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ABSTRACT

Photometric (VJRCIC) and spectroscopic (6000−9500Å) observations of high proper

motion stars discovered during the first phase of the SuperCOSMOS RECONS (SCR)

search are used to estimate accurate distances to eight new nearby red dwarfs, includ-

ing probable 10 pc sample members SCR 1845-6357 (M8.5V at 4.6 pc), the binary

SCR 0630-7643AB (M6.0VJ at 7.0 pc), and SCR 1138-7721 (M5.0V at 9.4 pc). Dis-

tance estimates are determined using a suite of new photometric color-MKs relations

defined using a robust set of nearby stars with accurate V RIJHKs photometry and

trigonometric parallaxes.

These relations are utilized, with optical and infrared photometry, to estimate dis-

tances on a uniform system (generally good to 15%) for two additional samples of red

nearby star candidates: several recently discovered members of the solar neighborhood,

and known faint stars with proper motions in excess of 1.0′′/yr south of DEC = −57.5.

Of those without accurate trigonometric parallax measurements, there are five stars in

the first sample and three in the second that are likely to be within 10 pc. The two

nearest are SO 0253+1652 (M7.0V at 3.7 pc) and DEN 1048-3956 (M8.5V at 4.5 pc).

When combined with SCR 1845-6357, these three stars together represent the largest

increase in the 5 pc sample in several decades.

Red spectra are presented for the red dwarfs and types are given on the RECONS

standard spectral system. Red spectra are also given for two new nearby white dwarfs

for which we estimate distances from the photometry of less than 20 pc — WD 0141-675

(LHS 145, 9.3 pc) and SCR 2012-5956 (17.4 pc). WD 0141-675 brings the total number

of systems nearer than 10 pc discussed in this paper to 12.

Subject headings: stars: distances — stars: statistics — solar neighborhood



– 2 –

1. Introduction

Large plate digitization efforts such as the Digitized Sky Survey and SuperCOSMOS, as well

as sky surveys such as 2MASS and SDSS, have led to a renaissance in the search for faint objects

lying undiscovered in the solar neighborhood. In particular, the census of the nearest stars (Henry

et al. 1997) is gradually being filled in to the end of the stellar main sequence. Many of the new

discoveries are the latest M dwarfs (spectral types M6.0V to M9.5V), some of which are among the

nearest few dozen stellar systems. Each of the recent discoveries has been made via high proper

motion and/or color surveys, some relying on the classic work of Luyten (Scholz et al. 2001; Reid &

Cruz 2002), while others are from entirely original efforts (Delfosse et al. 2001; Lepine et al. 2002;

Teegarden et al. 2003; Cruz et al. 2003; this work).

Here we report optical photometry and spectroscopy for nine new nearby star candidates from

the first phase of the SuperCOSMOS RECONS (SCR) search (Hambly et al. 2004) that have proper

motions in excess of 1.0′′/yr or have types of M6.0V or later. One object in particular, SCR 1845-

6357, is remarkable, having VJ = 17.40, RC = 15.00, IC = 12.47, and spectral type M8.5V. We

predict that it lies only 4.6 pc from the Sun, making it the third new stellar system found within

5 pc in the last few years. This jump in the 5 pc census from 44 to 47 systems represents a 7%

increase. Two of the three new neighbors are found south of DEC = −30, where searches for nearby

stars are less complete than in the north.

We also provide a suite of new, robust, relations using V RIJHKs photometry to estimate

distances for nearby stars. These relations hinge on the MKs magnitudes of single stars within

10 pc with high quality parallaxes, supplemented with recent results for very red stars, many of

which now have reliable parallaxes placing them within 25 pc (e.g. Dahn et al. 2002). When used

as an ensemble, these relations allow photometric distance estimates to be more accurate than ever

before, generally good to 15%. We give distance estimates for the new SCR discoveries, several red

dwarfs advertised to be nearby, and for the sample of known faint stars with µ > 1.0′′/yr south of

DEC = −57.5. We also provide a detailed check of the technique by applying it to the sample of

very red dwarfs with parallaxes.

2. Samples

Four samples are included in the current effort. Details are given in Tables 1 and 2. The

initial phase of the SCR search provides a large number of new proper motion stars south of DEC

= −57.5 that have R2 = 10.0 to 16.5 (R2 represents the photographic R59F band). Details of the

search are given in Hambly et al. (2004). In this paper, we discuss the five SCR stars with µ ≥

1.0′′/yr and four others with µ = 0.4–1.0′′/yr that have spectral types of M6.0V or later. Finder

charts are given in Figure 1.

The second sample includes eight red dwarfs with spectral types M6.0V to M8.5V that have
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photometric or spectroscopic distance estimates bringing them into the sample of the nearest few

hundred stellar systems. Various distance estimates have been made for these stars using many tech-

niques, sometimes yielding highly discordant estimates. Here we provide V RIJHKs photometry

and optical spectroscopy so that they can be compared on uniform photometric and spectroscopic

systems.

The third sample includes previously known stars with µ ≥ 1.0′′/yr south of DEC = −57.5,

the region investigated in the first phase of the SCR search. The LHS Catalogue (Luyten 1979,

hereafter LHS) includes a total of 37 stars meeting these criteria, 22 of which are fainter than mR

= 10 by Luyten’s estimate. Also meeting these criteria are an additional white dwarf pair found

recently by Scholz et al. (2001), and a red dwarf found by Pokorny et al. (2003), bringing the total

sample to 25 objects. The SCR search recovered 21 of these — four were missed due to image

blending.

The fourth sample includes 31 M dwarfs with spectral types M6.0V to M9.5V within 25 pc

that are combined with the RECONS sample of stars within 10 pc to develop high quality color-MK

relations. We refer to these stars as the “supplemental sample”.

3. Observations

3.1. Photometry

The primary sources for red dwarf photometry in the VJRCIC system are the comprehen-

sive efforts reported in Bessell (1990), Bessell (1991), Leggett (1992), Weis (1996), and Dahn et

al. (2002). Once those sources were exhausted, additional references were used as listed in Tables

1 and 2, in particular for the reddest M dwarfs.

Optical photometry for the SCR stars and additional objects listed in Table 1 was obtained

in the VJRCIC bands using the Cerro Tololo Interamerican Observatory (CTIO) 0.9m telescope

during several observing runs from 2000 to 2004 as part of the NOAO Surveys Program and the

SMARTS (Small and Moderate Aperture Research Telescope System) Consortium. The 2048 ×

2046 Tektronix CCD camera was used with the Tek #2 V RI filter set. Standard stars from Graham

(1982), Bessell (1990), and Landolt (1992) were observed through a range of airmasses each night

to place measured fluxes on the VJRCIC system and to calculate extinction corrections.

Data were reduced using IRAF via typical bias subtraction and dome flat fielding, utilizing

calibration frames taken at the beginning of each night. In general, a circular aperture 14′′ in

diameter was used to determine stellar fluxes in order to match the aperture used by Landolt

(1992) for the standard stars. In cases of crowded fields, an appropriate aperture 6–12′′ in diameter

was used to eliminate stray light from close sources, and aperture corrections were applied. Program

stars were typically observed on multiple nights, yielding a measure of the internal, night-to-night,

errors of ±0.031, 0.021, 0.025 mag at VJRCIC , respectively, for stars with three or more nights of
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data (which are usually the faintest targets). From the fits of the standard stars, external errors are

estimated to be ±0.017, 0.015, 0.020 mag VJRCIC , respectively. From these two error estimates,

we adopt a total error of ±0.03 mag in each band. The final magnitudes are given in Table 1.

