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1 Cosmic background radiation
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1. Introduction

The energy content in radiation from beyond our Galaxy is
dominated by the Cosmic Microwave Background (CMB), discov-
ered in 1965 [1]. The spectrum of the CMB is well described by a
blackbody function with T = 2.725K. This spectral form is one of

the main pillars of the hot Big Bang model for the early Universe.
The lack of any observed deviations from a blackbody spectrum
constrains physical processes over the history of the universe at
redshifts z ∼

< 107 (see previous versions of this mini-review [2]).
However, at the moment, all viable cosmological models predict a
very nearly Planckian spectrum, and so are not stringently limited.

Another observable quantity inherent in the CMB is the varia-
tion in temperature (or intensity) from one part of the microwave
sky to another [3]. Since the first detection of these anisotropies
by the COBE satellite [4], there has been intense activity to map
the sky at increasing levels of sensitivity and angular resolution.
A series of ground- and balloon-based measurements has recently
been joined by the first results from NASA’s Wilkinson Microwave
Anisotropy Probe (WMAP) [5]. These observations have led to a
stunning confirmation of the ‘Standard Model of Cosmology.’ In
combination with other astrophysical data, the CMB anisotropy
measurements place quite precise constraints on a number of cos-
mological parameters, and have launched us into an era of precision
cosmology.

2. Description of CMB Anisotropies

Observations show that the CMB contains anisotropies at the
10−5 level, over a wide range of angular scales. These anisotropies
are usually expressed by using a spherical harmonic expansion of
the CMB sky:

T (θ,φ) =
∑

ℓm

aℓmYℓm(θ,φ).

The vast majority of the cosmological information is contained in
the temperature 2 point function, i.e., the variance as a func-
tion of separation θ. Equivalently, the power per unit lnℓ is
ℓ
∑

m |aℓm|2 /4π.

2.1. The Monopole:
The CMB has a mean temperature of Tγ = 2.725 ± 0.001K

(1σ) [6], which can be considered as the monopole component
of CMB maps, a00. Since all mapping experiments involve dif-
ference measurements, they are insensitive to this average level.
Monopole measurements can only be made with absolute temp-
erature devices, such as the FIRAS instrument on the COBE

satellite[6]. Such measurements of the spectrum are consistent
with a blackbody distribution over more than three decades in
frequency. A blackbody of the measured temperature corresponds
to nγ = (2ζ(3)/π2)T3

γ ≃ 411cm−3 and ργ = (π2/15)T4
γ ≃

4.64× 10−34 gcm−3 ≃ 0.260eVcm−3.

2.2. The Dipole:
The largest anisotropy is in the ℓ = 1 (dipole) first spherical

harmonic, with amplitude 3.346± 0.017mK [5]. The dipole is in-
terpreted to be the result of the Doppler shift caused by the solar
system motion relative to the nearly isotropic blackbody field, as
confirmed by measurements of the velocity field of local galaxies
[7]. The motion of an observer with velocity β = v/c relative to
an isotropic Planckian radiation field of temperature T0 produces
a Doppler-shifted temperature pattern

T (θ) = T0(1− β2)1/2/(1− β cosθ)

= T0

(

1+β cosθ + (β2/2)cos2θ +O(β3)
)

.

At every point in the sky, the spectrum is essentially blackbody,
but the spectrum of the dipole is the differential of a blackbody
spectrum, as confirmed by Ref. [8].

The implied velocity [9] for the solar system barycenter is
v = 368 ± 2kms−1, assuming a value T0 = Tγ , towards (ℓ, b) =
(263.85◦±0.10◦,48.25◦±0.04◦). Such a solar system velocity im-
plies a velocity for the Galaxy and the Local Group of galaxies
relative to the CMB. The derived value is vLG = 627± 22kms−1

toward (ℓ, b) = (276◦±3◦,30◦±3◦), where most of the error comes
from uncertainty in the velocity of the solar system relative to the
Local Group.

The dipole is a frame dependent quantity, and one can thus
determine the ‘absolute rest frame’ of the Universe as that in which
the CMB dipole would be zero. Our velocity relative to the Local
Group, as well as the velocity of the Earth around the Sun, and any
velocity of the receiver relative to the Earth, is normally removed
for the purposes of CMB anisotropy study.

2.3. Higher Order Multipoles:
Excess variance in CMB maps at higher multipoles (ℓ ≥ 2) is

interpreted as being the result of perturbations in the energy den-
sity of the early Universe, manifesting themselves at the epoch of
the last scattering of the CMB photons. In the hot Big Bang pic-
ture, this happens at a redshift z ≃ 1100, with little dependence
on the details of the model. The process by which the hydrogen
and helium nuclei can hold onto their electrons is usually referred
to as recombination [10]. Before this epoch, the CMB photons are
tightly coupled to the baryons, while afterwards they can freely
stream towards us.

