to have any bearing on the final results, although we have failed
to single out an unambiguous source for the difference, or even to determine its statistical significance.
This is probably an artifact of the map-making algorithm dueto poor cross-linking in this region. This
suspicion is supported by the observation that no feature ofthis sort is found in the better cross-linked map
combining the data from both scans. Moreover, applying the power spectrum analysis to maps with the
pixels corresponding to this feature removed shows no significant change in the results.

2.3. Spatial Comparison

An interesting test of the data is to compute and compare the power spectra of sub-maps of the entire map.
Such sub-map spectra should agree to within the sampling andnoise variances. The disadvantage of this
approach is that because of pixel-pixel noise and sky signalcorrelations, the interpretation of differences
between the spectra obtained is not straightforward. Furthermore the uncertainties in the sub-map spectra
rapidly grow as the number of pixels decreases, making comparisons between small sub-maps meaningless.
Here we investigate two halving subdivisions of the full map– left versus right and top versus bottom. These
spectra are shown in the right panel of Fig. 6 and are in good agreement.

8
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Figure 5: Left: the areas of the sky scanned by MAXIMA-1 (green) and MAXIMA-2 (blue). Each of the
areas was scanned with a ’CMB1’ and ’CMB2’ distinct scans that were taken at different times and that have
a relative angle of about 25 degrees. Each point in the plot represents a pointing of the telescope averaged
over∼ 100 msec. The MAXIMA-2 area overlaps about 50 square degrees of the area of MAXIMA-1
providing an important systematic test.
Right: Maps of the MAXIMA-1 CMB1 (left panel) and CMB2 (right) scans. Only the overlapping region
of both scans is shown.

2.4. The High ℓ Regime

The first release of the MAXIMA-1 data [5] included information only up toℓ = 785 because more time
and computational effort was required to ensure that all systematic errors have been analyzed thoroughly
for the higherℓ regime. In the second release [8] a subset of the data from thefirst release was analyzed to
give information up toℓ = 1200. Here we discuss how this subset of the data was chosen.

2.4..1 Spatial Cut

Pixelization of the maps introduces an extra smoothing of the underlying CMB signal on very small scales.
Applying an appropriate window function to compensate for the smoothing (as described earlier) assumes
an unrealistic perfect sampling of every pixel in the map. Inreality the smoothing introduced by the pix-
elization procedure is position (pixel) dependent, and difficult to deconvolve exactly from the final spectrum.
One solution is to decrease the pixelization scale until thesmoothing that it induces does not affect the spec-
trum in the range ofℓ of interest. However, this has to be weighed against the increased computational cost
of analyzing maps with more pixels. Another solution is to use relatively big pixels but include only pixels
that happen to be sampled very uniformly and for which the smoothing should be well characterized by the
approximate window function.

We have chosen to use both approaches. For our highℓ spectra we limited the analysis to those 8
arcminute pixels that had more than 100 samples and for whichthe variation in the number of observations
in each quadrant of the pixel was less than10%. Because of the MAXIMA-1 scan pattern this choice
corresponded to a spatial cut on the map where the ’central section’ of the map was included and the
edges excluded; the full map and the demarcation of the cut section are shown in figure 7. We also chose
the pixel size to be 3 arcminutes so that the effect of extra smoothing atℓ ∼ 1000 was less than 3%,
and clearly sub-dominant compared to the other statisticaland systematic uncertainties. The left panel in
Fig. 8 shows the power spectra of the entire MAXIMA-1 map pixelized with 8 arcminute pixels and with
a deconvolution of an approximate pixel window function (asdiscussed in Section 2.), only the central
section pixelized with 8 arcminute pixels and with a deconvolution of the same window function, and the
entire map pixelized with 3 arcminute pixels but with no deconvolution of a pixel window function. The
conclusions are that the spectrum atℓ >∼ 800 is sensitive to the details of the pixelization, and that the8
arcminute pixelization overestimates the power at thisℓ range. Using only the well sampled 8 arcminute
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Figure 6: Left: angular power spectra of the CMB1 (diamond) and CMB2 (triangle) scans using data from
four detectors, the spectrum published by Hanany et al. [5](filled circles) and spectrum of the difference
map. Right: angular power spectra computed for the left and right halves of the map (filled and open
diamonds, respectively) and the upper and lower halves (filled and open triangles) as well as the full map
(filled circles). Each of the sub-maps contains only∼ 3000 pixels.

pixels reduces the discrepancy between power spectra from maps with an 8 and 3 arcminute pixelizations.
The 3 arcminute power spectrum shown in the left panel of Figure 8, for which we used the data of all four
detectors, can be compared with the spectra shown in the right panel, which do include the deconvolution
of an approximate (3 arcminute) window function, and use only the well sampled parts of the map (note
that the binning at highℓ is somewhat different between the two spectra).