Infrared photometry in the JHKs system has been extracted from 2MASS, and is also given

in Tables 1 and 2. The errors are the xmsigcom errors (where x is j, h, or k), which give a measure

of the total photometric uncertainty including global and systematic terms. The errors are almost

always less than 0.05 mag, and are typically 0.02–0.03 mag. Notable exceptions are the three white

dwarfs SCR 2012-5956 (errors of 0.05, 0.11, null at JHKs respectively; at Ks > 15.4, the star is

too faint for a reliable measurement of the magnitude and error), SSPM J2231-7515 (0.04, 0.06,

and 0.12 mag), and SSPM J2231-7514 (0.04, 0.06, and 0.08 mag).

3.2. Spectroscopy

There are two large, reliable, bodies of spectroscopic work for M dwarfs that utilize modern

CCDs — that of the RECONS group (e.g. Kirkpatrick et al. 1991; Henry et al. 2002) and the

Palomar/MSU (PMSU) survey (Reid et al. 1995; Hawley et al. 1996). The PMSU types are based

upon comparisons with objects observed by the RECONS group, but employ a restricted range in

wavelength coverage, ∼6300-7200Å (for the CTIO setup, which is the one most relevant for the

southern stars discussed here). Spectral types from other authors given in Tables 1 and 2 are often

the result of comparison to RECONS spectral types. In one case (Bessell 1991), spectral types are

on a different system altogether, but a representative spectral type is better than none.

New spectra were obtained during observing runs in July, October, and December 2003, and

March 2004 at the CTIO 1.5m telescope as part of the SMARTS Consortium. The R-C Spectro-

graph and Loral 1200 X 800 CCD detector were used with grating #32, which provided 8.6Å reso-

lution and wavelength coverage from 6000-9500Å. In a few cases, spectra are included from previous

CTIO 4.0m runs that utilized the R-C Spectrograph and Loral 3K × 1K CCD detector with grat-

ing #181, which provided 5.7Å resolution and wavelength coverage from 5000–10000Å. In all cases,

data were reduced using IRAF via typical bias subtraction and dome and/or sky flat fielding, using

calibration frames taken at the beginning of each night. Fringing at red wavelengths in the 4.0m

data was removed by fitting the fringes and subtracting them via a tailored IDL program. Fringing

was effectively removed from the 1.5m data in a more straightforward manner using a combination

of dome and sky flats.

Spectral types were assigned using the ALLSTAR program as described in Henry et al. (2002),

which currently contains a library of ∼500 K5.0V to M9.0V spectra. RECONS types in Tables 1

and 2 have been assigned using a new finely-tuned set of M6.0V to M9.0V standards, illustrated in

Figure 2, thereby placing all stars on a uniform system. In a few cases, spectral types have shifted

from those previously published by RECONS and others (given in the notes). These updates

are warranted, because the new spectra reported generally have higher resolution and broader
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wavelength coverage than previous spectra, and were taken on only two telescopes, thereby reducing

instrumental inconsistencies. Spectra of the eight new SCR red dwarfs and seven of the eight new

very red solar neighbors are shown in Figures 2–4, ranked from bluest to reddest in each panel.

As predicted by the photometry and the reduced proper motion diagram, the spectrum of SCR

2012-5956 indicates that it is a white dwarf. For comparison, shown in Figure 5 are its spectrum

and the similar spectrum of the white dwarf GJ 440. An additional white dwarf, LHS 2621, also has

a similar spectrum, and to our knowledge this is the first report that it is a white dwarf. The lack of

any obvious spectral features indicates that the type could be DC or DQ (because no strong carbon

features typical of DQ white dwarfs are included in the spectral range shown here; the “features”

in all three are telluric). Also shown is the spectrum of WD 0141-675 (LHS 145), a new nearby DA

white dwarf for which we have determined a parallax within 10 pc (the subject of a future paper),

and spectra for two similar DA white dwarfs (note the defining Hα absorption features at 6563Å in

each of the DA white dwarfs).

4. Analysis

4.1. Photometric Distances

To estimate distances to red dwarfs in the three target samples, we take advantage of recent

photometry and trigonometric parallax determinations, and combine optical UBV RI and near-

infrared JHKs photometry to form an extended baseline over which subtle colors are evident and

additional color “leverage” is available. Using all eight filter bands provides 28 possible color-MKs

relations. MKs has been selected because Ks magnitudes are now available from 2MASS for nearly

every red dwarf considered in nearby star studies. These relations can be used in combination to

reduce errors in photometric distance estimates caused by photometric outliers in the fits and to

overcome photometric errors in one or more filters for the target stars.

The new color-MKs relations have been developed for red dwarfs with MKs ∼ 4–11, corre-

sponding to spectral types K0.0V to M9.5V. This broad range encompasses eight of the nine SCR

stars, all eight of the recent nearby star candidates, and 19 of the 25 stars in the known high proper

motion sample (the exceptions are generally white dwarfs). Two samples of stars — stars within 10

pc (the RECONS sample) and the supplemental sample of late-type M dwarfs within 25 pc — have

been combined to develop reliable relations. Complete details for the RECONS sample, including

all of the photometric values, will be presented in a future 10 pc summary paper in this series. In

short, only photometrically single, main sequence stars within 10 pc are used. Subdwarfs, close

multiple systems and stars with parallax errors greater than 5 mas (i.e. 5% errors at most, at 10

pc) have been removed. To bolster the red end of the relations, the RECONS sample has been

supplemented with the stars listed in Table 2. These stars are nearer than 25 pc, have MKs = 9 to

11 (spectral types M6.0V to M9.5V), have trigonometric parallaxes with errors less than 10 mas,

are not subdwarfs, and are not known to be in close multiple systems. There are few objects of
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types M7.0V to M9.5V missing from this list that have published trigonometric parallaxes larger

than 40 mas.

Trigonometric parallaxes have been collected from the two fundamental parallax references, the

Yale Parallax Catalog (van Altena et al. 1995) and Hipparcos (ESA 1997). Additional parallaxes

have been determined for many objects with spectral types from M6.0V to M9.5V during the

last decade, primarily through the efforts of Tinney et al. (1995), Tinney (1996), and Dahn et

al. (2002). Hipparcos parallaxes are available in only a few cases where bright primary stars could

be observed, because all of the stars in Table 2 were too faint for Hipparcos. In stellar systems

in which the late-type M dwarf is a companion, parallaxes are included for all components in the

system, thereby taking advantage of many determinations that may be more accurate than those

for the faint component alone. In one case, GJ 644C, Soderhjelm (1999) provides an updated

Hipparcos parallax for the primary, GJ 644 ABD, which is actually a close triple. When there is

more than one parallax determination, the weighted mean of all available parallaxes for the stellar

system has been adopted, as listed in column 4 of Tables 1 and 2, and column 2 of Table 4.

Of the 28 possible color-MKs relations derivable from UBV RIJHKs, only 12 were deemed

useful. Currently, there is insufficient reliable U and B photometry for red dwarfs (particularly past

M6.0V), so the 13 relations employing U and B are not used. In addition, the three colors derived

from JHKs alone do not have sufficient baselines to provide reliable distance estimates. Fits to

each set of color-MKs data were made for second through eighth orders. Overall, fifth-order fits

proved reliable for all 12 colors used, and higher orders did not improve the fits in any meaningful

way.

