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Abstract

Conformal embedding of closed-universe models in a de Sitter back-

ground suggests a quantisation condition on the available conformal time.

This condition implies that the universe is closed at no greater than the

10% level. When a massive scalar field is introduced to drive an infla-

tionary phase this figure is reduced to closure at nearer the 1% level. In

order to enforce the constraint on the available conformal time we need to

consider conditions in the universe before the onset of inflation. A formal

series around the initial singularity is constructed, which rests on a pair

of dimensionless, scale-invariant parameters. For physically-acceptable

models we find that both parameters are of order unity, so no fine tuning

is required, except in the mass of the scalar field. For typical values of

the input parameters we predict the observed values of the cosmological

parameters, including the magnitude of the cosmological constant. The

model produces a very good fit to the most recent CMBR data, predicting

a low-ℓ fall-off in the CMB power spectrum consistent with that observed

by WMAP.

1 Introduction

Experimental evidence is now strongly in favour of the idea that a non-zero
cosmological constant, or some form of ‘dark energy’, is currently responsible for
around 70% of the total energy density of the universe [1]. There have been many
theoretical attempts to justify the reintroduction of a Λ-term, something that
was once viewed as a rather ugly and unnecessary extension to classical general
relativity. Many of these are based on ideas from particle physics, including
concepts such as spontaneous symmetry breaking and false vacua. These ideas
can successfully explain the size of the cosmological ‘constant’ required during
an inflationary phase, but all such models have great difficulty in explaining
the current scale of the cosmological constant without implausible levels of fine
tuning.

It could be argued that the current scale of the cosmological constant sug-
gests that its role may be more geometric, rather than field-theoretic. This idea
fits in well with the gauge-theoretic viewpoint of gravity that we have developed
elsewhere [2, 3]. In the absence of any matter, a non-zero cosmological constant
implies that the universe should be described by a de Sitter space. This space
should then form the background for the gauge theory treatment of gravity,
though the details of such a theory remain to be fully worked out.

Here we explore some simpler consequences of the view that Λ should be
viewed as a genuine constant with a geometric role to play. The ideas outlined
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here are discussed in more detail in [4]. We first introduce a new picture of
de Sitter geometry, which generalises the Poincaré disk picture of hyperbolic
geometry [3, 5]. Since all cosmological models are conformally equivalent (they
all have vanishing Weyl curvature), all cosmologies with a de Sitter end state
will have a standard embedding in the conformal picture. These embedding-
s are revealing, and suggest a ‘preferred’ cosmology — one with closed spatial
sections, in which the total available conformal time is π/2. Such a model places
the initial singularity symmetrically in the centre of the de Sitter picture. The
requirement on the total conformal time suggests the operation of a quantisation
condition, and we speculate as to how such a condition may arise. Of course,
there are many theoretical reasons for preferring spatial flatness which is, after
all, supposed to be one of the main predictions of inflation. For example, there
are difficulties in constructing a homogeneous stress-energy tensor for Dirac
fermions in anything other than a spatially-flat universe [6, 2]. But closed
universe models have their own attractive features, particularly in their inherent
finiteness. Furthermore, in closed (or open) cosmologies the scale factor can be
determined absolutely from the equation

1

R2
=

8πG

3
ρ − H2 +

Λ

3
. (1)

This result simplifies calculations for perturbations, as we do not have to track
the scale factor through reheating in order to compare physical scales today
with those during inflation.

Several other authors have of course been interested recently in closed uni-
verse models, motivated partly by the apparent low-ℓ turn down in the WMAP
results [1]. For example, Efstathiou [7] proposed a phenomological model in
which the low-k primordial spectrum in a closed model has an exponential cut-
off on a scale comparable to the curvature scale. On the other hand, Starobin-
sky [8], predicted that the effect of closure for adiabatic scalar perturbations was
in general to increase low-ℓ values. This is clearly an area where more detailed
calculations are necessary.

On the observational side, Efstathiou (e.g. [9]) and others have queried
whether foreground effects on power spectrum estimation could be affecting the
low-ℓ modes. However, it is likely that the low value seen for the quadrupole
mode is still statistically significant, and thus represents something which needs
explaining in the standard model. Other explanations which have been given
include [10] which has a period of fast-roll in a flat model, and also topological
attempts at explanation, via effects in a compact closed universe [11].

