
ar
X

iv
:a

st
ro

-p
h/

05
04

08
8v

3 
 2

9 
M

ar
 2

00
6

GZK cutoff distortion due to the energy error

distribution shape

Ivone F. M. Albuquerque

Instituto F́isica, Universidade de São Paulo, SP, Brazil
and Space Science Laboratory, University of California, Berkeley, CA 94720

and
George F. Smoot

Lawrence Berkeley National Laboratory, Space Sciences Laboratory

and Department of Physics, University of California, Berkeley, CA 94720.

Electronic mails: IFAlbuquerque@lbl.gov; GFSmoot@lbl.gov

August 11, 2008

Abstract

The development of an ultra high energy air shower has an intrinsic energy fluc-
tuation due both to the first interaction point and to the cascade development. Here
we show that for a given primary energy this air shower energy fluctuation has a
lognormal distribution and thus observations will estimate that primary energy with a
lognormal error distribution. We analyze the UHECR energy spectrum convolved with
the lognormal energy error and demonstrate that the shape of the error distribution
will interfere significantly with the ability to observe features in the spectrum. If the
standard deviation of the lognormal error distribution is equal or larger than 0.25,
both the shape and the normalization of the measured energy spectra will be modified
significantly. As a consequence the GZK cutoff might be sufficiently smeared as not to
be seen (without very high statistics). This result is independent of the power law of
the cosmological flux. As a conclusion we show that in order to establish the presence
or not of the GZK feature, not only more data are needed but also that the shape of
the energy error distribution has to be known well. The high energy tail and the sigma
of the approximate lognormal distribution of the error in estimating the energy must
be at the minimum set by the physics of showers.
PACs 96.40.De,96.40.Pq
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1 Introduction

Detection of cosmic rays arriving at the Earth with energies above 1020 eV questions the

presence of the GZK cutoff [1]. This cutoff determines the energy where the cosmic ray

spectrum is expected to abruptly steepen. Cosmic rays with ultra high energies (above

∼ 5× 1019 eV) lose energy through photoproduction of pions when transversing the Cosmic

Microwave Background Radiation (CMB). As the CMB attenuates ultra high energy cosmic

rays (UHECR) on a 50 Mpc scale (or characteristic distance) at 1020 eV, one can determine

it’s production maximum distance. An event of 1020eV has to be produced within ∼ 100

Mpc, unless it is a non standard particle [2, 3]. The absence of any powerful source located

within this range [4] — that could accelerate a cosmic ray to such an energy — turns the

existence of these events into a mystery, the so called GZK puzzle.

The results of two important cosmic ray experiments AGASA [5] and HiRes [6] are not

consistent. Not only is the energy spectrum measured by HiRes systematically below the one

measured by AGASA, but also the HiRes spectrum steepens around 1020 eV while AGASA’s

spectrum flattens around this energy region. The steepening in the HiRes spectrum may be

in agreement with a GZK cutoff, while AGASA’s is thought not to be.

There are many possible ways to understand this discrepancy [7, 8]. The Pierre Auger

Observatory [9] will soon have a statistically significant data sample and will certainly shed

light into understanding these events.

In this article we focus on the role of the shape of the error distribution in the energy

determination. We show that the intrinsic features of an air shower results in a lognormal

error distribution on the energy determination. The minimum standard deviation of this

distribution (σ) is set by physical properties of the shower. If additional errors due to

detection – which increases the σ – are not kept to minimum, the end of the energy spectrum

will be smeared in a way that the GZK feature might not be seen.

Understanding the energy error is crucial in order to determine whether or not the GZK

cutoff is present. A lognormal error distribution on the reconstructed primary cosmic ray

energy is to be expected due to fluctuations both in the shower starting point as well as

from the cascade development [10]. According to simulations by the AUGER collaboration

[11] the depth of first interaction affects the rate of development of the particle cascade of

the shower which results in a fluctuation of about 15% on the number of muons and about
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5% on the eletromagnetic component. Auger also predicts that the number of muons in a

proton induced shower increases with primary energy as E0.85 [11]. The 15% fluctuation will

then contribute as a fixed fractional error and the fluctuation on the number of muons on the

ground will be N = (1 ± 0.15)N0(E / E0)
0.85. Therefore one has to add a 15% contribution

to the error in estimating the primary energy in addition to the
√

N error factor. As this

shower starting fluctuation error is a percentage of the energy it results in a lognormal error

distribution.

There are mainly two ways of determining the energy: ground detectors reconstruct

the energy based on the particle density at a certain distance from the shower core and

fluorescence detectors which determine the energy through the shower longitudinal profile [6].

The longitudinal profile determines the number of particles in the shower per depth and it is

well known to have large fluctuations. As mentioned above, the fluctuations arise both from

the shower starting point as well as from the cascade development. The same is expected

for the energy determination in ground detectors, since the particle density depends on the

number of particles.

The inherent fluctuations and resulting lognormal error distribution will affect crucially

the analysis of data collected in ground arrays since their data sample is collected at one

particular depth. It does also affect fluorescence data but as the energy reconstruction uses

the full longitudinal profile of the shower, there is more potential information to estimate

the original energy.