An exemplary fit, for MKs vs. (V − Ks), is shown in Figure 6. For each of the 12 relations

adopted, the applicable color range, the numbers of stars used from the RECONS and very red

samples, the fit coefficients, and the RMS values of the fits are given in Table 3. Equations for the

relations have the following format:

MKs = + 0.00959 (V − Ks)
4 − 0.23953 (V − Ks)

3 + 2.05071 (V − Ks)
2

− 5.98231(V − Ks) + 9.77683

Of course, trigonometric parallaxes for additional objects (including many of those investigated

here) and photometry would allow the improvement of the photometric relation matrix, in particular

for the stars with types later than M7.0V. We note that Dahn et al. (2002), who include accurate

data for many stars of this type, provide an MJ relation for 2.8 < I − J < 4.2 (spectral types

M6.5V to L8.0V).

The photometric distance estimates for stars in the four samples are given in Table 4, where

the number of color-MKs relations used to generate each mean distance is listed. To determine

the reliability of these distance estimates, we have run the complete sample of 140 stars used to

generate the fits back through the relations (not all stars have all colors, so 140 exceeds the total

number of stars used in each fit, as listed in Table 3). The resulting average error of the suite
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of relations technique is 15.3%. The final errors listed for the distance estimates throughout this

paper include this 15.3% error (the “external” error from the fits) and the standard deviation of

the up to 12 different distance estimates for an individual star (the “internal” error for each star).

For the supplemental sample, which represents the reddest dwarfs focused on in this paper, the

differences between the photometric and trigonometric distances shown in Table 4 are remarkably

good, with a mean difference of only 9.3%. This is rather better than the 15.3% value obtained

when considering the entire range of colors covered by the suite of relations. There are at least

two possible causes — either the very red dwarfs are better constrained in MKs than their earlier

type counterparts, or the lack of data for the reddest dwarfs currently provides a poorer measure

of the spread in MKs values. Additional data on the reddest dwarfs (trigonometric parallaxes in

particular) should determine which is the true cause.

Illustrated in Figure 7 is a comparison between the two distance determinations for the 31 stars

in the supplemental sample. Note that nearly every point is within 1σ of the equal distance line,

indicating the strength of the photometric distance technique. Either the photometry or trigono-

metric parallax (or both) is suspect for the single clear outlier, ESO 207-61, which has an offset

of 37.1% between the estimated and true distances. The remaining 30 stars (97%) have distances

estimated to better than 30.6% (two times the adopted error for the technique for the full ranges

of the relations), and 25 stars (81%) have distance estimates better than 15.3%, thereby indicating

that the mean difference is a conservative representation of a 1σ “error” for these stars. As men-

tioned, we have vetted the sample for known close multiple systems, but additional companions

may yet be found to some of the stars included.

For the white dwarfs, we have utilized equation (7) of Salim et al. (2004), which relates MV and

(V −I) for white dwarfs from Bergeron et al. (2001). A trial run of 11 white dwarfs in the RECONS

sample with reliable parallaxes and VJRCIC photometry through that single relation yields an

average difference between the photometric and trigonometric distances of 13.2%. However, there

is significantly more scatter than for results from the red dwarfs’ photometric relation matrix —

three of the 11 white dwarf distance estimates are discordant by more than 20%. Because we do

not have multiple relations to use to determine an individual error for each white dwarf distance,

we conservatively adopt a generic 20% error for each estimate (8 of 11, or 73% of the white dwarfs

are within 20%, corresponding roughly to a 1σ “error” for roughly two-thirds of the stars). We

plan to create a white dwarf photometric relation matrix and report the results in a future paper

in this series.

5. Discussion

Typically, distance estimates are made for the most compelling new nearby star candidates,

but comparing one discovery to another is difficult because different methods are used in each pub-

lication. The methods used to estimate distances include nearly any permutation involving optical
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photometry, infrared photometry, optical spectroscopy, and trigonometric parallaxes. Oftentimes,

only a few reference stars are used to establish the distance to a newly discovered star. In addi-

tion, as is evident from the need for 25 different references in Table 2, there is a general lack of

homogeneity in basic information for the reddest stars.

Here we remedy some of these problems by estimating distances to stars in all three target

samples using the suite of relations in a uniform way that allows accurate distance estimates, and

perhaps more important, allows the target stars to be compared directly. This effort can overcome

some of the differences in photometry and spectroscopy inherent to different observers and their

techniques. We highlight results for noteworthy stars here.

5.1. Comments on the SCR Discoveries

SCR 0342-6407 (µ = 1.071′′/yr @ 141.4◦) is the most distant of the five SCR discoveries with

µ > 1.0′′/yr at 38.1 ± 7.8 pc, and has the earliest spectral type, M4.5V.

SCR 0630-7643AB (µ = 0.483′′/yr @ 356.8◦) is a close binary. Images indicate two sources

with a constant separation of 1.0′′ over five months and brightness ratio of 0.8 at I. The combined

photometry yields a distance estimate of 5.2 ± 0.9 pc. Assuming a brightness difference of 0.25

mag at all wavelengths (no color information is currently available), the distance estimate is 7.0 ±

1.2 pc. By either estimate, the system is almost certainly a new member of the RECONS sample

and a promising target for future mass determinations.

SCR 1138-7721 (µ = 2.141′′/yr @ 286.8◦) is a possible new member of the RECONS sample,

falling just within the 10 pc horizon at 9.4 ± 1.7 pc.

SCR 1845-6357 (µ = 2.558′′/yr @ 074.8◦) is the third recent discovery of a late M dwarf that

is probably within 5 pc, with a distance estimate of 4.6 ± 0.8 pc. At 2.6′′/yr, it has the highest

proper motion of the 120 new SCR stars discovered south of DEC = −57.5 that have µ ≥ 0.4′′/yr.

SCR 1848-6855 (µ = 1.287′′/yr @ 194.4◦) appears to be a normal M5.0V star with no obvious

subdwarf features. Given its estimated distance of 37.0 ± 9.4 pc and high proper motion, it has a

relatively high tangential velocity of 225 km/sec.

SCR 2012-5956 (µ = 1.440′′/yr @ 165.6◦) is a new nearby white dwarf, with an estimated

distance of 17.4 pc, using equation (7) of Salim et al. (2004).

5.2. Comments on the Recently Discovered Nearby Late M Dwarfs

SO 0253+1652 has been claimed to be the third nearest star, at a distance of only 2.4 ± 0.5

pc based on a crude trigonometric parallax and 3.6 ± 0.4 pc photometrically using V = 15.40, R

= 13.26, I = 10.66 (Teegarden et al. 2003). Our photometry from three nights gives (V − I) =
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4.24 rather than their (V − I) = 4.74, and the relations place it further away, at 3.7 ± 0.6 pc, than

their trigonometric distance. This would rank it as the 22nd nearest system, rather than as the

third nearest system indicated by the poorly determined trigonometric value.

LP 775-31 and LP 655-48 are M7.0V “twins” reported by McCaughrean et al. (2002) to be 6.2–

6.5 pc and 7.9–8.2 pc from the Sun, respectively, using a combination of spectroscopy and infrared

photometry, although they reported types of M8.0V and M7.5V. Reid & Cruz (2002) estimated

distances of 7.4 ± 1.5 pc and 7.7 ± 1.5 pc. Cruz & Reid (2002) gave types of M6.0V for both and

estimated distances of 11.3 ± 1.3 pc and 15.3 ± 2.6 pc. We confirm that they are probable new

members of the RECONS sample, and provide distance estimates of 7.3 ± 1.2 pc and 8.2 ± 1.4 pc,

respectively.

LHS 2021 is an M7.5V star that had, to our knowledge, no distance estimate until that given

here. At 13.8 ± 2.3 pc, it is just beyond the RECONS sample horizon.