What we will look at here is simple closed universe, with no topological
effects. But, by pursuing our boundary condition, we will find strong constraints
among cosmological parameters. In particular, for a cosmological model with a
given equation of state, the condition that the total elapsed conformal time is
equal to π/2 singles out a unique trajectory in the (ΩM , ΩΛ) plane. For example,
a simple dust model predicts a universe that is closed at around the 10% level.
This represents an upper limit, and both inflationary and radiation-dominated
epochs drive this figure down. A prediction of the cosmological model can
equally be interpreted as a prediction of Λ and, for typical input parameters,
we find that

Λ ≈ exp(−6N)l−2
p . (2)
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Here N is the number of e-foldings in the inflationary region, and turns out to
be roughly 46, putting Λ in precisely the observed range.

The model of inflation we consider is the simplest available — that of a
massive scalar field. This produces an extremely tight model that agrees well
with all current experimental data. In order to apply our boundary condition we
need to study the evolution of the scalar field from the initial singularity, through
the inflationary region, before matching onto a standard cosmological model. It
has become quite common in the inflationary community to ignore the initial
singularity and concentrate instead on suitable initial conditions for inflation. It
might have been hoped that the peculiar nature of the inflationary stress-energy
tensor, which violates the weak energy condition, might circumvent some of the
standard singularity theorems. But this is not the case. Inflationary models are
geodesically incomplete in the past, and the cosmological equations can be easily
run backwards in time to reveal the initial singularity [12, 13]. In this respect,
inflation has little to say about the ‘specialness’ of the initial singularity (zero
Weyl curvature) which can be regarded as one of the outstanding problems in
physics [14].

Expanding the field equations around the initial singularity can be performed
using an iterative scheme in powers of t and ln t. The resulting series are gov-
erned by two parameters, which effectively control the degree of inflation and
the curvature. Fixing both of these parameters to be of order unity produces
inflationary models in a closed universe which are consistent with observation.
This appears to provide a counterexample to statements that it is difficult to
obtain closed universe inflation without excessive fine tuning [15, 16, 17, 18].

As the universe exits the inflationary region it evolves as if it had started
from an effective big-bang, with a displaced time coordinate. Photons have
travelled an appreciable distance by the end of inflation, which alters how we
apply the π/2 boundary condition. The result of these effects is the imposition
of a see-saw mechanism linking the current state of the universe and the initial
conditions. The more we increase the number of e-folds during inflation, the
smaller the value of the cosmological constant, and vice-versa. With initial
conditions chosen to give the required number of e-foldings to generate the
observed perturbation spectrum, we find that the predicted universe is closed
at the level of a few percent, in excellent agreement with observation. More
detailed calculation also reveals a dip in the low-ℓ part of the power spectrum.
However, these calculations are difficult and we comment on the problems that
must be overcome in order to make this prediction robust.

Unless stated otherwise we work in units where G = c = ~ = 1. Where it
adds clarity, factors of G are included, so that G has dimensions of (distance)2.

2 Conformal pictures of de Sitter space

De Sitter space is a space of constant negative curvature, forming the Lorentzian
analogue of the non-Euclidean geometry discovered by Lobachevskii and Bolyai [5,
3]. Two-dimensional non-Euclidean geometry has an elegant construction in
terms of the Poincaré disc (which was, in fact, first given by Beltrami in 1868,
and later rediscovered by Poincaré [14].) In the Poincaré disk model, geodesics
are represented as ‘d-lines’ — circles that intersect the disc boundary at right-
angles (see figure 1). Here we develop a similar picture for 2-dimensional de
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Figure 1: The Poincaré disc. Points inside the disc represent points in a 2-
dimensional non-Euclidean (hyperbolic) space. A set of d-lines are also shown.
These are (Euclidean) circles that intersect the unit circle at right angles. Given
a d-line and point A not on the line, one can find an infinite number of lines
through A that do not intersect the line.

Sitter space, which is sufficient to capture the key features of the geometry. We
start with an embedding picture, representing de Sitter space as the 2-surface
defined by

T 2 − X2 − Y 2 = −a2, (3)

where (T, X, Y ) denote coordinates in a space of signature (1, 2) and a is a
constant. The resulting surface is illustrated in figure 2. The figure illustrates
a key property of the entire de Sitter geometry, which is that spatial sections
are closed, whereas the timelike direction is open. So de Sitter space describes
a closed universe that lasts for infinite time. One can set up local coordinate
patches for which spatial sections are flat or open, but these coordinates are not
global. These are discussed in the following section. Null geodesics are straight
lines formed by the intersection of the surface and a vertical plane a distance a
from the timelike axis. Despite the fact that the space is spatially closed, the
furthest a photon can travel is half of the way round the universe.