Figure 1 shows the distribution of particles at ground level for 2 × 104 simulated show-

ers (using [12]) from 1020 eV protons. A lognormal fit with σ = 0.08 is superimposed and it

is clear that the distribution has a lognormal shape. The same distribution for showers from

1018 eV protons is shown in Figure 2. The poor fit is due to an excess of simulated events

relative to the lognormal at the high end. The standard deviation of the fit is 0.14. Effects

due to the errors with asymmetrical and non-gaussian tails are shown in [13].

The simulated showers used Sybill interaction model and assumed that the ground was

at sea level (defined in Aires [12] as 0m or 1036 g/cm2). A more thorough analysis is under

way to understand why the error distribution for lower energies (as in Figure 2) deviates

from the lognormal shape. However it is clear that most of the events in excess come from

the tail of the maximum depth (XMAX) of the shower distribution. In Figure 3 we show

the XMAX distribution for the same events used in Figure 2. If we cut events with XMAX
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Figure 1: Distribution of total number of particles at ground level. Ratio of number of
particles over average is shown. 2× 104 showers were simulated with the Aires [12] package.
Primary particles are 1020 eV protons and 〈Npart〉 = 2.7×1010. Superimposed is a lognormal
curve with σ = 0.08.
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Figure 2: Same as Figure 1 but for 1018 eV protons as the primaries. Here 〈Npart〉 = 14.7×107.
Superimposed is a lognormal curve with σ = 0.14. The poor fit is due to an excess of
simulated events relative to the lognormal at the high end.
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Figure 3: Maximum shower depth (XMAX) distribution for 2 × 104 showers with 1018 eV
protons as the primaries. The arrow in the XMAX axis indicates where an analysis cut will
be applied.

> 890 g/cm2 from this data set, the ground particles distribution will lose part of the excess

events. This distribution is shown in Figure 4. These excess events, if included, would only

make more exaggerated the effect we discuss here.

The results shown in Figures 1 and 2 are also dependent on the location of the ground

level. We have also simulated events with ground above sea level at 950 g/cm2. The lognor-

mal continues to fit well the 1020 eV distribution and its σ improves to 0.05. The 1018 eV

distribution still has an excess but the chisquare improves to 4 and the σ to 0.10.

Below we will describe how we determine the UHECR spectrum assuming a injection

power spectrum from cosmologically distributed sources. We account for energy loss due to

propagation through the CMB. We then describe how the energy error is evaluated and how

it affects the energy reconstruction and the determination of the GZK cutoff.

2 Analytical determination of UHECR propagation and

energy spectrum

Our analytical approach assumes a cosmological cosmic ray flux. We assume extragalactic

sources isotropically distributed at different redshifts [14]. These sources produce a power
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Figure 4: Same as Figure 2 but events with XMAX > 890 g/cm2 were removed. Superim-
posed is a lognormal curve with σ = 0.13. The fit improves in relation to Figure 2.

law energy spectrum (injection spectrum) which is assumed to be:

F (E) = kE−α exp
(

− E

Emax

)

(1)

where E is the cosmic ray energy, k is a normalization factor, α is the spectral index and

Emax is the maximum energy at the source.

The energy degradation of protons through the CMB includes losses due to pair produc-

tion [15, 16], expansion of the universe [17] and photopion production [17]. These losses at

present epoch are shown in Figure 5. We include current values for the matter and dark en-

ergy density (ΩM and ΩΛ) when considering the energy loss due to expansion of the universe

(βz):

βz(E, z) = H0

√

ΩM(1 + z)3 + ΩΛ (2)

where β is defined as β = 1/E×dE/dt and ΩM = 0.3, ΩΛ = 0.7 and H0 = 75 km s−1 Mpc−1.

Also the energy losses due to pair or to photopion production (β(E, z)) at a certain epoch

with redshift z, is corrected. Since the number density of the cosmic background photons

varies as n = n0 (1 + z)3 the energy loss at z differs from the energy loss today (β0(E)) in

the following way:

β(E, z) = (1 + z)3β0((1 + z)E) (3)
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Figure 5: Energy losses (as labeled) of a proton transversing the CMB at present epoch.

Once all energy loss mechanisms are known, the energy with which a proton has to

be generated in order to account for the energy observed today can be determined. The

generated energy depends on the distance or epoch (redshift) from today. This can be well

determined by a modification factor η(E, z) [17] which relates the generated energy spectrum

to the modified (and measured) one.

