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ABSTRACT

We apply the recently defined multipole vector framework to the frequency-specific first-year WMA P
sky maps, estimating the low-£ multipole coefficients from the high-latitude sky by means of a power
equalization filter. While most previous analyses of this type have considered only heavily processed
(and foreground-contaminated) full-sky maps, the present approach allows for greater control of resid-
ual foregrounds, and therefore potentially also for cosmologically important conclusions. The low-£
spherical harmonics coefficients and corresponding multipole vectors are tabulated for easy reference.

Using this formalism, we re-assess a set of earlier claims of both cosmological and non-cosmological
low-£¢ correlations based on multipole vectors. First, we show that the apparent £ = 3 and 8 correlation
claimed by ) is present only in the heavily processed map produced by

), and must therefore be considered an artifact of that map. Second, the well-known quadrupole-
octopole correlation is confirmed at the 99% significance level, and shown to be robust with respect
to frequency and sky cut. Previous claims are thus supported by our analysis. Finally, the low-/¢
alignment with respect to the ecliptic claimed by ) is nominally confirmed in this
analysis, but also shown to be very dependent on severe a-posterior: choices. Indeed, we show that
given the peculiar quadrupole-octopole arrangement, finding such a strong alignment with the ecliptic

is not unusual.

Subject headings: cosmic microwave background — cosmology: observations — methods: numerical

1. INTRODUCTION

Since the first-year Wilkinson Microwave Amnisotropy
Probe (WMAP) data release |m5),
a great deal of effort has been spent on ana-
lyzing the higher-order statistical properties of the

sky maps. This effort has resulted in sev-
eral reports of both non-Gaussianity and statistical
anisotropy iveira- : [Eriksen et all
2004414, ; Hansen_ef. all 20044[H; [Taffe_et_all 2003
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ILarson & Wandelfl 2004; Vielva_et_all 2004), established
by means of many qualitatively different methods. Since
such findings would contradict the currently popular in-
flationary based cosmological paradigm, it is of great im-
portance to determine both their origin and significance.

To aid this work, several new methods have been
devised. In particular, one method was pioneered by
Copi, Huterer & Starkman (2004), who re-discovered
a particular decomposition of a given multipole into a
geometrically more meaningful set of objects, the so-
called (Maxwell’s) multipole vectors. Whereas the stan-
dard spherical harmonics expansion is coordinate depen-
dent, these objects are rotationally invariant, providing
a somewhat more intuitive interpretation of the object.
Specifically, the multipole vector set corresponding to a
multipole of order ¢ consists of ¢ unit vectors and one
overall magnitude.

Since the first paper by [Copiet all (2004), sev-
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eral other groups have advanced the method signifi-
cantly. Choosing a mathematically more stringent ap-
proach, [Katz & Weeks (2004) and [Weekd (2004) both
proved uniqueness of the multipole vector decomposi-
tion and established efficient methods for computing it.
Land & Magueijd (2005) focused on the importance of
distinguishing between non-Gaussianity and anisotropy,
and introduced the notion of a multipole frame. Fi-
nally, a mathematically elegant approach was taken by
Slosar & Seljak (2004), who used a Markov Chain Monte
Carlo algorithm to map out the complete probability dis-
tribution of the low-£ components, and subsequently used
these results to study multipole vector anomalies.

All groups applied their methods to the first-year
WMAP data with various results. However, by far most
of the effort was spent on analyzing a small set of heav-
ily processed full-sky maps (the WMAP Internal Lin-
ear Combination map [WILC|] — Bennett et al. 2003a;
the Lagrange Internal Linear Combination map [LILC]
— Eriksen et al. 2004c; the Tegmark et al. cleaned map
[TOH] — Tegmark, de Oliveira-Costa & Hamilton 2003)
which are known to have serious problems with resid-
ual foregrounds (Eriksen et all 2004d). In fact, with the
exception of the TOH map, the creators of these maps
explicitly warn against using them for cosmological anal-
ysis.