2.4..2 Data Cut

The major parasitic signal in the MAXIMA-1 time stream was related to the primary mirror modulation [5].
The amplitude of this signal, which was less than∼ 100 µK for b34, b45 andb25, was comparable to the
CMB signal, and therefore had to be removed. Forb33 the amplitude of the primary mirror synchronous
signal was∼ 300µK and the noise inherent to this determination was larger than for the 150 GHz detectors.
This higher amplitude and noise were inconsequential for the determination of the power spectrum atℓ <∼
800, as has been verified extensively in simulations and in various systematics tests (some of which have
been presented earlier in this paper). However the effects of the synchronous signal forb33 appeared non-
negligible for the higherℓ regime of the power spectrum. The power spectrum of a map madefrom data
that includedb33 gave somewhat higher power atℓ ≥ 800 compared with the power spectrum that excluded
b33, see the right panel of Figure 8. No such difference was foundwhen we excluded the data from any
other photometer. Power spectra of difference maps of pairsof photometers that includedb33 showed small
inconsistencies with a null spectrum (again atℓ ≥ 800), but power spectra of difference maps of other
pairs of photometers showed no such inconsistency. These inconsistencies were small - for example, they
essentially disappeared in the difference maps made from combination of several photometers that included
or excludedb33, see the right panel of Figure 8 - and their origin appeared tobe the mirror synchronous
signal. Foreground contributions in the MAXIMA-1 region were sufficiently small and could not account
for the observed inconsistencies. We therefore chose to excludeb33 from the determination of the highℓ
spectrum.

10
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Figure 7: The entire MAXIMA-1 map pixelized with 3 arcminutepixels and a demarcation of the region
used to produce the highℓ region of the power spectrum (right) and a Wiener filtered version of the map
(left). The color stretches are±750 µK and±400 µK, for the right and left panels, respectively.

Figure 8: Left: angular power spectra of a map with 8 arcminutes pixels (circles), only the central section
of the map also pixelized with 8 arcminutes pixels (triangles) and the entire map with 3 arcminutes pixels,
but with no deconvolution of a pixel window function (diamonds); see text.
Right: power spectra of maps pixelized with 3 arcminutes andmade using data from all four detectors
(diamonds) and including only three detectors by excludingthe data fromb33 (circles), and angular power
spectra of difference maps of(b34 + b45) − (b25 + b33) (diamonds) and ofb34 − (b45 + b25) (circles),
both with a pixelization of 3 arcminutes.
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Figure 9: Maps of the overlap region between the MAXIMA-1 (left) and MAXIMA-2 (middle) maps, and
their difference (right). Abroe et al. [2] show a Wiener filtered version of these maps.

3. MAXIMA-2

The 225 square degrees area of the sky that was scanned duringthe MAXIMA-2 flight in 1999 overlapped
with 50 square degrees of the area scanned during MAXIMA-1 and was larger by about a factor of two, see
Figure 5. The expected detector performance and scan strategy were similar for the two flights. However,
the data showed a somewhat higher level of systematic errors, which would have required more effort to
understand and overcome. The collaboration decided to release only limited results that will facilitate the
comparison between the MAXIMA-1 and MAXIMA-2 maps.

Similar to the data from MAXIMA-1, it was advantageous to analyze the MAXIMA-2 data that came
from a subset of some of the most sensitive photometers. Those wereb34, b35, b45 and b25 operating
at 150 GHz. The operational parameters for these detectors including time constant, NET, band widths,
and beam sizes are given in a paper by Rabii et al. [3]. Two of the 150 GHz detectors gave an NET
of ∼ 80µK

√
s and the NET for the combination of the MAXIMA-2 detectors was43µK

√
s, slightly

out-performing the value of46µK
√
s for the four best detectors of MAXIMA-1.