The cosmological flux assumes the observer in the center of a sphere of large radius and

an isotropic density of sources [14]. The flux at the Earth is given by:

j(E) =
c

4πH0

∫ z

0
F (Eg)

(

Eg

E

)−α

(1 + z)m dEg

dE

× dz

(1 + z) [ΩM (1 + z)3 + ΩΛ]1/2

where Eg is the generated cosmic ray energy (at a source located with redshift z); F (E) is

given by Equation 1; E is the cosmic ray energy determined at the Earth; α is the same

spectral index as in Equation 1; m accounts for the luminosity evolution of the sources and

c is the speed of light. We assume m = 0 and therefore do not take luminosity evolution

into account. The modification factor η is given by:

η =
∫ z

0

(

Eg

E

)−α dEg

dE

dz

(1 + z) [ΩM(1 + z)3 + ΩΛ]1/2
(4)

For comparison, we determine the modification factor for arbitrary redshifts and assuming

no cosmological constant. Our results match those of [17, 7] and are shown in Figure 6.
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Figure 6: Modification factor [17] from our analytical calculation versus cosmic ray energy.
Curves are for different redshifts (top: z = 0.002; middle: z = 0.02; bottom z = 0.2) and
assuming no cosmological constant in order to compare results to [17, 7].

In Figure 7 is shown (black solid curve) the cosmic ray expected flux versus energy (E) at

Earth multiplied by E3 from a cosmological injection spectrum with α = 2.6. The expected

GZK feature is present.

3 Errors effects on the energy reconstruction

We will now assume that the cosmic ray energy spectrum from a cosmological isotropic

distribution of sources is the true spectrum. To understand how an error in the reconstructed

energy affects the spectrum, we convolute the cosmological flux assuming a lognormal error

on the energy.

The lognormal distribution is given by

dP (E ′, E)

d lnE
= k exp

[

− 1

2σ2
log2 E ′

E

]

(5)

where k = 1 /
√

2πσ is a normalization to unit area and σ is the standard deviation of log10 E.

When a lognormal error in the energy reconstruction is assumed, the flux will be convoluted

in the following way:

dF ′(E) = F (E ′)
dP (E ′, E)

dE
dE ′ (6)
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Figure 7: Cosmic ray energy spectrum (×E3) from a cosmological flux (solid black line)
with spectral index α = 2.6. The other curves are the energy spectrum convoluted with a
lognormal error with standard deviations σ as shown.

where F is given by Equation 1.

The expected flux (×E3) for energies reconstructed with a lognormal error distribution

is shown in Figure 7. The curves are for a spectral index α = 2.6 and σ = 0.08, 0.14, 0.25

and 0.5 as labeled.

It is very clear that not only the flux increases by a constant factor but also the GZK

feature is smeared. As shown in Figures 1 and 2, the standard deviation in the lognormal

distribution will be obtained in an ideal case where thousands of events are detected depends

on the energy of the primary particle. It is 0.08 for a 1020 eV proton and 0.14 for a 1018

eV proton. Figure 7 shows that if the standard deviation is above 0.14 the GZK cutoff will

show up at higher energies than in the true spectrum.

4 Results and Conclusions

Figure 7 shows how the energy spectrum from a cosmological flux is smeared due to a log-

normal error in the energy reconstruction. Intrinsic shower fluctuations leads to a lognormal

distribution of observed energy deposition and number of particles in the shower. A stan-

dard deviation of log10E equal to 0.25 is enough to modify not only the shape as well as the

normalization of the spectrum measured at the Earth. As a consequence the GZK feature
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will be smeared and might not be detected at all. Such a σ (standard deviation of log10 E)

can easily result from a detector that only samples a small portion of the total number of

particles. This will be more crucial to ground detectors since their particle sample is detected

all at one height. The standard deviation of the intrinsic energy error distribution for ground

detectors is expected to be larger than for fluorescence detectors.

The air fluorescence detectors will have lower intrinsic lognormal standard deviation as

they observe the full development of the shower through the range of view. They miss

observing only what goes into the ground or is out of the field of view.

As the Pierre Auger Observatory will not only increase the data sample to a significant

level, but also combine both ground and fluorescence techniques, it will have constraints

to understand and better control the errors in the energy reconstruction. In this way it is

possible to keep the standard deviation of the intrinsic lognormal energy error to its minimum

value.

The lognormal curves shown in Figure 1 and 2 have σ = 0.08 and 0.14 respectively.

However one can expect a larger value from an observed distribution since the detectors

sample only a portion of the total number of particles. On the other hand the standard

deviation of the distribution depends on the ground level altitude and therefore an analysis

equivalent to ours has to be done for a specific depth.

Figure 8 shows that the lognormal error in the energy is also affected by the spectral

index of the injection spectra. However the error in the energy reconstruction will smear the

flux in a significant way independently of the spectral index.

We have shown that a lognormal error in the energy reconstruction of the UHECR

spectra will affect not only the shape but also the normalization of the measured energy

spectra. A standard deviation equal to or greater than 0.25 will smear the GZK feature. As

a consequence this feature will not be seen. This result is independent of the spectral index

of the injection spectra.

In conclusion, the establishment of the presence or not of the GZK cutoff in the UHECR

spectrum depends not only in a larger data sample but also in the determination of the

shape of the energy error distribution. The standard deviation of this distribution has to be

kept to its intrinsec value. If it is equal or greater to 0.25 the GZK feature will be smeared

and not be detected.
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