A notable exception among the analyses quoted above
is that of ISlosar & Seljak (2004). Their approach is sta-
tistically sound, in that it supports partial sky analy-
sis and proper foreground marginalization, but it is also
computationally demanding. Its application is therefore
somewhat limited. Further, their particular choices and
treatment of data make a direct comparison between
their results and the ones presented by other groups
somewhat unclear.

It should also be noted that [Land & Magueijd (2005)
did analyze the proper WMA P maps as well, by applying
a sky cut to the data directly. However, they did not
attempt to reconstruct the full-sky multipole coefficients,
and their analysis therefore suffers from multipole mode
coupling and increased error bars.

The popularity of the full-sky maps listed above comes
from the fact that they appear free of foregrounds by
visual inspection. The multipole coefficients may there-
fore formally be estimated by a straightforward spher-
ical harmonics expansion, without reference to any sky
cut and subsequent mode decoupling. Nevertheless, even
though it may be difficult to see the foreground residuals
by eye, they are certainly present, and an analysis that
fully relies on these maps will necessarily be cosmologi-
cally dubious. In this paper we address this issue by com-
bining a previously introduced power equalization filter
method for estimating the full-sky spherical harmonics
coefficients from partial sky data with the ordinary mul-
tipole vector method. This allows us to analyze the data
frequency by frequency and region by region. In other
words, the multipole vector method may finally be used
for cosmological studies.

The latter analysis takes a very conservative approach
to foreground uncertainties, and, while statistically very
robust, the results are not necessarily directly compara-
ble to the ones obtained by other groups, primarily due
to choice and treatment of the involved data.

The paper is organized as follows: In Section [ we

briefly review the methods used for both estimating the
full-sky harmonics coefficients from cut-sky data, and
for computing the multipole vector decomposition from
these. Next, in Section Bl we describe the data and sim-
ulations used in the analysis. In Section Bl we study the
efficiency of the power equalization filter method for re-
constructing the multipole components, and compare it
with the full-sky cleaning methods. Then we apply our
methods to the first-year WMAP data in Section Bl seek-
ing to reproduce earlier claims found in the literature.
Concluding remarks are made in Section [l For easy ref-
erence, we also tabulate the low-¢ multipole coefficients
for the three cosmologically interesting WMAP Q-, V-
and W-bands in Appendix [Al

2. METHODS AND STATISTICS

The following subsections briefly review the methods
used in this paper. We refer the interested reader to the
original papers for full details; Bielewicz, Goérski & Ban-
day (2004) for partial sky analysis by power equalization
(PE) filtering, and |Copi et all (2004) for multipole vector
decomposition.

2.1. Partial sky analysis by PFE filtering

For a given analysis of CMB data to be cosmologically
interesting, great care must be taken to exclude non-
cosmological foregrounds. In the future it may be pos-
sible to perform component separation efficiently, but at
present, the only reliable approach is to apply a sky cut
and exclude contaminated pixels from the analysis.

While the effect of this operation is transparent in
pixel space, it is more complicated in spherical harmon-
ics space, as the spherical harmonics are no longer or-
thogonal on a cut sky. In order to estimate the full-
sky harmonics decomposition from partial sky data, one
must therefore decouple the coeflicients taking into ac-
count the coupling matrix. PE filtering as described by
Bielewicz et all (2004) is one method for doing so.

The first step in this approach is to introduce a new
basis set of functions, 1, that is orthogonal on the cut
sky (Garski [1994). In this new basis, the vector? of de-
composition coefficients, c, is related to the vector of
decomposition coefficients of the true signal full sky map
a through the relation

c=L" a+ny,, (1)

where L is the matrix derived by the Cholesky decom-
position of the coupling matrix,

K =LL", (2)
Kty = [ Vi@V (i) ()
cut sky

and ny is the vector of noise coefficients in the v basis.