In addition to the CMB scan, the MAXIMA-2 flight included a calibration on the dipole and beam map-
ping using Mars. Dipole observations in MAXIMA-2 were conducted at float altitude (120 kft), unlike
MAXIMA-1 in which they were started during ascent (70 kft). Because of this the MAXIMA-2 dipole
analysis did not require any atmospheric subtraction as wasdone for the MAXIMA-1 data. During about
20% of MAXIMA-2 CMB scan there were no detectable guide starsfor pointing reconstruction. For this
section stars were seen as rarely as once per 30 seconds and pointing reconstruction was based on the rate
gyroscope. The total estimated pointing error during that time increased from 1 arcminute to 1.5 arcminutes
RMS. Other aspects of the processing of the time ordered data, absolute calibration using the CMB dipole,
relative calibration using a mm-wave source internal to thereceiver, beam shapes determination, and point-
ing reconstruction were analogous in all respects to those followed for the MAXIMA-1 analysis and which
are described by Hanany et al. [5]. Rabii et al. [3] give more details about MAXIMA-2.

Estimating the maximum likelihood map also followed the prescription given by previous publications
[5, 8, 14], but the characteristics of the data were somewhatdifferent than that of MAXIMA-1. There
were stronger drifts giving rise to a1/f2 characterization of the noise at low frequencies (comparedwith
1/f with MAXIMA-1). The knee in the power spectrum between a1/f2 dependence and white noise
occurred at a frequency of about 1 Hz (compared to 0.5 Hz with MAXIMA-1). A noise synchronous with
the modulation of the primary mirror, which has also occurred with MAXIMA-1, had an amplitude of up to
500µK, (as compared to less than 300µK for MAXIMA-1) and was not as stationary as in MAXIMA-1.

The maps made of the data of MAXIMA-2 and MAXIMA-1 in the areaswhere they overlap is shown
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Figure 10: Power spectra from the MAXIMA-1 data (squares) [8], the MAXIMA-2 data but only from
the overlap region with MAXIMA-1 (filled diamonds), and a power spectrum of the difference map of the
overlap region (circles) [2]. For reference we also show thedata from WMAP (open diamonds) and the best
fit cosmology to the WMAP data [23]. No calibration adjustments have been made to any of the spectra.

in Figure 9. Also shown is the difference map. To calculate the power spectra we pixelized the maps with
8 arcminutes square pixels giving 5972 and 2757 pixels for MAXIMA-1 and -2, respectively. The power
spectra of MAXIMA-2 from this overlap region, the entire MAXIMA-1 data [5], and the spectrum of the
difference map in the overlap region are shown in Figure 10. Theχ2 of a null spectrum model for the
difference spectrum is 8 for 10 degrees of freedom. Abroe et al. [2] have correlated this MAXIMA-2 map
with the maps from MAXIMA-1 and from WMAP 93 GHz band and find a high degree of correlation,
providing strong evidence that all three experiments have detected the same spatial temperature fluctuations
in this region of the sky.

4. Summary

The MAXIMA results, together with other CMB results of that era, have radically changed cosmology.
The combined COBE-DMR and MAXIMA results have constrained the flatness of the universe and the
spectral index of the power spectrum of spatial fluctuationsn to unprecedented accuracy [11, 9] and were
consistent with data from BOOMERanG and DASI that showed peaks in the power spectrum atℓ > 250.
All of these advances together with other astrophysical data established the current model of cosmology: a
flat universe that is overwhelmingly dominated by unknown forms of matter and energy.

In this paper we presented a subset of the systematic tests that were carried out on the MAXIMA-1 data
before their release. We showed that systematic errors contributed negligibly to the final results thereby
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providing the necessary confidence for the cosmological interpretation of the data. More recently, the
data have passed an even more stringent systematic test: comparison with independent data sets. The
initial agreement of the power spectrum between MAXIMA-1, BOOMERanG, DASI and other experiments
was reassuring, but the later maps of MAXIMA-2 (and WMAP, as shown by Abroe et al [2]) give strong
confidence that MAXIMA-1 has accurately mapped the cosmic microwave background anisotropy.
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