LHS 2090 was reported in Scholz et al. (2001) to have spectral type M6.5V and was estimated

to be 6.0 ± 1.1 pc distant based on its 2MASS JHKs photometry and that of a similar star, GJ

1111. Reid & Cruz (2002) report a distance estimate of 5.2 ± 1.0 pc, based upon an (MKs, J −Ks)

relation. We derive a distance of 5.7 ± 0.9 pc.

DEN 1048-3956 was reported in Delfosse et al. (2001) to have spectral type M9.0V and mag-

nitudes B = 19.0 and R = 15.7 from Schmidt plates, and I = 12.67, J = 9.59, K = 8.58 from the

DENIS survey. Gizis (2002) determined a spectral type of M8.0V. Delfosse et al.’s comparison to

four M dwarfs with type M9.0V yielded a distance estimate of 4.1 ± 0.6 pc. Preliminary trigono-

metric parallaxes have been reported by Deacon & Hambly (2001, 5.2 ± 1.0 pc) and Neuhauser et

al. (2002, 4.6 ± 0.3 pc), although the latter uses a faint set of reference stars, assumes a proper

motion rather than solving for it, and utilizes only three frames. Our photometric distance estimate

is 4.5 ± 0.7 pc.

LHS 325a was reported as LHS 325 in Bessell (1991), but it must be in fact LHS 325a, an

insertion in the LHS catalog between LHS 325 and 326 because of its RA. We have found it to be

rather brighter in V RI than Bessell (1991), who gives V = 18.67, R = 16.60, I = 14.36.

LSR 1826+3014 is an M8.5V object found by Lepine et al. (2002) and noted to be the faintest

(V = 19.36) red dwarf discovered to have a proper motion larger than 2′′/yr. Their distance

estimate of 13.9 ± 3.5 pc is based on three photometric/spectroscopic estimates. Given the northern

declination, we have not observed this object from CTIO. Nonetheless, our distance estimate from

published data and 10 relations is 14.5 ± 2.5 pc, which is certainly consistent with theirs.

5.3. Comments on Additional Objects

Among the known high proper motion stars, the true distances to GJ 85 (LHS 150), GJ 181.1

(LHS 199), GJ 1077 (LHS 205), LHS 288, GJ 467AB (LHS 328 and 329), and GJ 808 (LHS 499)
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are poorly known, given that their parallaxes have errors larger than 10 mas. Not surprisingly, all

but GJ 1077 have photometric distances differing from the trigonometric distances by more than

20%.

WD 0141-675 (LHS 145) is a nearby white dwarf with no trigonometric parallax. We estimate

a distance of 9.3 ± 1.9 pc using equation (7) of Salim et al. (2004). This is a probable new member

of the RECONS sample and among the 20 nearest known white dwarfs.

GJ 1123 (LHS 263) has a photometric distance estimate of 7.5 ± 1.2 pc, which matches the

spectroscopic estimate of 7.6 pc by Henry et al. (2002). It is a likely new member of the RECONS

10 pc sample.

GJ 1128 (LHS 271) has a photometric distance estimate of 6.4 ± 1.0 pc, which matches the

spectroscopic estimate of 6.6 pc by Henry et al. (2002). It is a likely new member of the RECONS

10 pc sample.

GJ 1277 (LHS 532) is another probable new member of the RECONS sample, at a distance of

8.9 ± 1.4 pc.

LP 944-20 is an important nearby red dwarf (or brown dwarf) at the end of the M spectral

sequence. The first parallax was reported by Tinney (1996), placing it at a distance of slightly less

than 5 pc, and making it the most recent addition to the 5 pc sample other than GJ 1061 (Henry

et al. 1997). The 22% difference in the photometric and trigonometric distances occurs because

there are only three colors available, and all lie near the very limit of each relation.

ESO 207-61 has the poorest match between the photometric and trigonometric parallaxes,

which differ by 37%. Ruiz et al. (1991) indicate that the V RI photometry is on the Kron-Cousins

system, but the observations were made at the CTIO 0.9m (where our observations are made)

and likely used the same filter set, as well as similar standards. Nonetheless, the photometry may

not be on the Cousins system as we have assumed (and reported in Table 2), thereby causing the

discordant distances.

LHS 523 is the final star of the three in the red dwarf supplemental sample having a mismatch

between photometric and trigonometric distances greater than 20%, in this case 27%. The 12

distance estimates are the least consistent of all of the stars in the supplemental sample. In

particular, distances from colors including the I band range from 9.6 to 20.9 pc, indicating a

possible problem with the I photometry.

6. Conclusions

The 12 new color-MKs relations given here can be used to estimate distances accurately to stars

falling in the color ranges given (generally, K0.0V to M9.5V in spectral type) in any combination.

As an ensemble, they provide a powerful means to estimate distances to nearby star candidates on
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a uniform system.

We predict that the three most compelling targets, SO 0253+1652, DEN 1048-3956, and SCR

1845-6357 all lie within 5 pc. These three late M dwarfs comprise the largest surge in the nearby

star population in several decades.

With µ = 2.6′′/yr, SCR 1845-6357 ranks as the 41st fastest proper motion system known, so

it is not surprising that it is probably nearer than 5 pc. Of the 22 other red dwarfs discussed here

that have no accurate trigonometric parallaxes, we find that 10 are likely to be closer than 10 pc.

In addition, the white dwarf, WD 0141-675, is also probably nearer than 10 pc, bringing the total

number of new 10 pc systems discussed here to 12. This sample is currently being observed in the

RECONS Cerro Tololo Interamerican Observatory Parallax Investigation (CTIOPI) carried out at

the CTIO 0.9m, which should yield parallaxes for these high priority targets in the near future.
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Fig. 1.— Finder charts for the nine SCR stars from the SuperCOSMOS red UK Schmidt images

(photographic passband R59F ). Each chart is 5′ on a side, with north up and east to the left, and

the epoch of the image is given.

Fig. 2.— Spectra of standard late-type red dwarfs, defining each 0.5 subtype from M6.0V to M9.0V.

Important spectral features are labeled at the top. The absorption complex at 9300 Å and redward

is due in part to H2O in the Earth’s atmosphere.

Fig. 3.— Spectra of new SCR discoveries and recently found nearby late M dwarfs with spectral

types of M4.5V to M6.0V.

Fig. 4.— Spectra of new SCR discoveries and recently found nearby late M dwarfs with spectral

types of M6.5V to M8.5V.

Fig. 5.— Spectra of the nearby white dwarfs LHS 145 (type DA, note the Hα feature at 6563Å) and

SCR 2012-5956 (type DC or DQ). Also shown for comparison are spectra for white dwarfs of similar

types. The DC/DQ types are virtually featureless in this wavelength region — the “features” seen

are all telluric.

Fig. 6.— Example color-MKs fit of stars in the RECONS and supplemental samples, illustrating

the (V − Ks) relation. Solid points represent RECONS stars within 10 pc. Open points represent

stars in the supplemental sample of objects with spectral types of M6.0V and later. Vertical lines

indicate the valid limits of the relation at (V − Ks) = 2.24 to 9.27.

Fig. 7.— Comparison of true trigonometric and derived photometric distances for the 31 late M

dwarfs with accurate trigonometric parallaxes listed in Tables 2 and 4. The three labeled stars are

discussed in the text.
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able 1. Trigonometric parallaxes, VRIJHKs photometry, and spectral types for SCR stars, recently discovered nearby red

dwarfs, and stars with µ ≥ 1.0′′/yr recovered in the SCR search.