The sky cut causes the coupling matrix K to be sin-
gular, as there is no information in the data about the
spherical harmonic modes that lies fully within the sky
cut. Hence it is impossible to reconstruct all modes from
the c¢. However, for low-order multipoles, small sky cuts
and a high signal-to-noise ratio, it is a good approxima-
tion to simply truncate the vectors and coupling matrix

4 Mapping from an index pair (¢, m) into a single index i is given
byi=024+0+m+1



at some multipole £y .y, and then reconstruct the mul-
tipole coefficients up to multipole £, by filtering of the
data vector c.,

ég = F'Cg. (4)

Here the subscript £ denotes the range of indices
i=1,...,(lrec +1)2, and the filter F may be chosen to
such that the solution a, satisfy a desired set of condi-
tions. In this paper we will consider the so-called power
equalization (PE) filter defined by

(ag-aL)=(ac-a}). (5)

To construct the filter for the WMAP data we make
the usual assumption that both the CMB and noise com-
ponents are Gaussian stochastic variables. Further, the
CMB field is assumed to be isotropic, and the variance of
each mode therefore only depends on ¢, C; = (a?,). In
this paper, we choose the best-fit (to CMB data aloneg
WMAP power S%ectrum with a run lﬁ spectral index

as our reference spectrum. The rms noise level
in plxel p is given by o(p)noise = 00/1/ Nobs(p), where
Nobs(p) is the number of observations per pixel, and og
is the rms noise per observation.

Dependence on the assumed power spectrum might
seem to be a disadvantage of this filtering method. How-
ever, it was shown by m (2004) that the
multipole estimation does not depend significantly on
the assumed power spectrum in the case of the first-year
WMAP data. The same applies to the choice of ... and
lmax- We have chosen £ = 10 and £, = 30, but the
multipole coefficients do not show strong dependence on
these parameters.

2.2. Multipole vector decomposition

The multipole vector formalism was introduced to
CMB analysis by (2004), who showed that
a multipole moment can be represented in terms of ¢
unit vectors and an overall magnitude. As later pointed
out by Weekd , the formalism was in fact first dis-
covered by (1891). Maxwell showed that for a
real function f;(x,y,z) that is an eigenfunction of the
Laplacian on the unit sphere with eigenvalue —¢(¢ + 1)
(i.e., spherical harmonic function Yz,,) there exists £ unit
vectors vi, ..., vy such that:

1
fe(w,y,2) = AV, . Ty~ (6)

where V, = v; - V is the directional derivative operator

and r = /224 y2+22. A more useful form of this

representation was given by [Dennid (Im),

fe(r) = AO(vy 1) ... (vi 1)+ Q. (7)

Here A is an overall magnitude, and Q is term fully
defined by the components of v; that include components
of angular momenta ¢—2 ,£—4 ,.... (This term is needed
to take into account the fact that the product of £ vectors
contains terms with angular momenta ¢ —2 £ —4 ,....)
Returning to the usual language of CMB analysis, each
multipole Ty may therefore be uniquely expressed by ¢

5 Available at http://lambda.gsfc.nasa.gov
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multipole vectors v(&D .. vt and a magnitude A®.

In the notation of [Copi et all (2004), this reads
‘
Z almnm(A

m=—/

A(f)( (€1), @) .. (V(e>e).é)_|_Q,
(8)
where € is the radial unit vector in spherical coordinates.
Strictly speaking, the multipole vectors are headless, thus
the sign of each vector can always be absorbed by the
scalar A®). We will use the convention that all vectors
point toward the northern hemisphere.
Algorithms for computing the multipole vectors given a
set of agy, coefficients were proposed by
and Katz & Weekd . We have implemented the
algorithm of ) in our codes®.

2.3. Multipole vector statistics

Having computed the multipole vectors, we seek to test
a given CMB data set with respect to either internal cor-
relations between different multipoles, or external corre-
lations with some n frame. In order to do so, we
follow m) and define the following set of
simple statistics.

The first statistic is based on the dot product, which is
a natural measure of vector alignment. Since the multi-
pole vectors are only defined up to a sign, we choose the
absolute value of the dot product as our statistic. Second,
we also consider cross products of the multipole vectors,
wtd) = (v&9) x v(&R)) (where j # k, jk=1,...,¢ and
i=1,...,0({—1)/2), in order to test for correlations be-
tween multipole planes. Both normalized and unnormal-
ized cross products are considered, the latter correspond-
ing to the oriented area statistic of
Thus, inspired by (2004) and

), we study the following three statistics for any two

multipoles ¢; and £y (€1 # £a):

it X

o Syo =25t ST i) w2

[ ] va = |V Z17 .‘[(Z2>.j)|7

o = TSI 00 ),
These are referred to as “vector-vector”, “vector-cross”
(or “cross-vector”), and “cross-cross” statistics, respec-
tively.