The preceding picture is the ‘standard’ one of de Sitter space, though it is not
the one originally put forward by de Sitter [19, 20]. Further spaces of constant
curvature can be created by topological identifications, and among these is the
antipodal map on spatial sections. In terms of embedding coordinates (T, X i),
this is the map (T, X i) 7→ (T,−X i). The result has spatial sections of the form
RPn as opposed to Sn, where RPn denotes the real n-dimensional projective
plane. The projective plane can be quite hard to visualise. For example, RP 2

involves taking a Mobius strip, and applying a further twisted identification on
the ‘long’ side (figure 3). The resulting manifold in non-orientable, and cannot
be embedded in three dimensions without self-intersection (it is similar to a
Klein bottle). Of more physical relevance is RP 3, which is orientable, though
the space contains non-contractable loops and is equally hard to visualise. RP 3

is also a group manifold, so as a background space it does have some attractive
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Figure 2: Two-dimensional de Sitter Space. The timelike direction is vertical,
and spatial sections are closed. The right-hand diagram shows a null geodesic,
which is a straight line in the embedding space.

(a) (b)

Figure 3: (a) A representation of the projective plane. Common arrows denote
surfaces to be identified, together with the orientation. (b) The Möbius strip,
shown for comparison.
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north
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south
pole

Figure 4: Conformal diagram of de Sitter space. The vertical axis represents
conformal time, running from 0 to π. This version of the diagram is appropriate
for a 4-dimensional spacetime, with θ and φ coordinates suppressed.

properties. The 3-sphere S3 is the group manifold of the three dimensional
spin group (and also SU(2)), and RP 3 is correspondingly the group manifold
of SO(3). From our perspective, the standard framework of Sn spatial sections
is the one of greatest interest, though this is largely an aesthetic judgement.
There does not appear to be any obvious physical criteria for favouring one over
the other.

There are a range of conformal representations one can adopt for de Sitter
space [21]. Probably the simplest is the Carter–Penrose diagram, shown in
figure 4. In this picture the temporal coordinate represents conformal time,
and the spatial section represents the effective radial coordinate. A 2-sphere is
suppressed at each point. If one wants to represent the simpler 2-dimensional
de Sitter space, the diagram needs to be wrapped onto a cylinder. While this
picture is instructive, we seek a picture that embodies some of the features
of the Poincaré disk model. So, for example, geodesics should have a simple
representation in terms of curves of constant (Minkowski) distance from some
point. To achieve such a picture, we start by considering the spatial section at
T = 0. This section is a ring of radius a, which is mapped onto a straight line in
a (1, 1) Lorentzian space via a stereographic projection. Null geodesics from this
section are represented as 45◦ straight lines in Lorentzian space. Since geodesics
from opposite points on the ring meet at infinity, we arrive at a boundary in the
timelike direction defined by a hyperbola. This construction provides us with
a Lorentzian view of de Sitter geometry. Timelike geodesics in de Sitter space
are represented by hyperbolae that intersect the boundary at a (Lorentzian)
right-angle (see figure 5).

There are many fascinating geometric structures associated with de Sitter
geometry, many of which mirror those of non-Euclidean geometry. For example,
one can always find a reflection that takes any point to the origin [22]. One can
then prove a number of results at the origin, where the geodesics are all straight
lines, and the results are guaranteed to hold at all points. A similar approach
can be applied to anti-de Sitter space, except now the diagram is rotated through
90◦, as it is the timelike direction that is formed from a stereographic unwrap-
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Figure 5: The Lorentzian view of two-dimensional de Sitter space. The bound-
ary is defined by two hyperbolae (shown with thick lines). All geodesics through
the origin are straight lines, and null geodesics are always straight lines at 45◦.
Two further geodesics, one spacelike and one timelike, are also shown. These
are hyperbolae which do not pass through the origin. The timelike geodesic in-
tersects the boundary in such a way that the two tangent vectors have vanishing
Lorentzian inner product.

ping of a circle. A valuable mathematical tool for studying these geometries is
provided by conformal geometric algebra [3, 23], which is essentially a Clifford
algebra for the conformal space of two dimensions higher. So a 4-dimensional de
Sitter spacetime is studied in the Clifford algebra of a 6-dimensional space with
signature (2,4). Points, lines (including geodesics), planes and spheres are all
represented by graded multivectors in the algebra, and union and intersection
operations can be defined analogously to projective geometry [22].