Name LHS RA (J2000.0) DEC Mean πtrig Ref VJ RC IC Ref J H Ks SpType Ref Notes

New SCR Discoveries

SCR 0342-6407 · · · 03 42 57.4 −64 07 56 · · · · · · 15.99 14.62 12.92 1 11.32 10.89 10.58 M4.5V 1 a

SCR 0420-7006 · · · 04 20 12.6 −70 05 59 · · · · · · 17.17 15.56 13.49 1 11.19 10.59 10.25 M6.0V 1

SCR 0630-7643AB · · · 06 30 46.6 −76 43 09 · · · · · · 14.91 13.32 11.24 1 8.89 8.28 7.92 M6.0VJ 1 b

SCR 0702-6102 · · · 07 02 50.3 −61 02 48 · · · · · · 16.61 14.75 12.48 1 10.36 9.85 9.52 M6.5V 1

SCR 0723-8015 · · · 07 23 59.7 −80 15 18 · · · · · · 17.41 15.60 13.41 1 11.30 10.82 10.44 M6.0V 1

SCR 1138-7721 · · · 11 38 16.8 −77 21 49 · · · · · · 14.78 13.20 11.25 1 9.40 8.89 8.52 M5.0V 1 a,c

SCR 1845-6357 · · · 18 45 05.3 −63 57 48 · · · · · · 17.40 15.00 12.47 1 9.54 8.97 8.51 M8.5V 1 a,d

SCR 1848-6855 · · · 18 48 21.0 −68 55 34 · · · · · · 16.87 15.67 13.82 1 11.89 11.40 11.10 M5.0V 1 a

SCR 2012-5956 · · · 20 12 31.8 −59 56 52 · · · · · · 15.82 15.39 15.00 1 14.93 15.23 15.41 DC/DQ 1 a,e

Recently Discovered Nearby Late-Type M Dwarfs

SO 0253+1652 · · · 02 53 00.9 +16 52 53 · · · · · · 15.20 13.30 10.96 1 8.39 7.88 7.59 M7.0V 1 f

LP 775-31 · · · 04 35 16.1 −16 06 57 · · · · · · 17.82 15.78 13.36 1 10.41 9.78 9.35 M7.0V 1 g

LP 655-48 · · · 04 40 23.3 −05 30 08 · · · · · · 17.86 15.95 13.63 1 10.66 9.99 9.55 M7.0V 1 h

LHS 2021 2021 08 30 32.6 +09 47 16 · · · · · · 19.38 17.22 14.97 1 11.89 11.17 10.76 M7.5V 1 i

LHS 2090 2090 09 00 23.6 +21 50 05 · · · · · · 16.10 14.09 11.85 1 9.44 8.84 8.44 M6.0V 1 j

DEN 1048-3956 · · · 10 48 14.6 −39 56 07 · · · · · · 17.33 14.97 12.46 1 9.54 8.91 8.45 M8.5V 1 k

LHS 325a 325a 12 23 56.2 −27 57 46 · · · · · · 18.39 16.42 14.20 1 11.98 11.40 11.07 M6.0V 1 l

LSR 1826+3014 · · · 18 26 11.0 +30 14 19 · · · · · · 19.36 17.40 14.35 2 11.66 11.18 10.81 M8.5V 2 m

Stars with µ ≥ 1.0′′/yr in Region DEC −57.5 to −90 Fainter than mR = 10

GJ 1022 124 00 49 29.1 −61 02 33 · · · · · · 12.18 11.19 9.93 1 8.63 8.09 7.84 M2.5V 3

GJ 45 128 00 57 19.7 −62 14 44 .05175 .00106 4,5 9.47 8.68 7.98 6 7.08 6.49 6.28 K5.0V 3

WD 0141-675 145 01 43 01.0 −67 18 30 · · · · · · 13.83 13.54 13.24 1 12.87 12.66 12.58 DA 1 n

GJ 85 150 02 07 23.3 −66 34 12 .06460 .01780 4 11.50 10.49 9.32 6 8.13 7.61 7.36 M1.5V 3

GJ 118 160 02 52 22.2 −63 40 48 .08682 .00188 4,5 11.38 10.32 8.99 6 7.67 7.12 6.83 M2.5V 3

GJ 181.1 199 04 55 58.0 −61 09 47 .04440 .01080 4 12.05 11.14 10.15 6 9.04 8.51 8.31 K7.0V 3

GJ 1077 205 05 17 00.0 −78 17 20 .07750 .01100 4 11.90 10.87 9.49 7 8.07 7.44 7.20 M2.0V 3



–
23

–

Table 1—Continued

Name LHS RA (J2000.0) DEC Mean πtrig Ref VJ RC IC Ref J H Ks SpType Ref Notes

GJ 293 34 07 53 08.2 −67 47 32 .14120 .00840 4 13.60 13.21 12.85 6 12.73 12.48 12.36 DQ9 8 o

GJ 1123 263 09 17 05.3 −77 49 23 · · · · · · 13.14 11.80 10.10 1 8.33 7.77 7.45 M4.5V 9

GJ 345 268 09 24 21.0 −80 31 21 .01653 .00098 4,5 10.15 9.80 9.42 6 8.89 8.53 8.46 F-G 10

GJ 1128 271 09 42 46.4 −68 53 06 · · · · · · 12.72 11.35 9.61 1 7.95 7.39 7.04 M4.5V 9

LHS 288 288 10 44 21.2 −61 12 36 .22250 .01130 4 13.90 12.31 10.27 1 8.49 8.05 7.73 M5.5V 1 p

GJ 422 40 11 16 00.2 −57 32 52 .07954 .00267 4,5 11.64 10.57 9.17 6 7.81 7.30 7.04 M3.5V 3 q

GJ 440 43 11 45 42.9 −64 50 30 .21657 .00201 4,5 11.47 11.30 11.15 1 11.19 11.13 11.10 DC/DQ 1 r

GJ 467 A 328 12 28 40.0 −71 27 52 .02150 .01910 4 13.65 12.55 11.15 6 9.81 9.30 9.05 M3.0V 1

GJ 467 B 329 12 28 43.1 −71 27 57 .02150 .01910 4 15.75 14.38 12.66 6 10.98 10.50 10.18 M4.5V 1

GJ 551 49 14 29 43.0 −62 40 47 .76876 .00030 4,5,11 11.09 9.42 7.37 1 5.36 4.84 4.38 M5.5V 12 s

LHS 475 475 19 20 54.3 −82 33 16 · · · · · · 12.68 11.50 10.00 1 8.56 8.00 7.69 M3.0V 3

GJ 1251 493 20 28 03.7 −76 40 16 · · · · · · 13.83 12.67 11.11 1 9.36 8.88 8.60 M4.5V 3

GJ 808 499 20 51 41.6 −79 18 40 .06300 .01170 4 11.83 10.83 9.65 6 8.46 7.91 7.66 M1.5V 3

PJH 2115-7541 · · · 21 15 15.1 −75 41 52 · · · · · · 14.46 13.24 11.66 1 10.14 9.60 9.33 M3.0V 1 t

SSPM J2231-7515 · · · 22 30 33.6 −75 15 24 · · · · · · 16.90 16.19 15.56 1 14.86 14.82 14.72 DX14 8 u

SSPM J2231-7514 · · · 22 30 40.0 −75 13 55 · · · · · · 16.59 15.95 15.36 1 14.66 14.66 14.44 DX12 8 v

GJ 877 531 22 55 45.5 −75 27 31 .11610 .00132 4,5 10.38 9.31 7.95 6 6.62 6.08 5.81 M2.5V 1 w