We use Monte Carlo (MC) simulations to determine
the likelihood of these statistics given the isotropic and

Gaussian null-hypothesis (see SectionBl). As pointed out
e e B e
also note that the multipole vectors of any given mul-
tipole is not internally ordered and neither are the dot
products. Therefore, the sum of dot products is a better
statistic than for instance the M rank-ordered dot prod-
ucts for each multipoles pair, as defined by m
We will nevertheless follow the prescription of
) in one particular case, to numerically
verify their results. For full details on this algorithm, we
refer the interested reader to the original paper.

6 The routines of @004) are available at

http://www.phys.cwru.edu/projects/mpvectors/
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3. DATA AND SIMULATIONS

In this paper, we consider the first-year WMAP sky
maps (Bennett et all 20034) in several forms. Specifi-
cally, we analyze both the template-corrected Q-, V- and
W-band frequency maps imposing various masks (Kp0,
Kp2 — Bennett et al. 2003b; the extended DMR cut, 20+
— Banday et al. 1997) by means of the PE filter method
described above, and also four heavily processed (and
known to be foreground-contaminated) full-sky maps:
the WMAP Internal Linear Combination (WILC) map
— Bennett et al. 2003b; the Lagrange Internal Linear
Combination (LILC) map’— Eriksen et al. 2004c; the
Tegmark, de Oliveira-Costa and Hamilton (TOH) map
— Tegmark et al. 2003; and the latter from which the
Doppler quadrupole term was subtracted — Schwarz et
al. 2004. The templates used in the foreground correc-
tion process were those described by I[Finkbeiner et all
(1999), [Finkbeined (2003), and [Haslam et all (1982).

The Doppler term merits some discussion. In princi-
ple, this term should be subtracted from all WMAP sky
maps prior to analysis. However, its magnitude is very
small indeed, smaller than both the map making and
foreground induced uncertainties (Hinshaw 2005, private
communication), and a result that strongly depends on
this term must therefore necessarily be considered some-
what dubious. We choose to subtract this term only from
the TOH map, in order to assess its impact.

One goal of this paper is to compare the full-sky ILC
method with the partial-sky PE method. The efficiency
of each method is assessed through simulation, as we plot
the true CMB-only statistic value against the reproduced
value after complete processing. The amount of scatter
about the diagonal represents the processing-induced un-
certainty.

A set of 10000 ILC simulations were produced using
the pipeline described by [Eriksen et all (2004d). For
the PE method, we used the simulations described by
Bielewicz et all (2004).

4. ALGORITHMIC EFFICIENCY AND RESIDUAL
FOREGROUNDS

As pointed out in the introduction, the main short-
coming of previous multipole vector analyses is the fact
that they relied on full sky maps. In this paper we
remedy this problem by using the PE filter method of
Bielewicz et all (2004) to estimate the full-sky harmon-
ics components from partial sky data. The goal of this
section is to study the relative performance of the PE
and the full-sky approaches.

To do so, we apply the above formalism first to 10000
LILC simulations (Eriksen et all 2004d), and then to
10000 PE simulations (Bielewicz et all 2004). For each
single simulation, we also compute the same statistic
from the pure CMB input full-sky map, and make a scat-
ter plot of the reconstructed value against the known in-
put value. For a hypothetical method that is able to re-
construct the input CMB field perfectly, all points would
obviously lie on the diagonal in such a plot.

7 Note that the WILC map is not algorithmically well defined,
as the convergence criterion used for its construction was chosen
too liberally, and therefore the resulting map depends on the initial
point for the non-linear search. Such problems may be avoided by
solving the problem using Lagrange multipliers, and this is done
for the LILC map.