Theoretical models generally predict that the aℓm modes are

Gaussian random fields, and all tests are consistent with this sim-
plifying assumption [11]. With this assumption, and if there is
no preferred axis, then it is the variance of the temperature field
which carries the cosmological information, rather than the val-
ues of the individual aℓms; in other words the power spectrum
in ℓ fully characterizes the anisotropies. The power at each ℓ is

(2ℓ+1)Cℓ/(4π), where Cℓ ≡
〈

|aℓm|2
〉

, and a statistically isotropic

sky means that all ms are equivalent. We use our estimators of
the Cℓs to constrain their expectation values, which are the quan-
tities predicted by a theoretical model. For an idealized full-sky
observation, the variance of each measured Cℓ (the variance of the
variance) is [2/(2ℓ + 1)]C2

ℓ . This sampling uncertainty (known as

cosmic variance) comes about because each Cℓ is χ2 distributed
with (2ℓ + 1) degrees of freedom for our observable volume of the
Universe. For partial sky coverage, fsky, this variance is increased
by 1/fsky and the modes become partially correlated.

It is important to understand that theories predict the expec-
tation value of the power spectrum, whereas our sky is a single
realization. Hence the ‘cosmic variance’ is an unavoidable source
of uncertainty when constraining models; it dominates the scatter
at lower ℓs, while the effects of instrumental noise and resolution
dominate at higher ℓs.

2.4. Angular Resolution and Binning:
There is no one-to-one conversion between the angle subtended

by a particular wavevector projected on the sky and multipole ℓ.
However, a single spherical harmonic Yℓm corresponds to angular
variations of θ ∼ π/ℓ. CMB maps contain anisotropy information
from the size of the map (or in practice some fraction of that size)
down to the beam-size of the instrument, σ. One can think of the

effect of a Gaussian beam as rolling off the power spectrum with

the function e−ℓ(ℓ+1)σ2

.
For less than full sky coverage, the ℓ modes are correlated.

Hence, experimental results are usually quoted as a series of ‘band
powers’, defined as estimators of ℓ(ℓ+1)Cℓ/2π over different ranges

http://lanl.arXiv.org/abs/astro-ph/0406567v1
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of ℓ. because of the strong foreground signals in the Galactic Plane,

even ‘all-sky’ surveys, such as COBE and WMAP involve a cut
sky. The amount of binning required to obtain uncorrelated esti-
mates of power also depends on the map size.

Figure 1: Plot of the theoretical CMB anisotropy power
spectrum, using a standard ΛCDM model from CMBFAST. The
x-axis is logarithmic here. The regions are labeled as in the
text: the ISW Rise; Sachs-Wolfe Plateau; Acoustic Peaks;
and Damping Tail. Also shown is the shape of the tensor
(gravity wave) contribution, with an arbitrary normalization.

3. Cosmological Parameters

The current ‘Standard Model’ of cosmology contains around 10
free parameters (see Cosmological Parameters’ mini-review [12]).
The basic framework is the Friedmann-Robertson-Walker metric
(i.e., a universe that is approximately homogeneous and isotropic
on large scales), with density perturbations laid down at early
times and evolving into today’s structures (see ‘Big-Bang Cosmol-
ogy’ mini-review [13]). These perturbations can be either ‘adia-
batic’ (meaning that there is no change to the entropy per particle
for each species, i.e., δρ/ρ for matter is (3/4)δρ/ρ for radiation) or
‘isocurvature’ (meaning that, for example, matter perturbations
compensate radiation perturbations so that the total energy den-
sity remains unperturbed, i.e., δρ for matter is −δρ for radiation).
These different modes give rise to distinct phases during growth,
and the adiabatic scenario is strongly preferred by the data. Mod-
els that generate mainly isocurvature type perturbations (such as
most topological defect scenarios) are no longer considered to be
viable.

Within the adiabatic family of models, there, is in principle,
a free function describing how the comoving curvature perturba-
tions, R, vary with scale. In inflationary models, the Taylor series
expansion of lnR(lnk) has terms of steadily decreasing size. For
the simplest models, there are thus 2 parameters describing the
initial conditions for density perturbations: the amplitude and

slope of the power spectrum,
〈

|R|2
〉

∝ kn. This can be explicitly

defined, for example, through:

∆2
R

≡ (k3/2π2)
〈

|R|2
〉

,

and using A2 ≡ ∆2
R

(k0) with k0 = 0.05Mpc−1. There are many
other equally valid definitions of the amplitude parameter (see also
Refs. [12] and [13]), and we caution that the relationships between
some of them can be cosmology dependent. In ‘slow roll’ inflation-
ary models this normalization is proportional to the combination

V 3/(V ′)2, for the inflationary potential V (φ). The slope n also

involves V ′′, and so the combination of A and n can, in principle,
constrain potentials.