The metric associated with the Lorentzian view of 2-dimensional de Sitter
geometry has the conformally-flat structure

ds2 =
a4

(a2 + x2 − t2)2
(dt

2 − dx
2). (4)

This makes it clear that null geodesics must remain as straight lines in the x–t

plane. A similar line element is appropriate for four dimensional spacetimes, but
these are not commonplace in the literature (except for the simple case of flat
cosmologies). We finish this section by outlining the steps required to transform
a standard FRW line element in the form

ds2 = dt2 −
R(t)2

(1 + kr2/4)2
(

dr2 + r2(dθ2 + sin2(θ) dφ2)
)

(5)

into the spacetime-conformal line element

ds2 =
1

f2

(

dt
2 − dr

2 − r
2(dθ2 + sin2(θ) dφ2)

)

, (6)

where f is a (dimensionless) function of t and r.
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The first problem to address is that the r coordinate in equation (5) is
assumed to be dimensionless. To rectify this we introduce a constant distance
λ and replace the line element of (5) with

ds2 = dt2 − 4λ2R(t)2

(λ2 + kr2)2
(

dr2 + r2(dθ2 + sin2(θ) dφ2)
)

. (7)

Here t, r, λ and R all have units of distance (assuming c = 1). As usual, the
constant k is either ±1 or zero. Comparing the angular terms in equations (5)
and (6) we see immediately that

r

f
=

2λrR(t)

λ2 + kr2
. (8)

The coordinate transformation from (t, r) to (t, r) must satisfy

dt = f cosh(u) dt +
r

r
sinh(u) dr

dr = f sinh(u) dt +
r

r
cosh(u) dr. (9)

For flat cosmologies (k = 0) we simply set t/λ equal to the conformal time η,
where

η =

∫ t

0

dt′

R(t′)
, (10)

and we then have r = r and the hyperbolic angle u is set to zero. For non-flat
cosmologies it is perhaps surprising to find that u is non-zero. That is, there is a
mismatch between the conformal coordinate frame and the cosmological frame.
It follows that the conformal time η is not the same as the time-like conformal
coordinate t.

Using the integrability conditions for the coordinate transformations, and
setting the initial singularity to t = 0, the following solutions are found in the
three cosmological scenarios [4]:

f =
t

R sin(η)
= g

(

2λt

λ2 + r2 − t2

)

t

λ
closed

f =
2λ

R
flat (11)

f =
t

R sinh(η)
= ḡ

(

2λt

λ2 + t2 − r2

)

t

λ
open.

Here g and ḡ are functions (in general elliptic) satisfying differential equations
depending on the matter content.

3 A boundary condition for conformal time

All cosmological models are conformally flat, and can all be interchanged via
conformal transformations. Furthermore, all models containing a cosmological
constant, and which do not recollapse, will tend towards a de Sitter end state.
Such models should fit neatly within the conformal diagram of figure 5 with
future infinity represented by the upper hyperbolic boundary. A flat section
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t

x

t

Figure 6: Flat and open cosmological models. de Sitter space contains sections
representing both flat and open spacetimes. A flat spacetime (left) consists
of the space contained inside a light-cone located on past infinity. An open
spacetime fits inside the lightcone from the origin. Both pictures can be used
to illustrate cosmological models, with the initial singularity represented by a
hyperbolic spacelike surface. An example of these surfaces is shown on each
diagram.

of de Sitter space corresponds to a region contained within a light cone from a
point located on the boundary at past infinity (see figure 6). Surfaces of constant
cosmic time are represented as hyperbolae, any one of which can then be chosen
to represent the initial singularity. Similarly, an open section of de Sitter space
is represented by the area inside a light-cone from a point in the middle of the
de Sitter picture. An open Λ-cosmology will have the initial singularity located
on a spacelike hyperbola.

The diagrams for flat and open cosmologies make it clear that one is not
employing the full de Sitter geometry in a symmetric manner. Closed models,
on the other hand, can be given a more natural embedding, since their initial
singularity can be represented by a spacelike surface placed anywhere in the
conformal diagram of figure 5. For all but one choice of position of the initial
singularity, the future asymptotic de Sitter state of the model will not match
onto the future infinity boundary of the conformal diagram. However, suppose
that we insist that t = 0 represents the initial singularity. In this case the entire
history of the universe can be conformally mapped into the top half of the de
Sitter diagram. We suggest that this gives a natural boundary condition, as the
centre of the diagram is the most natural, symmetric place to locate the big-
bang singularity. (This choice also hints at a possible pre-big bang phase, but
this is not explored here.) It might be thought that our proposal just amounts
to a choice of coordinates. However, we now demonstrate that it has physically
measurable consequences, and also that it can be recovered via an eigenvalue-
type condition on the underlying equations, hinting at its origin as a possible
quantisation condition.