GJ 1277 532 22 56 24.7 −60 03 49 · · · · · · 14.01 12.60 10.81 13 8.98 8.36 8.11 M5.0V 1 x

also in Hambly et al. 2004

binary with separation 1.0′′, J indicates a joint spectrum

found twice in SCR search

possibly variable in spectral type

white dwarf; Ks unreliable

M6.5V in Teegarden et al. 2003

M8.0V in McCaughrean et al. 2002; M6.0V in Cruz & Reid 2002

M7.5V in McCaughrean et al. 2002; M6.0V in Cruz & Reid 2002

error in V = 0.4 mag

M6.5V in Scholz et al. 2001

M9.0V in Delfosse et al. 2001; M8.0V in Gizis 2002; possibly variable in spectral type
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M6.0V in Bessell 1991 (listed as LHS 325 instead of LHS 325a)

northern target not observed by RECONS from Chile

white dwarf; DA7 in McCook & Sion 2003

white dwarf

missed in SCR search; V RI = 13.92, 12.33, 10.31 in Bessell 1991; blended in 2MASS

missed in SCR search

white dwarf; missed in SCR search; DQ6 in McCook & Sion 2003

Proxima; missed in SCR search; V RI = 11.05, 9.43, 7.43 in Bessell 1990

also SCR 2115-7541

also SCR 2230-7515; white dwarf; V = 16.87 in Scholz et al. 2002

also SCR 2230-7513; white dwarf; V = 16.60 in Scholz et al. 2002

M2.5V in Hawley et al. 1996

M4.5V in Hawley et al. 1996

References.— (1) This paper. (2) Lepine et al. 2002. (3) Hawley et al. 1996. (4) van Altena et al. 1995. (5) ESA 1997. (6) Bessell 1990. (7) Leggett 1992. (8)

McCook & Sion 2003. (9) Henry et al. 2002. (10) Gliese 1969. (11) Benedict et al. 1999. (12) Henry et al. 1997. (13) Patterson et al. 1998.
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Table 2. Trigonometric parallaxes, VRIJHKs photometry, and spectral types for the supplemental sample of late-type M

dwarfs.

Name LHS RA (J2000.0) DEC Mean πtrig Ref VJ RC IC Ref J H Ks SpType Ref Notes

Late-Type M Dwarfs within 25 Parsecs

BRI 0021-0214 · · · 00 24 24.6 −01 58 20 .08660 .00400 1 · · · 17.42 15.16 2 11.99 11.08 10.54 M9.0V 3 a

G 0050-2722 · · · 00 52 54.7 −27 06 00 .04171 .00372 4,5 21.50 · · · 16.82 5,6 13.61 12.98 12.54 M8.0V 7

2MA 0149+2956 · · · 01 49 09.0 +29 56 12 .04440 .00070 2 21.25 18.94 16.81 2 13.45 12.58 11.98 M9.5V 8

LHS 1375 1375 02 16 29.9 +13 35 13 .11770 .00400 4 15.79 · · · · · · 9 9.87 9.31 8.98 M6.0V 3 b

771-21 · · · 02 48 41.0 −16 51 22 .06160 .00543 5 · · · · · · 15.42 5 12.55 11.87 11.42 M8.0V 10

412-31 · · · 03 20 59.7 +18 54 23 .06890 .00060 2 19.21 16.98 14.70 2 11.76 11.07 10.64 M8.0V 11 c

944-20 · · · 03 39 35.3 −35 25 44 .20140 .00421 5 · · · · · · 14.16 5 10.73 10.02 9.55 M9.0V 3 d

LHS 1604 1604 03 51 00.0 −00 52 45 .06810 .00180 4 18.02 · · · 13.80 12 11.30 10.61 10.23 M6.0V 13 e

LHS 191 191 04 26 19.9 +03 36 36 .05840 .00180 4 18.51 16.24 13.96 14 11.62 11.07 10.69 M6.5V 15

ESO 207-61 · · · 07 07 53.3 −49 00 50 .05129 .00226 5,16 20.39 18.63 16.23 17 13.23 12.54 12.11 M9.0V: 18 f

GJ 283B 234 07 40 19.4 −17 24 46 .11240 .00270 4 16.54 14.68 12.43 19 10.16 9.63 9.29 M6.5V 3 g

GJ 1111 248 08 29 49.3 +26 46 34 .27580 .00300 4 14.90 12.90 10.64 19 8.24 7.62 7.26 M6.5V 3 h

LHS 2026 2026 08 32 30.5 −01 34 39 .05080 .00050 4 18.94 16.69 14.32 14 12.04 11.48 11.14 M6.0V 14

GJ 316.1 2034 08 40 29.7 +18 24 09 .07110 .00100 4 17.59 · · · 13.45 20 11.05 10.42 10.05 M6.0V 13 i

LHS 2065 2065 08 53 36.2 −03 29 32 .11730 .00150 4 18.74 16.74 14.54 14 11.21 10.47 9.94 M9.0V 3 j

LHS 292 292 10 48 12.6 −11 20 10 .22030 .00360 4 15.73 13.67 11.33 14 8.86 8.26 7.93 M7.0V 21 k

LHS 2314 2314 10 49 03.4 +05 02 23 .04110 .00230 4 19.11 · · · 14.91 12 12.54 11.97 11.60 M6.0V 13

GJ 406 36 10 56 28.9 +07 00 53 .41910 .00210 4 13.53 11.67 9.50 19 7.09 6.48 6.08 M6.0V 3 l

LHS 2351 2351 11 06 19.0 +04 28 33 .04810 .00314 5 19.56 17.25 14.91 14 12.33 11.72 11.33 M6.5V 14

LHS 2471 2471 11 53 52.7 +06 59 56 .07030 .00260 4 18.11 · · · 13.66 14 11.26 10.66 10.26 M6.0V 13 m

BRI 1222-1222 · · · 12 24 52.2 −12 38 36 .05860 .00380 5 · · · · · · 15.74 5 12.57 11.82 11.35 M9.0V 11

LHS 2924 2924 14 28 43.2 +33 10 39 .09267 .00128 1,4 19.58 · · · 15.21 20 11.99 11.23 10.74 M9.0V 11

LHS 2930 2930 14 30 37.8 +59 43 25 .10380 .00130 4 17.88 · · · 13.31 20 10.79 10.14 9.79 M6.5V 7

LHS 3003 3003 14 56 38.3 −28 09 49 .15705 .00259 4,5 17.05 14.88 12.53 14 9.97 9.32 8.93 M7.0V 3 n

TVLM 513-46546 · · · 15 01 08.2 +22 50 02 .09450 .00060 1,2 19.87 17.53 15.16 2 11.87 11.18 10.71 M9.0V 3 o

TVLM 868-110639 · · · 15 10 16.8 −02 41 08 .06120 .00470 1 · · · · · · 15.79 1 12.61 11.84 11.35 M9.0V 11

GJ 644C 429 16 55 35.3 −08 23 41 .15497 .00056 4,22,23 16.78 14.60 12.18 19 9.78 9.20 8.82 M7.0V 3 p

2MA 1835+3259 · · · 18 35 37.9 +32 59 53 .17650 .00050 24 18.27 · · · 13.46 24 10.27 9.62 9.17 M8.5V 24

GJ 752B 474 19 16 57.6 +05 09 02 .17079 .00061 1,4,5,22 17.50 15.10 12.84 14,20 9.91 9.23 8.77 M8.0V 3 q

GJ 1245B 3495 19 53 55.2 +44 24 54 .22020 .00100 4 14.01 12.36 10.27 25 8.28 7.73 7.39 M6.0V 15
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Table 2—Continued