Inflationary models can generate tensor (gravity wave) modes
as well as scalar (density perturbation) modes. This fact intro-
duces another parameter measuring the amplitude of a possible
tensor component, or equivalently the ratio of the tensor to scalar
contributions. The tensor amplitude AT ∝ V , and thus one ex-
pects a larger gravity wave contribution in models where inflation
happens at higher energies. The tensor power spectrum also has
a slope, often denoted nT, but since this seems likely to be ex-
tremely hard to measure, it is sufficient for now to focus only on
the amplitude of the gravity wave component. It is most common
to define the tensor contribution through r, the ratio of tensor to
scalar perturbation spectra at large scales (say k = 0.002Mpc−1).
There are other definitions in terms of the ratio of contributions
to C2, for example. Different inflationary potentials will lead to
different predictions, e.g. for λφ4 inflation, r = 0.32, while other
models can have arbitrarily small values of r. In any case, what-
ever the specific definition, and whether they come from inflation
or something else, the ‘initial conditions’ give rise to a minimum
of 3 parameters: A, n and r.

The background cosmology requires an expansion parameter
(the Hubble Constant, H0, often represented through H0 =
100hkms−1Mpc−1) and several parameters to describe the mat-
ter and energy content of the Universe. These are usually given
in terms of the critical density, i.e., for species ‘x’, Ωx = ρx/ρcrit,
where ρcrit = 3H2

0/8πG. Since physical densities ρx ∝ Ωxh2 ≡ ωx

are what govern the physics of the CMB anisotropies, it is these
ωs that are best constrained by CMB data. In particular CMB
observations constrain ΩBh2 for baryons and ΩMh2 for baryons
plus Cold Dark Matter.

The contribution of a cosmological constant Λ (or other form of
Dark Energy) is usually included through a parameter which quan-
tifies the curvature, ΩK ≡ 1−Ωtot, where Ωtot = ΩM + ΩΛ. The
radiation content, while in principle a free parameter, is precisely
enough determined through the measurement of Tγ .

The main effect of astrophysical processes on the Cℓs comes
through reionization. The Universe became reionized at some red-
shift long after recombination, affecting the CMB through the in-
tegrated Thomson scattering optical depth:

τ =

∫ zi

0
σTne(z)

dt

dz
dz,

where σT is the Thomson cross-section, ne(z) is the number den-
sity of free electrons (which depends on astrophysics) and dt/dz
is fixed by the background cosmology. In principle, τ can be de-
termined from the small scale power spectrum together with the
physics of structure formation and feedback processes. However,
this is a sufficiently complicated calculation that τ needs to be
considered as a free parameter.

Thus we have 8 basic cosmological parameters: A, n, r, h,
ΩBh2, ΩMh2, Ωtot, and τ . One can add additional parameters
to this list, particularly when using the CMB in combination with
other data sets. The next most relevant ones might be: Ωνh2,

the massive neutrino contribution; w (≡ p/ρ), the equation of
state parameter for the Dark Energy; and dn/d lnk, measuring
deviations from a constant spectral index. To these 11 one could of
course add further parameters describing additional physics, such
as details of the reionization process, features in the initial power
spectrum, a sub-dominant contribution of isocurvature modes, etc.

As well as these underlying parameters, there are other quan-
tities that can be derived from them. Such quantities include the
actual Ωs of the various components (e.g., ΩM), the variance of
density perturbations at particular scales (e.g., σ8), the age of the
Universe today (t0), the age of the Universe at recombination,
reionization, etc.
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4. Physics of Anisotropies

The cosmological parameters affect the anisotropies through the
well understood physics of the evolution of linear perturbations
within a background FRW cosmology. There are very effective,
fast, and publicly-available software codes for computing the CMB
anisotropy, polarization, and matter power spectra, e.g., CMBFAST
[14] and CAMB [15]. CMBFAST is the most extensively used code; it
has been tested over a wide range of cosmological parameters and
is considered to be accurate to better than the 1% level [16].

A description of the physics underlying the Cℓs can be separated
into 3 main regions, as shown in Fig. 1.

4.1. The Sachs-Wolfe plateau: ℓ ∼
< 100:

The horizon scale (or more precisely, the angle subtended by
the Hubble radius) at last scattering corresponds to ℓ ≃ 100. An-
isotropies at larger scales have not evolved significantly, and hence
directly reflect the ‘initial conditions.’ The combination of grav-
itational redshift and intrinsic temperature fluctuations leads to
δT/T ≃ (1/3)δφ/c2 , where δφ is the perturbation to the gravita-
tional potential. This is usually referred to as the ‘Sachs-Wolfe’
effect [17].

Assuming that a nearly scale-invariant spectrum of density per-
turbations was laid down at early times (i.e., n ≃ 1, meaning equal
power per decade in k), then ℓ(ℓ+1)Cℓ ≃ constant at low ℓs. This
effect is hard to see unless the multipole axis is plotted logarith-
mically (as in Fig. 1, but not Fig. 2).