One immediate physical consequence of our proposal is that any photon
emitted from the initial singularity may travel a maximum of precisely one-
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quarter of the way round the universe in the entire future evolution of the
universe. An alternative way of saying this is that the past horizon projected
back to t = 0 should cover half of the de Sitter geometry. If we let φ denote
an equatorial angle on a 3-sphere, a photon travelling round the equator will
satisfy

dφ

dt
=

1

R
, (12)

where t is cosmic time. Traversing the entire universe corresponds to running
from 0 ≤ φ ≤ 2π. If a photon is only to travel one-quarter of the way round we
therefore require that

∫

∞

0

dt

R
=

∫

∞

0

dR

R(−1 + ΛR2/3 + 8πρR2/3)1/2
= π/2. (13)

That is, the total available conformal time is π/2. This constraint can also be
arrived at through an alternative route that works entirely within the conformal
representation of cosmological models [22]. A de Sitter space centred on t =
0 = t has the conformal line element

ds2 =
12λ2

Λ(λ2 + r2 − t2)2
(

dt
2 − dx

2 − dy
2 − dz

2
)

. (14)

Clearly the only forms for f in equation (11) that have any chance of matching
onto this final state are those for a closed universe. Furthermore, the function
g must satisfy

lim
χ7→∞

g(χ) =

(

λ2Λ

3

)1/2
1

χ
(15)

where

χ =
2λt

λ2 + r2 − t2
= tan(η). (16)

But since

g =
λ

R sin(η)
(17)

we must then have R cos(η) tending to a constant at large times. This is only
possible if η tends to π/2, recovering our earlier boundary condition. This
derivation is instructive in that it reveals how the constraint can be imposed as
a straightforward boundary condition on a differential equation. In this case,
the equation for g(χ) is

χ2(1 + χ2)

(

dg

dχ

)2

+
d

dχ
(g2χ) =

8πGλ2ρ

3
+

λ2Λ

3
. (18)

The task then is to solve this equation subject to the boundary condition that
g falls off as 1/χ for large χ. Viewed this way the constraint can be thought of
as a ‘quantisation condition’ applied as the universe is formed, which one might
hope would emerge from a quantum theory of gravity.

In order to understand the implications of our boundary condition, we turn
to considering flow lines in the (ΩM , ΩΛ) plane (see figure 7). The plots show
a shows a series of flow lines starting from ΩM = 1, ΩΛ = 0, refocusing around
the spatially flat case, ΩM + ΩΛ = 1. One can show that, for a large range
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Figure 7: Evolution curves in the (ΩM , ΩΛ) plane. The left-hand plot is for
dust, and the right-hand plot is for radiation. In both cases the curves converge
to ΩΛ = 1, representing a late-time de Sitter phase.

of initial conditions, by the time we reach the current value of ΩM ≈ 0.3 most
models are not far off spatial flatness. This prediction contrasts with models
without a cosmological constant, where any slight deviation from the critical
density in the early universe is scaled enormously by the time we reach the
present epoch, implying that the parameters in the early universe are highly
fine-tuned. The presence of a cosmological constant therefore goes some way to
solving the flatness problem on its own, without the need to invoke inflation.

Each of the flow lines in figure 7 has a different value for the total evolved
conformal time. Imposing a constraint on this picks out a single preferred
trajectory, resulting in the two curves shown in figure 8 (one for matter-filled
and one for radiation-filled). As the universe is expected to be matter dominated
for most of its history, the solid line in figure 8 is the more physically relevant
one. Taking the present-day energy density to be around ΩM = 0.3, we see
that ΩΛ = is predicted to be around ΩΛ ≈ 0.83. That is, a universe that is
closed at around the 10% ratio. Such a prediction is reasonably close to the
observed value, though it is ruled out by the most recent experiments [1]. In
order to improve the prediction, we need to use up a greater fraction of the
conformal time before we enter the matter-dominated phase. Such a process is
also necessary to solve the horizon problem, and the simplest means of achieving
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Figure 8: Critical paths as predicted by the de Sitter embedding. The solid line
represents a matter-dominated universe, and the broken line shows radiation,
for comparison. The straight line is the critical case of spatial flatness. By the
time we reach ΩM ≈ 0.3 the universe has been driven close to critical density.

this is via an inflationary phase.