Name LHS RA (J2000.0) DEC Mean πtrig Ref VJ RC IC Ref J H Ks SpType Ref Notes

LHS 523 523 22 28 54.4 −13 25 19 .08880 .00490 4 16.90 14.90 12.56 19 10.77 10.22 9.84 M6.5V 15 r

aparallax in van Altena et al. 1995 is superseded by Tinney et al. 1995 value; M9.5V: in Kirkpatrick et al. 1995; M9.5V in Kirkpatrick et al. 2000

bM5.5V in Reid et al. 1995

cM9.0V in Gizis et al. 2000; M9.0V in Cruz & Reid 2002

dM9.0V in Kirkpatrick et al. 2000; M9.5V in McCaughrean et al. 2002; M9.5V in Reid & Cruz 2002

eM6.0V in Cruz & Reid 2002

fparallax in van Altena et al. 1995 is superseded by Ianna & Fredrick 1995 value; photometry is quoted as being “Kron-Cousins” but filter set likely

matches Cousins; spectral type determined by comparison of printed published spectrum to standards by our group

gM6.0V in Henry et al. 1994

hM6.5V in Kirkpatrick et al. 1991

iM6.0V in Bessell 1991

jM9.0V in Kirkpatrick et al. 1991

kM6.5V in Henry et al. 1994

lM6.0V in Kirkpatrick et al. 1991

mM6.5V in Bessell 1991

nM6.5V in Bessell 1991; M7.0V in Kirkpatrick et al. 1995

oM8.5V in Kirkpatrick et al. 1995

pVB 8; several parallaxes for GJ 644ABD and GJ 643, members of the same system, included; M7.0V in Kirkpatrick et al. 1991

qVB 10; several parallaxes for GJ 752A included; parallax in van Altena et al. 1995 was recalculated without value superseded by Tinney et al. 1995;

M8.0V in Kirkpatrick et al. 1991

rM6.0V in Bessell 1991; M6.5V in Cruz & Reid 2002

References.— (1) Tinney et al. 1995. (2) Dahn et al. 2002. (3) This paper. (4) van Altena et al. 1995. (5) Tinney 1996. (6) Reid & Gilmore 1984.

(7) Kirkpatrick et al. 1993. (8) Kirkpatrick et al. 1999. (9) Dahn et al. 1988. (10) Kirkpatrick et al. 1997. (11) Kirkpatrick et al. 1995. (12) Monet

et al. 1992. (13) Reid et al. 1995. (14) Bessell 1991. (15) Kirkpatrick et al. 1991. (16) Ianna & Fredrick 1995. (17) Ruiz et al. 1991. (18) Ruiz et

al. 1995. (19) Bessell 1990. (20) Leggett 1992. (21) Henry et al. 1994. (22) ESA 1997. (23) Soderhjelm 1999. (24) Reid et al. 2003. (25) Weis 1996.
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Table 3. Details for photometric distance relations.

Applicable # RECONS # Very Red Coeff #1 Coeff #2 Coeff #3 Coeff #4 Coeff #5 RMS

Color Range Stars Stars × (color)4 × (color)3 × (color)2 × (color) (constant) (mag)

(V − R) 0.53 to 2.40 117 8 + 2.79703 − 17.48617 + 36.67711 − 25.90589 + 9.96960 0.40

(V − I) 0.88 to 4.81 119 15 + 0.02853 − 0.49504 + 2.64479 − 3.51296 + 5.62135 0.40

(V − J) 2.51 to 8.00 115 15 + 0.02447 − 0.52310 + 3.91317 − 10.94674 + 15.31851 0.39

(V − H) 3.59 to 8.69 100 15 + 0.03207 − 0.77797 + 6.74382 − 23.61879 + 34.23360 0.42

(V − K) 2.24 to 9.27 119 15 + 0.00959 − 0.23953 + 2.05071 − 5.98231 + 9.77683 0.42

(R − I) 0.43 to 2.42 117 9 − 1.08390 + 5.68997 − 9.78999 + 9.22596 + 1.54462 0.41

(R − J) 1.64 to 5.66 114 9 + 0.07380 − 1.15011 + 6.26647 − 12.52051 + 13.44932 0.41

(R − H) 2.68 to 6.36 99 9 + 0.10427 − 1.91432 + 12.58352 − 33.56316 + 36.76955 0.45

(R − K) 1.63 to 6.97 117 9 + 0.01785 − 0.37226 + 2.59680 − 5.75029 + 8.19804 0.45

(I − J) 0.88 to 3.36 116 19 + 0.58092 − 4.69507 + 12.35365 − 9.20851 + 6.22309 0.45

(I − H) 1.67 to 4.23 101 19 + 0.14094 − 1.31052 + 3.12906 + 2.68748 − 2.62035 0.54

(I − K) 1.07 to 4.83 120 19 + 0.19771 − 2.44679 + 10.18426 − 14.30638 + 10.38741 0.52
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Table 4. Distance estimates from new photometric parallax relations.

Name Mean πtrig MKs # colors Est Dist (pc) True Dist (pc) % Diff Notes

New SCR Discoveries

SCR 0342-6407 · · · · · · 12 38.08 ± 7.79 · · · · · · 39.3 ± 11.7 pc in Hambly et al. 2004

SCR 0420-7006 · · · · · · 12 15.41 ± 2.57 · · · · · ·

SCR 0630-7643AB · · · · · · 12 6.95 ± 1.21 · · · · · · assuming ∆mag = 0.25 in all filters

SCR 0702-6102 · · · · · · 12 10.84 ± 2.06 · · · · · ·

SCR 0724-8015 · · · · · · 12 17.16 ± 3.10 · · · · · ·

SCR 1138-7721 · · · · · · 12 9.43 ± 1.68 · · · · · · 8.8 ± 1.7 pc in Hambly et al. 2004

SCR 1845-6357 · · · · · · 10 4.63 ± 0.75 · · · · · · 3.5 ± 0.7 pc in Hambly et al. 2004

SCR 1848-6855 · · · · · · 12 37.03 ± 9.43 · · · · · · 34.8 ± 9.8 pc in Hambly et al. 2004

SCR 2012-5956 · · · · · · 1 17.37 ± 3.47 · · · · · · white dwarf distance estimate

Recently Discovered Nearby Late-Type M Dwarfs

SO 0253+1652 · · · · · · 12 3.73 ± 0.59 · · · · · · a

LP 775-31 · · · · · · 12 7.33 ± 1.19 · · · · · · b

LP 655-48 · · · · · · 12 8.24 ± 1.40 · · · · · · c

LHS 2021 · · · · · · 12 13.80 ± 2.34 · · · · · ·

LHS 2090 · · · · · · 12 5.67 ± 0.88 · · · · · · d

DEN 1048-3956 · · · · · · 10 4.53 ± 0.73 · · · · · · e

LHS 325a · · · · · · 12 20.74 ± 3.43 · · · · · ·

LSR 1826+3014 · · · · · · 10 14.48 ± 2.52 · · · · · · f

Stars with µ ≥ 1.0′′/yr in Region DEC −57.5 to −90 Fainter than mR = 10

GJ 1022 · · · · · · 12 20.49 ± 3.35 · · · · · · g

GJ 45 .05175 .00106 4.85 7 19.18 ± 3.11 19.32 ± 0.40 − 0.7

WD 0141-675 · · · · · · 1 9.27 ± 1.85 · · · · · · white dwarf distance estimate

GJ 85 .06460 .01780 6.42 12 19.01 ± 3.00 15.48 ± 4.62 +22.8 poor parallax

GJ 118 .08682 .00188 6.52 12 11.57 ± 1.80 11.52 ± 0.25 + 0.5

GJ 181.1 .04440 .01080 6.55 9 36.03 ± 5.65 22.52 ± 5.82 +60.0 poor parallax

GJ 1077 .07750 .01100 6.65 12 12.14 ± 2.38 12.90 ± 1.87 − 5.9 poor parallax

GJ 293 .14120 .00840 13.11 1 6.82 ± 1.36 7.08 ± 0.42 · · · white dwarf distance estimate