Time variation in the potentials (i.e., time-dependent metric
perturbations) leads to an upturn in the Cℓs in the lowest several
multipoles; any deviation from a total equation of state w = 0 has
such an effect. So the dominance of the Dark Energy at low red-
shift makes the lowest ℓs rise above the plateau. This is sometimes
called the ‘integrated Sachs-Wolfe effect’ (or ISW Rise), since it
comes from the line integral of φ̇. It has been confirmed through
correlations between the large-angle anisotropies and large-scale
structure [18]. Specific models can also give additional contribu-
tions at low ℓ (e.g., perturbations in the Dark Energy component
itself [19]) but typically these are buried in the cosmic variance.

In principle, the mechanism that produces primordial perturba-

tions would generate scalar, vector, and tensor modes. However,
the vector (vorticity) modes decay with the expansion of the Uni-
verse. Tensors also decay when they enter the horizon, and so
they contribute only to angular scales above about 1◦ (see Fig. 1).
Hence some fraction of the low ℓ signal could be due to a gravity
wave contribution, although small amounts of tensors are essen-
tially impossible to discriminate from other effects that might raise
the level of the plateau. However the tensors can be distinguished
using polarization information (section 6).

4.2. The acoustic peaks: 100 ∼
< ℓ ∼

< 1000:
On sub-degree scales, the rich structure in the anisotropy spec-

trum is the consequence of gravity-driven acoustic oscillations oc-
curring before the atoms in the universe became neutral. Perturba-
tions inside the horizon at last scattering have been able to evolve
causally and produce anisotropy at the last scattering epoch which
reflects that evolution. The frozen-in phases of these sound waves
imprint a dependence on the cosmological parameters, which gives
CMB anisotropies their great constraining power.

The underlying physics can be understood as follows. When the
proton-electron plasma was tightly coupled to the photons, these
components behaved as a single ‘photon-baryon fluid’, with the
photons providing most of the pressure and the baryons the iner-
tia. Perturbations in the gravitational potential, dominated by the
dark matter component, are steadily evolving. They drive oscilla-
tions in the photon-baryon fluid, with photon pressure providing
the restoring force. The perturbations are quite small, O(10−5),
and so evolve linearly. That means each Fourier mode evolves in-
dependently and is described by a driven harmonic oscillator, with
frequency determined by the sound speed in the fluid. Thus, there
is an oscillation of the fluid density, with velocity π/2 out of phase

and having amplitude reduced by the sound speed.

After the Universe recombined the baryons and radiation de-
coupled, and the radiation could travel freely towards us. At that
point the phases of the oscillations were frozen-in, and projected
on the sky as a harmonic series of peaks. The main peak is the
mode that went through 1/4 of a period, reaching maximal com-
pression. The even peaks are maximal under-densities, which are
generally of smaller amplitude because the rebound has to fight
against the baryon inertia. The troughs, which do not extend to
zero power, are partially filled because they are at the velocity
maxima.

An additional effect comes from geometrical projection. The
scale associated with the peaks is the sound horizon at last scat-
tering, which can be confidently calculated as a physical length
scale. This scale is projected onto the sky, leading to an angu-
lar scale that depends on the background cosmology. Hence the
angular position of the peaks is a sensitive probe of the spatial cur-
vature of the Universe (i.e., Ωtot), with the peaks lying at higher
ℓ in open universes and lower ℓ in closed geometry.

One last effect arises from reionization at redshift zi. A fraction
of photons will be isotropically scattered at z < zi, partially erasing
the anisotropies at angular scales smaller than those subtended by
the Hubble radius at zi. This corresponds typically to ℓs above
about a few 10s, depending on the specific reionization model. The
acoustic peaks are therefore reduced by a factor e−2τ relative to
the plateau.

These acoustic peaks were a clear theoretical prediction going
back to about 1970 [20]. Their empirical existence started to be-
come clear around 1994 [21], and the emergence, over the follow-
ing decade, of a coherent series of acoustic peaks and troughs is
a triumph of modern cosmology. One can think of these peaks as
a snapshot of stochastic standing waves. And, since the physics
governing them is simple, then one can see how they encode infor-
mation about the cosmological parameters.

4.3. The damping tail: ℓ ∼
> 1000:

The recombination process is not instantaneous, giving a thick-
ness to the last scattering surface. This leads to a damping of
the anisotropies at the highest ℓs, corresponding to scales smaller
than that subtended by this thickness. One can also think of the
photon-baryon fluid as having imperfect coupling, so that there is
diffusion between the two components, and the oscillations have
amplitudes that decrease with time. These effects lead to a damp-
ing of the Cℓs, sometimes called Silk damping [22], which cuts off
the anisotropies at multipoles above about 2000.

An extra effect at high ℓs comes from gravitational lensing,
caused mainly by non-linear structures at low redshift. The Cℓs are
convolved with a smoothing function in a calculable way, partially
flattening the peaks, generating a power-law tail at the highest
multipoles, and complicating the polarization signal [23]. This is
an example of a ‘secondary effect’, i.e., the processing of anisotro-
pies due to relatively nearby structures. Galaxies and clusters of
galaxies give several such effects, but all are expected to be of low
amplitude and are typically only important for the highest ℓs.