4 Scalar field inflation

One can argue about the extent to which inflation really does solve the original
problems it was intended to. For example, we have seen that the presence of
a cosmological constant alone goes a long way to solving the flatness problem,
without requiring inflation to put the universe in an effective de Sitter phase.
But when it comes to generating structure on scales greater than the horizon,
inflation is currently the only option. The simplest model of inflation models
the matter content as a real, time-dependent, homogeneous massive scalar field.
For a range of initial conditions this system shows the expected inflationary
behaviour. The evolution equations for this model are

Ḣ + H2 − Λ

3
+

4πG

3
(2φ̇2 − m2φ2) = 0 (19)

and
φ̈ + 3Hφ̇ + m2φ = 0. (20)

Given a solution to the pair of equations (19) and (20), a new solution set is
generated by scaling with a constant σ and defining

H ′(t) = σH(σt), φ′(t) = φ(σt), m′ = σm, Λ′ = σ2Λ. (21)

This scaling property is valuable for numerical work, as a range of situations
can be covered by a single numerical integration. A range of physical quantities
are invariant under changes in scale, including the conformal time η as can be
seen from equation (10). The scaling property does not survive quantisation,
however, so has to be employed carefully when considering vacuum fluctuations.
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The initial conditions for equations (19) and (20) are usually set at the start
of the inflationary period, where they are viewed as arising from some form of
quantum gravity interaction. But in order to apply our boundary condition we
need to track the equations right back to the initial singularity, as this is the
only way that we can keep track of the total conformal time that has elapsed.
Evolving the inflationary equation backwards in time is entirely justified, as
we do not expect quantum gravity to play a role until much earlier in the
history of the universe. Inflation on its own does not eliminate singularities from
cosmology [12, 13]. Furthermore, by specifying initial conditions around the
singularity, the states of the fields at the onset of inflation are fully determined
by a pair of parameters, making the model highly predictive.

As the universe emerges from the big bang the dominant behaviour of H is
to go as 1/(3t). Equation (19) then implies that φ must contain a term going
as ln(t). But this in turn implies that H must also contain a term in t ln(t),
in order to satisfy equation (20). Working in this manner we conclude that a
series expansion in powers of t and ln(t) is required to describe the behaviour
around the singularity. At this point it is convenient to define the dimensionless
variables

u =
t

tp
, µ =

m

mp
(22)

with tp and mp the Planck time and mass respectively. The series expansion
about the singularity at t = 0 can now be written

H(u) =
1

tp

∞
∑

i=0

Hi(u) lni(u), φ(u) =
1

lp

∞
∑

i=0

φi(u) lni(u), (23)

which ensures that the expansion coefficients are all dimensionless. Substituting
these into the two evolution equations, and setting each coefficient of ln(u) to
zero, we establish that

H1 = −u
dH0

du
− uH2

0 +
uΛ

3
− 8πu

3

(

dφ0

du

)2

− 16πφ1

3

dφ0

du

− 8πφ2
1

3u
+

4πµ2uφ2
0

3
, (24)

with further algebraic equations holding for H2, φ2, H3, φ3, and so on. So, by
specifying H0, φ0 and φ1, all the remaining terms in the solution are fixed. The
aim now is to choose the three input functions to ensure that successive terms
in the series get progressively smaller. This provides just the right number of
equations to specify all coefficients, save for two arbitrary coefficients in φ0.
This results in a series expansion controlled entirely by two arbitrary constants,
which is the expected number of degrees of freedom once we have fixed the
singularity to t = 0. In order to generate curvature it turns out that the input
functions need to be power series in u1/3, which ensures that the scale factor
goes as u1/3 at small times. The series solution is only required to find suitable
initial conditions for numerical evolution, so only the first few terms are required.
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Expanding up to order u5/3 we find that

H0 =
1

3u
+

32
√

3π

27
b4u

1/3

+

(

2µ2

81
+

Λ

3
+

4π

3
µ2b2

0 +
4
√

3π

27
µ2b0

)

u − 6656πb2
4

891
u5/3, (25)

φ0 = b0 + b4u
4/3 −

118
√

3πb2
4

99
u8/3

− 1

1296π

(

11
√

3πµ2 − 54
√

3πΛ − 216
√

3π3/2µ2b2
0 + 36πµ2b0

)

u2 (26)

and

φ1 = −
√

1

12π
− µ2

216π

(

−
√

3π + 36πb0

)

u2. (27)

Under scaling the three key parameters in the model transform as µ 7→ σµ,
b0 7→ b0, and b4 7→ σ4/3b4. This scaling transformation for b4 is entirely as
expected, given that it is the coefficient of u4/3 in the series for φ0. It follows
that the quantity b4/µ4/3 is scale invariant.