GJ 1123 · · · · · · 12 7.47 ± 1.22 · · · · · · h

GJ 345 .01653 .00098 4.56 0 · · · 60.50 ± 3.60 · · · too blue for relations

GJ 1128 · · · · · · 12 6.41 ± 1.01 · · · · · · i

LHS 288 .22250 .01130 9.46 12 6.90 ± 1.74 4.49 ± 0.23 +53.5 poor parallax

GJ 422 .07954 .00267 6.54 12 12.12 ± 1.92 12.57 ± 0.42 − 3.6

GJ 440 .21657 .00201 12.78 1 4.38 ± 0.88 4.62 ± 0.04 · · · white dwarf distance estimate

GJ 467 A .02150 .01910 5.71 12 30.87 ± 4.98 46.51 ± huge −33.6 poor parallax

GJ 467 B .02150 .01910 6.84 12 28.48 ± 4.79 46.51 ± huge −38.8 poor parallax

GJ 551 .76876 .00030 8.81 12 1.17 ± 0.19 1.30 ± 0.01 −10.2 Proxima

LHS 475 · · · · · · 12 13.07 ± 2.03 · · · · · ·

GJ 1251 · · · · · · 12 16.05 ± 3.40 · · · · · ·
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Table 4—Continued

Name Mean πtrig MKs # colors Est Dist (pc) True Dist (pc) % Diff Notes

GJ 808 .06300 .01170 6.66 12 21.41 ± 7.43 15.87 ± 3.05 +34.9 poor parallax

PJH 2115-7541 · · · · · · 12 24.84 ± 3.84 · · · · · ·

SSSPM J2231-7515 · · · · · · 1 14.89 ± 2.98 · · · · · · white dwarf distance estimate

SSSPM J2231-7514 · · · · · · 1 14.82 ± 2.96 · · · · · · white dwarf distance estimate

GJ 877 .11610 .00132 6.14 12 7.10 ± 1.10 8.61 ± 0.10 −17.5

GJ 1277 · · · · · · 12 8.89 ± 1.42 · · · · · ·

Late-Type M Dwarfs within 25 Parsecs

BRI 0021-0214 .08660 .00400 10.23 7 11.31 ± 2.16 11.55 ± 0.53 − 2.1

RG 0050-2722 .04171 .00372 10.64 7 28.21 ± 4.63 23.98 ± 2.16 +17.7

2MA 0149+2956 .04440 .00070 10.21 12 21.59 ± 5.35 22.52 ± 0.36 − 4.2

LHS 1375 .11770 .00400 9.33 3 9.16 ± 1.41 8.50 ± 0.29 + 7.8

LP 771-21 .06160 .00543 10.37 3 18.65 ± 2.94 16.23 ± 1.44 +14.9

LP 412-31 .06890 .00060 9.83 12 13.31 ± 2.13 14.51 ± 0.13 − 8.3 j

LP 944-20 .20140 .00421 11.07 3 6.05 ± 1.15 4.97 ± 0.10 +21.9

LHS 1604 .06810 .00180 9.40 7 12.51 ± 1.99 14.68 ± 0.39 −14.8 k

LHS 191 .05840 .00180 9.53 12 16.02 ± 2.70 17.12 ± 0.53 − 6.5

ESO 207-61 .05129 .00226 10.66 12 26.74 ± 5.01 19.50 ± 0.86 +37.1

GJ 283B .11240 .00270 9.54 12 9.13 ± 1.49 8.90 ± 0.21 + 2.6

GJ 1111 .27580 .00300 9.46 12 3.30 ± 0.51 3.63 ± 0.04 − 9.1

LHS 2026 .05080 .00050 9.67 12 19.77 ± 3.51 19.69 ± 0.19 + 0.5

GJ 316.1 .07110 .00100 9.31 7 12.12 ± 1.89 14.06 ± 0.20 −13.9

LHS 2065 .11730 .00150 10.29 12 9.10 ± 1.95 8.53 ± 0.11 + 6.7 l

LHS 292 .22030 .00360 9.64 12 4.32 ± 0.68 4.54 ± 0.07 − 4.9

LHS 2314 .04110 .00230 9.67 7 25.08 ± 3.89 24.33 ± 1.37 + 3.1

GJ 406 .41910 .00210 9.20 12 1.99 ± 0.31 2.39 ± 0.01 −16.5

LHS 2351 .04810 .00314 9.74 12 19.53 ± 3.05 20.79 ± 1.36 − 6.1

LHS 2471 .07030 .00260 9.50 7 12.84 ± 2.04 14.22 ± 0.53 − 9.8

BRI 1222-1222 .05860 .00380 10.19 3 16.29 ± 2.50 17.06 ± 1.11 − 4.6

LHS 2924 .09267 .00128 10.58 7 12.77 ± 2.23 10.79 ± 0.15 +18.4

LHS 2930 .10380 .00130 9.87 7 9.75 ± 1.52 9.63 ± 0.12 + 1.2

LHS 3003 .15705 .00259 9.91 12 6.53 ± 1.02 6.37 ± 0.11 + 2.6 m

TVLM 513-46546 .09450 .00060 10.58 12 11.85 ± 2.21 10.58 ± 0.07 +12.0

TVLM 868-110639 .06120 .00470 10.28 3 16.07 ± 2.47 16.34 ± 1.26 − 1.6

GJ 644C .15497 .00056 9.77 12 6.45 ± 1.05 6.45 ± 0.02 + 0.0

2MA 1835+3259 .17650 .00050 10.40 7 5.82 ± 1.01 5.67 ± 0.02 + 2.7

GJ 752B .17079 .00061 9.93 12 5.50 ± 0.89 5.86 ± 0.02 − 6.1

GJ 1245B .22020 .00100 9.10 12 4.69 ± 0.79 4.54 ± 0.02 + 3.4

LHS 523 .08880 .00490 9.59 12 14.25 ± 4.41 11.26 ± 0.62 +26.5 n

a2.4 pc ± 0.5 pc from astrometry and 3.6 ± 0.4 pc from photometry in Teegarden et al. 2003

b6.2–6.5 pc in McCaughrean et al. 2002; 7.4 ± 1.5 pc in Reid & Cruz 2002; 11.3 ± 1.3 pc in Cruz & Reid 2002

c7.9–8.2 pc in McCaughrean et al. 2002; 7.7 ± 1.5 pc in Reid & Cruz 2002; 15.3 ± 2.6 pc in Cruz & Reid 2002

d6.0 ± 1.1 pc in Scholz et al. 2001; 5.2 ± 1.0 pc in Reid & Cruz 2002

e4.1 ± 0.6 pc in Delfosse et al. 2001



– 30 –

f13.9 ± 3.5 pc in Lepine et al. 2002

g7.2 pc and 29.5 pc in Reyle et al. 2002

h7.6 pc in Henry et al. 2002

i6.6 pc in Henry et al. 2002

j11.9 ± 1.9 pc in Cruz & Reid 2002

k10.9 ± 2.2 pc in Reid & Cruz 2002; 14.7 ± 0.4 pc in Cruz & Reid 2002

l8.5 ± 1.7 pc in Reid & Cruz 2002

m6.3 ± 1.3 pc in Reid & Cruz 2002

n10.9 ± 0.6 pc in Cruz & Reid 2002