5. Current Anisotropy Data

There has been a steady improvement in the quality of CMB

data that has led to the development of the present-day cosmo-
logical model. Probably the most robust constraints currently
available come from the combination of the WMAP first year
data [5] with smaller scale results from the CBI [24] and ACBAR
[25] experiments. We plot these power spectrum estimates in
Fig. 2. Other recent experiments, such as ARCHEOPS [26],
BOOMERANG [27], DASI [28], MAXIMA [29] and VSA [30] also
give powerful constraints, which are quite consistent with what
we describe below. There have been some comparisons among
data-sets [31], which indicate very good agreement, both in maps
and in derived power spectra (up to systematic uncertainties in
the overall calibration for some experiments). This makes it clear
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that systematic effects are largely under control. However, a fully

self-consistent joint analysis of all the current data sets has not
been attempted, one of the reasons being that it requires a careful
treatment of the overlapping sky coverage.

Figure 2: Band-power estimates from the WMAP, CBI,
and ACBAR experiments. The WMAP data are the points,
while squares are CBI and crosses ACBAR. We have shown
only CBI and ACBAR data relevant for ℓ > 500, and both
experiments also probe to higher ℓ than shown. This plot rep-
resents only a fraction of experimental results, with several
other data-sets being of similar quality. The multipole axis
here is linear, so the Sachs-Wolfe plateau is hard to see. The
acoustic peaks and damping region are very clearly observed,
with no need for a theoretical curve to guide the eye.

Fig. 2 shows band-powers from the first year WMAP data [32],
together with CBI and ACBAR data at higher ℓ. The points are
in very good agreement with a ‘ΛCDM’ type model, as described
in the previous section, with several of the peaks and troughs quite
apparent. For details of how these estimates were arrived at, the
strength of any correlations between band-powers and other infor-
mation required to properly interpret them, turn to the original
papers [5, 24, 25].

6. CMB Polarization

Since Thomson scattering of an anisotropic radiation field also
generates linear polarization, the CMB is predicted to be polarized
at the roughly 5% level [33]. Polarization is a spin 2 field on the
sky, and the algebra of the modes in ℓ-space is strongly analogous
to spin-orbit coupling in quantum mechanics [34]. The linear po-
larization pattern can be decomposed in a number of ways, with

two quantities required for each pixel in a map, often given as
the Q and U Stokes parameters. However, the most intuitive and
physical decomposition is a geometrical one, splitting the polar-
ization pattern into a part that comes from a divergence (often
referred to as the ‘E-mode’) and a part with a curl (called the
‘B-mode’) [35]. More explicitly, the modes are defined in terms of
second derivatives of the polarization amplitude, with the Hessian
for the E-modes having principle axes in the same sense as the po-
larization, while the B-mode pattern can be thought of simply as
a 45◦ rotation of the E-mode pattern. Globally one sees that the
E-modes have (−1)ℓ parity (like the spherical harmonics), while
the B-modes have (−1)ℓ+1 parity.

Figure 3: Cross power spectrum of the temperature an-
isotropies and E-mode polarization signal from WMAP

(points), together with some estimates from DASI (trian-
gles) which extend to higher ℓ. Note that the DASI bands
are much wider in ℓ than those of WMAP. Also note that
the y-axis is not multiplied by the additional ℓ, which helps
to show both the large and small angular scale features.

The existence of this linear polarization allows for 6 different
cross power spectra to be determined from data that measure the
full temperature and polarization anisotropy information. Parity
considerations make 2 of these zero, and we are left with 4 po-
tential observables: CTT

ℓ , CTE
ℓ , CEE

ℓ , and CBB
ℓ . Since scalar

perturbations have no handedness, the B-mode power spectrum
can only be generated by vectors or tensors. Hence, in the context
of inflationary models, the determination of a non-zero B-mode
signal is a way to measure the gravity wave contribution (and
thus potentially derived the energy scale of inflation), even if it
is rather weak. However, one must first eliminate the foreground
contributions and other systematic effects down to very low levels.

The oscillating photon-baryon fluid also results in a series of
acoustic peaks in the polarization power spectra. The main ‘EE’
power spectrum has peaks that are out of phase with those in the
‘TT’ spectrum, because the polarization anisotropies are sourced
by the fluid velocity. The correlated component of the polariza-
tion and temperature patterns comes from correlations between
density and velocity perturbations on the last scattering surface,
which can be both positive and negative. There is no polarization
‘Sachs-Wolfe’ effect, and hence no large-angle plateau. However,
scattering during a recent period of reionization can create a po-
larization ‘bump’ at large angular scales.

The strongest upper limits on polarization are at the roughly
10µK level from the POLAR [36] experiment at large angular
scales and the PIQUE [37] and COMPASS [38] experiments at

smaller scales. The first measurement of a polarization signal came
in 2002 from the DASI experiment [39], which provided a convinc-
ing detection, confirming the general paradigm, but of low enough
significance that it lends little constraint to models. As well as the
E-mode signal, DASI also made a statistical detection of the TE
correlation.