TABLE 1
SIGNAL RECONSTRUCTION EFFICIENCY

Vec-Vec  Vec-Cross Cross-Vec  Cross-Cross

Pearson’s linear correlation coefficient

LILC 0.750 0.746 0.712 0.698
PE (1) 0.962 0.953 0.955 0.943
PE (2) 0.911 0.904 0.889 0.877
PE (3) 0.811 0.807 0.759 0.754

Standard deviation

LILC 0.325 0.411 0.277 0.355
PE (1) 0.126 0.178 0.109 0.154
PE (2) 0.193 0.253 0.171 0.226
PE (3) 0.281 0.358 0.253 0.321
NOTE. — The correlation coefficients and standard devi-

ation of the S statistic for the LILC and PE methods. The
row marked PE (1) shows results for the PE method ap-
plied to clean V-band input maps with Kp2 sky coverage,
the row PE (2) shows results for input maps with sub-
tracted foreground templates with fitted coefficients, and
the row PE (3) shows results for the input maps with added
foreground templates with 30% of the fit coefficients given
by [Benneff_ef-all (2003H). (See text for details.)

Since the PE method supports partial sky analysis,
we use the template-corrected WMAP sky maps for our
analysis in the next sections. This ensures that residual
foregrounds are kept at a minimal level (Bennett et al
2003H), and the PE simulations are therefore made
without including foregrounds. Nevertheless, the real
template-corrected maps are certainly not free of resid-
uals, and the direct comparison between the LILC and
the PE simulations may therefore be considered some-
what unfair.

To quantify the effect of such residuals, we analyze
two additional sets of simulations. For the first set,
we add the templates with the amplitudes given by
Bennett et all (2003H) (assuming fixed free-free and syn-
chrotron spectral indices), and then fit for the amplitudes
using the approach described by IGérski et all (1996).
We then estimate the low-¢ asp,’s with the PE filtering
method. For the second set, we add the templates with
30% of the amplitudes to each simulation, and re-analyze
the simulations. Since we do not attempt to correct for
the foregrounds at all in this case, the latter set of sim-
ulations grossly over-estimates the residual foregrounds
present in the template-corrected maps.

The results from these exercises are shown in Figure
M Left to right columns show 1) the LILC results, 2)
the clean PE results, 3) the moderately contaminated
PE results, and 4) the heavily contaminated PE results,
respectively. Rows show the four different statistics for
multipoles /1 = 2 and £5 = 3 based on normalized cross-
products.

Clearly, the PE filter approach is superior to the ILC
approach. Even in the unrealistic case of 30% residual
foregrounds, the scatter is smaller for the PE filter than
for the ILC method. Realistically, the PE filter performs
somewhat worse than the second column, but slightly
better than the third.

We now quantify the scatter observed in each panel
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both by Pearson’s linear correlation coefficient, and by
the standard deviation as measured orthogonal to the di-
agonal in each plot. The results from these computations
are summarized in Table [l The visual impression from
Figure[is confirmed by these numbers: the PE filtering
method clearly outperforms the ILC method even in the
presence of unrealistically strong residuals.

Finally, we take the opportunity to once again empha-
size that the full-sky ILC map (and variations thereof)
should not be used for cosmological purposes if it is at
all possible to avoid. Such maps are highly contaminated
by residual foregrounds which are likely to have a signif-
icant impact on any moderately sensitive statistic. This
is particularly true on large angular scales, such as the
ones discussed in this and related papers. The massive

scatter seen in the left column of Figure [l should serve
as a clear indication of this fact.

5. ANALYSIS OF FIRST-YEAR WMAP DATA

We now apply our methods to the first-year WMAP
data, focusing on three specific claims found in the lit-
erature. First, using the multipole vector approach
Copi et all (2004) found some peculiar correlations in the
¢ =3,...,8 range in the TOH map. These correlations
manifested themselves in terms of a number of signif-
icant values of the (normalized and unnormalized) Sc.
statistic. Here we seek to reproduce these results in the
official template-corrected WMAP maps® using the PE

8 Unless explicitly stated otherwise, all PE results in this section
refer to the V-band data alone, which are the cleanest of the three
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filter method.

Second, numerous authors have reported a strong
alignment between the quadrupole and the octopole mo-
ments (e.g., de Oliveira-Costa et al. 2004; Copi et al.
2004; Katz & Weeks 2004) using various methods, for
instance multipole vector alignments. In Section we
confirm these findings with our improved method.