The fact that b4 controls the curvature can be seen from equation (1) which,
to leading order, yields

R

lp
=

1

µ

(

2187

12544π

)1/4(

−µ4/3

b4

)1/2

(µu)1/3 + · · · . (28)

Clearly, the arbitrary constant b4 must be negative for a closed universe. The
terms on the right-hand side of equation (28) are all scale invariant, apart from
the first factor of µ−1. In figure 9 we illustrate Hubble function entry into
the inflationary regime for typical values of b0 and b4/µ4/3 of interest. We
see that the onset of inflation corresponds to µu ≈ 0.1. In order to generate
perturbations consistent with observation the scalar field must have a mass of
the order of 10−6mp. It follows that the onset of inflation occurs at a time of
around 105 Planck times. The radius of the universe at the onset of inflation is
then given approximately by

R ≈ 0.2

µ
lp, (29)

and so is of order 105 Planck lengths. Inflation therefore starts at an epoch
well into the classical regime. Quantum gravity effects would be expected to
be relevant when the radius of the universe is of the order of the Planck scale,
which occurs when u ≈ µ2 and is well before any inflationary period (for physical
values of µ). We are therefore quite justified in running the evolution equations
back past the inflationary regime, and right up to near the initial singularity.
It is only when R = lp that the equations will break down, and we would
look to quantum gravity to explain the formation of the initial, Planck-scale
sized universe. Indeed, we would argue more strongly that we have to run the
equations backwards in time to well before the start of inflation before reaching
an epoch where new physics could be expected to enter the problem.

As the universe is described by a 3-sphere of radius R, the total volume of
the universe is given to leading order by

V = 2π2

(

2187

12544π

)3/4 l3p
(−b4)3/2

u + · · · . (30)
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Figure 9: Hubble function entry into and exit from the inflationary regime.

The Hubble function emerges from the big bang going as 1/3t. As H falls
it quickly enters the inflationary region, during which it falls linearly. As the
inflationary era ends the density and pressure start oscillating around values for
a matter-dominated cosmology. The effective singularity for this dust cosmology
is displaced from t = 0. The broken line plots the natural log of 2/3(t− 14.56).
Time t is measured in units of tp, and H in units of t−1

p . The input parameters
were set to b0 = 2.48, b4 = −0.51 and m = mp (µ = 1).
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Figure 10: Evolution of the conformal time η(t) as a function of ln(t). The
parameters for the model are as given in figure 9 and again t is measured in
units of the Planck time. This plot sets µ = 1, so the time variable must be
scaled to correspond to more physical values of µ ≈ 10−6.

Following from this, an interesting calculation we can perform in a closed uni-
verse is to find the total energy contained within it in the scalar field. By
integrating the energy density we find that

Etot =
π

12

(

2187

12544π

)3/4
1

(−b4)3/2

~

t
+ · · · ≈ 0.03

(

−µ4/3

b4

)3/2
~

µ2t
, (31)

and when the scale-invariant quantity b4/µ4/3 is or order unity (as required for
physical models) we have

Etot ≈ 0.03

µ2

~

t
. (32)

This tell us that the action Et is very large, when measured in units of ~. This
is reassuring, as it means we are justified in treating the universe on the whole
as a classical object.

The plots in figure 9 illustrates the general behaviour of the Hubble function
H . As the universe emerges from the big bang the energy density in the scalar
field is dominated by the φ̇ term, and the field behaves as if it is massless. It
follows that H initially falls as 1/(3t). But once H has fallen sufficiently far we
enter a region in which m2φ2 starts to dominate over φ̇2. These are suitable
initial conditions for the universe to enter an inflationary phase. By varying b0,
b4 and µ we control both the values of the fields as we enter the inflationary
period, and how long the inflationary period lasts. The cosmological constant
plays no significant role in this part of the evolution. The dynamics displayed
in this figure is quite robust over a range of input parameters. A significant
point here is that we enter the inflationary regime from a region of high H , as
opposed to the H ≈ 0 value favoured in some models of quantum cosmology. We
therefore never enter the regions of parameter space where the chaotic evolution
noticed by Page [24] and Cornish & Shellard [25] is relevant.

The typical behaviour as we exit the inflationary region is also shown in
figure 9. The end of inflation is characterised by H ≈ µ. Beyond this point the
scalar field enters an oscillatory phase, with the time-averaged fields satisfying
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the conditions for a simple matter-dominated cosmology. In this case H can
be approximated by a curve going as 2/3(t− t0), describing a dust model with
a displaced origin. The universe then appears as if it has been generated by
an ‘effective’ big bang at a later time. Around this time we expect reheating
effects to start to dominate, so that in reality the universe must pass over to
a radiation-dominated era. But the naive ‘effective big bang’ concept is useful
for extracting some qualitative predictions from our model [4]. Figure 10 shows
the evolution of conformal time for the model depicted in figures 9. As the
universe emerges from the initial singularity, η grows at t2/3. But once the
inflationary region is entered, R(t) starts to increase rapidly. So the conformal
time, which involves the time integral of R−1, quickly saturates. So if η has not
reached π/2 before R has inflated significantly, the universe will have to exist
for an extremely long time to reach the boundary value of π/2. Similarly, in
this simple picture, we can obtain the prediction for Λ given in equation (2) (for
details see [4]). We note with the number of e-folds N ≈ 46, then Λ ∼ 10−122l−2

pl ,
which is in exactly the right ball park!