More recently the WMAP experiment was able to measure the
TE cross-correlation power spectrum with high precision [40]. The
results are shown in Fig. 3, along with some estimates from the
DASI experiment. The detected shape of the cross-correlation
power spectrum provides supporting evidence of the adiabatic na-
ture of the perturbations, as well as directly constraining the thick-



5 Cosmic background radiation

ness of the last scattering surface. Since the polarization anisotro-

pies are generated in this scattering surface, the existence of cor-
relations at angles above about a degree demonstrate that there
were super-Hubble fluctuations at the recombination epoch.

Perhaps the most intriguing result from the polarization mea-
surements is at the largest angular scales (ℓ < 10), where there is
an excess signal compared to that expected from the temperature
power spectrum alone. This is precisely the signal expected from
an early period of reionization, arising from Doppler shifts dur-
ing the partial scattering at z < zi. It seems to indicate that the
first stars (presumably the source of the ionizing radiation) formed
around z = 20.

7. Complications

There are a number of issues which complicate the interpreta-
tion of CMB anisotropy data, some of which we sketch out below.

7.1. Foregrounds:
The microwave sky contains significant emission from our

Galaxy and from extragalactic sources. Fortunately, the frequency
dependence of these various sources are in general substantially
different than the CMB anisotropy signals. The combination of
Galactic synchrotron, bremsstrahlung and dust emission reaches
a minimum at a wavelength of roughly 3mm (or about 100GHz).
As one moves to greater angular resolution, the minimum moves
to slightly higher frequencies, but becomes more sensitive to un-
resolved (point-like) sources.

At frequencies around 100GHz and for portions of the sky away
from the Galactic Plane the foregrounds are typically 1 to 10% of
the CMB anisotropies. By making observations at multiple fre-
quencies, it is relatively straightforward to separate the various
components and determine the CMB signal to the few per cent

level. For greater sensitivity it is necessary to improve the sep-
aration techniques by adding spatial information and statistical
properties of the foregrounds compared to the CMB.

The foregrounds for CMB polarization are expected to follow a
similar pattern, but are less well studied, and are intrinsically more
complicated. Whether it is possible to achieve sufficient separa-
tion to detect B-mode CMB polarization is still an open question.
However, for the time being, foreground contamination is not a
major issue for CMB experiments.

7.2. Secondary Anisotropies:
With increasingly precise measurements of the primary aniso-

tropies, there is growing theoretical and experimental interest in

‘secondary anisotropies.’ Effects which happen at z ≪ 1000 be-
come more important as experiments push to higher angular res-
olution and sensitivity.

These secondary effects include gravitational lensing, patchy
reionization and the Sunyaev-Zel’dovich (SZ) effect [41]. This is
Compton scattering (γe → γ′e′) of the CMB photons by a hot
electron gas, which creates spectral distortions by transferring en-
ergy from the electrons to the photons. The effect is particularly
important for clusters of galaxies, through which one observes a
partially Comptonized spectrum, resulting in a decrement at radio
wavelengths and an increment in the submillimeter. This can be
used to find and study individual clusters and to obtain estimates
of the Hubble constant. There is also the potential to constrain
the equation of state of the Dark Energy through counts of clusters
as a function of redshift [42].

7.3. Higher-order Statistics:
Although most of the CMB anisotropy information is contained

in the power spectra, there will also be weak signals present in
higher-order statistics. These statistics will measure primordial
non-Gaussianity in the perturbations, as well as non-linear growth
of the fluctuations on small scales and other secondary effects (plus
residual foreground contamination). Although there are an infinite
variety of ways in which the CMB could be non-Gaussian, there
is a generic form to consider for the initial conditions, where a

quadratic contribution to the curvature perturbations is parame-

terized through a dimensionless number fNL. This weakly non-
linear component can be constrained through measurements of the
bispectrum or Minkowski functionals for example, and the result
from WMAP is −58 < fNL < 134 (95% confidence region) [11].

8. Constraints on Cosmologies

The most important outcome of the newer experimental results
is that the standard cosmological paradigm is in good shape. A
large amount of high precision data on the power spectrum is ad-

equately fit with fewer than 10 free parameters. The framework
is that of Friedmann-Robertson-Walker models, which have nearly
flat geometry, containing Dark Matter and Dark Energy, and with
adiabatic perturbations having close to scale invariant initial con-
ditions.

Within this framework, bounds can be placed on the values of
the cosmological parameters. Of course, much more stringent con-
straints can be placed on models which cover a restricted number
of parameters, e.g. assuming that Ωtot = 1, n = 1 or r = 0. More
generally, the constraints depend upon the adopted priors, even if
they are implicit, for example by restricting the parameter free-
dom or the ranges of parameters (particularly where likelihoods
peak near the boundaries), or by using different choices of other
data in combination with the CMB. When the data become even
more precise, these considerations will become less important, but
for now we caution that restrictions on model space and choice of
priors need to be kept in mind when adopting specific parameter
values and uncertainties.

There are some combinations of parameters that fit the CMB
anisotropies almost equivalently. For example, there is a nearly ex-
act geometric degeneracy, where any combination of ΩM and ΩΛ
that gives the same angular diameter distance to last scattering
will give nearly identical Cℓs. There are also other near degen-
eracies among the parameters. Such degeneracies can be broken
when using the CMB data in combination with other cosmological
data sets. Particularly useful are complementary constraints from
galaxy clustering, the abundance of galaxy clusters, weak gravita-
tional lensing measurements, Type Ia supernova distances and the
distribution of Lyman α forest clouds. For an overview of some of
these other cosmological constraints, see Ref. [12].

The combination of WMAP, CBI and ACBAR, together with
weak priors (on h and ΩBh2 for example), and within the context
of a 6 parameter family of models (which fixes Ωtot = 1), yields
the following results [43]: A = 2.7(±0.3)× 10−9, n = 0.97± 0.03,
h = 0.73± 0.05, ΩBh2 = 0.023 ± 0.001, ΩMh2 = 0.13± 0.01 and
τ = 0.17 ± 0.07. Note that for h, the CMB data alone provide
only a very weak constraint, unless spatial flatness or some other
cosmological data are used. For ΩBh2 the precise value depends
sensitively on how much freedom is allowed in the shape of the
primordial power spectrum (see ‘Big-Bang Nucleosynthesis’ mini-
review [44]). For the optical depth τ , the error bar is large enough
that apparently quite different results can come from other com-
binations of data.

The best constraint on Ωtot is 1.02 ± 0.02. This comes from
including priors from h and supernova data. Slightly different, but

consistent results come from using different data combinations.
The 95% confidence upper limit on r is 0.53 (including some

extra constraint from galaxy clustering). This limit is stronger if
we restrict ourselves to n < 1 and weaker if we allow dn/d lnk 6= 0.

There are also constraints on parameters over and above the
basic 8 that we have described. But for such constraints it is
necessary to include additional data in order to break the degen-
eracies. For example the addition of the Dark Energy equation of
state, w adds the partial degeneracy of being able to fit a ridge
in (w,h) space, extending to low values of both parameters. This
degeneracy is broken when the CMB is used in combination with
independent H0 limits, for example [45], giving w < −0.5 at 95%
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confidence. Tighter limits can be placed using restrictive model-

spaces and/or additional data.
For the optical depth τ , the error bar is large enough that ap-

parently quite different results can come from other combinations
of data. The constraint from the combined WMAP CTT

ℓ and

CTE
ℓ data is τ = 0.17 ± 0.04, which corresponds (within reason-

able models) to a reionization redshift 9 < zi < 30 (95% CL) [40].
This is a little higher than some theoretical predictions and some
suggestions from studies of absorption in high-z quasar spectra
[46]. The excitement here is that we have direct information from
CMB polarization which can be combined with other astrophysi-
cal measurements to understand when the first stars formed and
brought about the end of the cosmic dark ages.

9. Particle Physics Constraints

CMB data are beginning to put limits on parameters which are
directly relevant for particle physics models. For example there is
a limit on the neutrino contribution Ωνh2 < 0.0076 (95% confi-
dence) from a combination of WMAP and galaxy clustering data
from the 2dFGRS project [47]. This directly implies a limit on
neutrino mass, assuming the usual number density of fermions
which decoupled when they were relativistic.

A combination of the WMAP data with other data-sets gives
some hint of a running spectral index, i.e., dn/d lnk 6= 0 [42]. Al-
though this is still far from resolved [48], things will certainly
improve as new data come in. A convincing measurement of a
non-zero running of the index would be quite constraining for in-
flationary models [49].

One other hint of new physics lies in the fact that the quadru-
pole and some of the other low ℓ modes seem anomalously low
compared with the best-fit ΛCDM model [32]. This is what might
be expected in a universe which has a large scale cut-off to the
power spectrum, or is topologically non-trivial. However, because
of cosmic variance, possible foregrounds etc., the significance of
this feature is still a matter of debate [50].

In addition it is also possible to put limits on other pieces of
physics [51], for example the neutrino chemical potentials, time
variation of the fine-structure constant, or physics beyond general
relativity. Further particle physics constraints will follow as the
anisotropy measurements increase in precision.

Careful measurement of the CMB power spectra and non-
Gaussianity can in principle put constraints on high energy
physics, including ideas of string theory, extra dimensions, col-
liding branes, etc. At the moment any calculation of predictions
appears to be far from definitive. However, there is a great deal
of activity on implications of string theory for the early Universe,
and hence a very real chance that there might be observational
implications for specific scenarios.

10. Fundamental Lessons

More important than the precise values of parameters is what
we have learned about the general features which describe our
observable Universe. Beyond the basic hot Big Bang picture, the
CMB has taught us that:
• The Universe recombined at z ≃ 1100 and started to become

ionized again at z ≃ 10–30.