5 The power spectrum

In [4] we give an account of how to extract the power spectrum of primordial
fluctuations, using the various approximations that have become standard in
the literature. As an example of the type of results achieved, we show in figure
11 a comparison of our computed scalar power spectrum with the WMAP best
fit power law and running spectral index fits. The vertical normalisations for
these fits have been chosen arbitrarily, since it is the shape of the spectrum at
large k which is of greatest interest here. The running spectral index graph is
interesting in that it suggests that this model is attempting to emulate both the
cutoff at low k, as well as the reduced power at large k, which occurs in our
model. The latter occurs as a result of computing the perturbation spectrum
more accurately than usual in this regime, and is not a specific feature of using
a closed universe model.

In figure 12 we show a predicted CMB power spectrum from our model, in
comparison with the WMAP results and the prediction from a strictly power
law initial spectrum. This model has Ω0 = 1.04, so is consistent with WMAP
at the 1σ level. We also take Ωbh2 = 0.0224, h = 0.60 and Ωcdmh2 = 0.110.
Together these yield a value of Ωcdm = 0.306, which is reasonable, although
of course the H0 value is rather low. It can be seen that our predicted CMB
spectrum is in much better agreement with the WMAP results at low ℓ than
the predictions from the primordial power law. This could be taken as good
evidence for our model, except that it is necessary to check the correctness of the
approximations we have used in calculating the perturbation power spectrum.
This work is currently in progress, but we end this paper with a brief discussion
of some of the technical problems involved.

The starting point for calculating the scalar curvature spectrum in a simple
flat model is to write the linearised perturbed action in the form [26]

δ2S =
1

2

∫

dη d3x

(

v′2 − ηijv,iv,j +
z′′

z
v2

)

. (33)

Here v is a gauge-invariant combination of matter and metric perturbations,
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Figure 11: Comparison of the scalar power spectrum of curvature perturbations,

PR(k), with power law models. The function plotted is 1010(2π)2PR(k) as a
function of log10(k), assuming h = 0.65. The solid line represents the numerical
predictions from our model. The long dashes represent the best fit power law
(ns = 0.96) and the short dashes are the WMAP running spectral index best
fit. Notice that the vertical scale runs from 800 to 1300, so the differences are
slightly exaggerated.

Figure 12: CMB power spectrum for a model with Ω0 = 1.04 The parameters
are discussed in the text. The experimental points shown with 1σ error bars are
the WMAP results [1] and the dashed curve corresponds to the best fit Λ CDM
power law CMB power spectrum as distributed in the WMAP data products.
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dashes denote the derivative with respect to conformal time, and z is defined by
z = φ′

0/H , where φ0 is the unperturbed field. By working with this action the
entire problem is reduced to one of analysing a scalar field with a time-dependent
mass term. This approach generalises to the non-flat case, although here the
definition of z becomes more complicated [27]. Also, for closed models, the
mode expansions necessary to carry out quantisation have to be performed using
spatial sections given by the 3-sphere S3, so that the ‘comoving wavenumber’
k takes on integer values, with k = 3 its lowest (non-gauge) value. The mode
equations found this way are very complicated, but retain the general form

v′′k +
(

k2 − f(η, k)
)

vk = 0, (34)

where in the flat case f(η, k) would be z′′/z, and in all cases f(η, k) is calculable
from knowledge of the background evolution.

The challenge now is to find suitable ‘quantum initial conditions’ so that after
evolution through inflation, the variables vk can be used to find the perturbation
spectrum. To achieve this involves a mode decomposition of vk into positive and
negative frequencies. The standard way to approach this is to assume that in
the asymptotic past the background is either Minkowski or de Sitter, so that
one knows the correct vacuum to chose. But this is clearly inappropriate here,
as looking back in time we encounter the initial singularity.

The question of how to proceed in the absence of any asymptotic notion of
the vacuum state has been widely discussed. One simple approach is provided by
Hamiltonian diagonalisation, where on each time slice modes are decomposed
into positive and negative energy states by the Hamiltonian operator. But
this technique tends to overestimate the particle production rate. A clear way
to proceed was developed by Parker and Fulling [28, 29] and introduces the
concept of an adiabatic vacuum. The application of this to the present case
is complicated, but feasible, and initial results support a low-k cutoff, though
with less pronounced effects than we have found using the standard approximate
techniques. This will be the subject of a future publication.
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