• The geometry of the Universe is close to flat.
• Both Dark Matter and Dark Energy are required.
• Gravitational instability is sufficient to grow all of the observed

large structures in the Universe.
• Topological defects were not important for structure formation.
• There are ‘synchronized’ super-Hubble modes generated in the

early Universe.
• The initial perturbations were adiabatic in nature.
• The perturbations had close to Gaussian (i.e., maximally ran-

dom) initial conditions.
It is very tempting to make an analogy between the status of

the cosmological ‘Standard Model’ and that of particle physics.

In cosmology there are about 10 free parameters, each of which

is becoming well determined, and with a great deal of consistency
between different measurements. However, none of these parame-
ters can be calculated from a fundamental theory, and so hints of
the bigger picture, ‘physics beyond the Standard Model’ are being
searched for with ever more challenging experiments.

Despite this analogy, there are some basic differences. For one
thing, many of the cosmological parameters change with cosmic
epoch, and so the measured values are simply the ones determined
today, and hence they are not ‘constants’, like particle masses for
example (although they are deterministic, so that if one knows
their values at one epoch, they can be calculated at another).
Moreover, the number of parameters is not as fixed as it is in
the particle physics Standard Model; different researchers will not
necessarily agree on what the free parameters are, and new ones
can be added as the quality of the data improves. In addition
parameters like τ , which come from astrophysics, are in principle
calculable from known physical processes, although this is cur-
rently impractical. On top of all this, other parameters might be
‘stochastic’ in that they may be fixed only in our observable patch
of the Universe.

In a more general sense the cosmological ‘Standard Model’ is
much further from the underlying ‘fundamental theory’ which will
provide the values of the parameters from first principles. On the
other hand, any genuinely complete ‘theory of everything’ must
include an explanation for the values of these cosmological param-
eters as well as the parameters of the Standard Model.

11. Future Directions

With all the observational progress in the CMB and the ty-
ing down of cosmological parameters, what can we anticipate for
the future? Of course there will be a steady improvement in the
precision and confidence with which we can determine the appro-
priate cosmological model and its parameters. We can anticipate
that the evolution from one year to four years of WMAP data will
bring improvements from the increased statistical accuracy and
from the more detailed treatment of calibration and systematic
effects. Ground-based experiments operating at the smaller an-
gular scales will also improve over the next few years, providing
significantly tighter constraints on the damping tail. In addition,
the next CMB satellite mission, Planck, is scheduled for launch in
2007, and there are even more ambitious projects currently being
discussed.

Despite the increasing improvement in the results, it is also
true that the addition of the latest experiments has not signifi-
cantly changed the cosmological model (apart from a suggestion
of higher reionization redshift perhaps). It is therefore appropriate
to ask: what should we expect to come from Planck and from other
more grandiose future experiments, including the proposed Infla-

tion Probe or CMBPol? Planck certainly has the the advantage of
high sensitivity and a full sky survey. A detailed measurement of
the third acoustic peak provides a good determination of the mat-
ter density; this can only be done by measurements which are accu-
rate relative to the first two peaks (which themselves constrained
the curvature and the baryon density). A detailed measurement
of the damping tail region will also significantly improve the de-

termination of n and any running of the slope. Planck should
also be capable of measuring CEE

ℓ quite well, providing both a
strong check on the Standard Model and extra constraints that
will improve parameter estimation.

A set of cosmological parameters are now known to roughly 10%
accuracy, and that may seem sufficient for many people. However,
we should certainly demand more of measurements which describe
the entire observable Universe! Hence a lot of activity in the com-
ing years will continue to focus on determining those parameters
with increasing precision. This necessarily includes testing for con-
sistency among different predictions of the Standard Model, and
searching for signals which might require additional physics.
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A second area of focus will be the smaller scale anisotropies

and ‘secondary effects.’ There is a great deal of information about
structure formation at z ≪ 1000 encoded in the CMB sky. This
may involve higher-order statistics as well as spectral signatures.
Such investigations can also provide constraints on the Dark En-
ergy equation of state, for example. Planck, as well as experiments
aimed at the highest ℓs, should be able to make a lot of progress
in this arena.

A third direction is increasingly sensitive searches for specific
signatures of physics at the highest energies. The most promising
of these may be the primordial gravitational wave signals in CBB

ℓ ,

which could be a probe of the ∼ 1016 GeV energy range. Whether
the amplitude of the effect coming from inflation will be detectable
is unclear, but the prize makes the effort worthwhile.

Anisotropies in the CMB have proven to be the premier probe
of cosmology and the early Universe. Theoretically the CMB in-
volves well-understood physics in the linear regime, and is under
very good calculational control. A substantial and improving set
of observational data now exists. Systematics appear to be well
understood and not a limiting factor. And so for the next few
years we can expect an increasing amount of cosmological infor-
mation to be gleaned from CMB anisotropies, with the prospect
also of some genuine surprises.
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