Finally, a highly surprising claim was made by
Schwarz et all (2004), who found a nominally strong
alignment of the quadrupole and octopole planes with
the ecliptic, and even with the vernal equinox. If con-
firmed real, this finding would suggest that the low-¢
anisotropy pattern seen in the WMAP data could be of
a solar system origin. This claim is considered in some
detail in Section

We note that we have also analyzed our own template-
corrected maps (using the method of Gérski et al. 1996),
and found very similar results as those presented here.
Details in the template correction process are therefore
not likely to have a major impact on our results, as-
suming that the templates do indeed trace the real fore-
grounds satisfactory.

5.1. Internal correlations among the { =2,...,8
multipoles

The first analysis of the WMAP data based on mul-
tipole vectors was performed by [Copi et _all (2004). The
main conclusion from this work was a claim of correla-
tions among the low-¢ multipoles in contradiction with
the currently preferred Gaussian and isotropic cosmo-
logical model. This claim was based on two observa-
tions. First, the normalized cross-cross multipole vector
statistic indicated a very strong correlation between the
¢ = 3 and 8 modes, and second, the unnormalized cross-
cross statistic revealed five or eight (depending on like-
lihood threshold) moderately strong correlations within
the ¢ = 2 to 8 modes.

While the nominal significance of their detection was
reasonably high (roughly at the 99% level), two prob-
lems could be identified with the analysis. First, as sub-
sequently pointed out by several authors (Katz & Weeks
2004; Schwarz et_all[2004), their statistics were based on
a rather elaborate rank ordering scheme with a some-
what unclear interpretation. It is not clear how robust
this method is. Second, and more importantly, only the
foreground-contaminated WILC and TOH maps were
considered in the analysis.

In this paper, we first repeat the original analysis of
Copi et all (2004) based on rank ordering to see if the
results (at least nominally) hold when applied to the
template-corrected WMAP maps. However, we also an-
alyze the same multipole pairs with the S statistics, in
order to study the statistical robustness of the detection.
For specifics on the procedure, we refer to (Copi et al.
(2004); our main target in this paper is robustness with
respect to foregrounds, not algorithmic consistency.

The results from the rank ordering analysis are sum-
marized in Tablel Columns 2 through 5 are to be com-
pared with column 8 of Table 1 of [Copi et all (2004),
while columns 6 through 9 are to be compared with
columns 10 and 12. While the agreement between our

WMAP bands. Noise is not an issue on the scales of interest, and
therefore we do not co-add the data.

TOH-DQ numbers and their numbers is not perfect, it is
quite good overall. Tracking down the cause of the small
differences would require having access to both codes;
minor details such as the bin size used for estimating
the likelihoods do have an impact, in particular on prob-
abilities not in the tails of the distributions. However,
we note that we observe perfect agreement with previ-
ously published S statistic results (Schwarz et all [2004;
Katz & Weeks 2004; [Weekd 2004) for all published cases,
so all codes appear to be working as expected.

As mentioned above, the conclusions of [Copi et all
(2004) can be summarized in terms of two different
anomalies. First, a high significance was observed for
the rank-ordered normalized cross-cross statistic when
applied to the £ = (3,8) pair. This result is confirmed
in Table B but only for the TOH map. For the other
three maps, this particular value is highly insignificant.
Therefore, if this detection does signify a real feature,
it is only present in the foreground-contaminated TOH
map, and not in the more trust-worthy WMAP V-band
map. It can therefore not be taken as representative for
the first-year WMAP data as a whole.

The second anomaly was defined in terms of an un-
usually large number of high unnormalized cross-cross
values for the TOH map: five out of 21 ranks for the
TOH map were found to be larger than 0.9, and eight
out of 21 values were larger than 0.8. Once again, we see
that this conclusion only hold for the TOH map, and not
for the PE-filtered V-band map. Quite on the contrary,
the V-band PE filter results appear completely uniform,
and no anomalies can be readily identified.

Even though the above results appear to refute the
original claims of low-¢ correlations, we compute the
more robust S.. statistic for the same low-¢ pairs for
completeness. The results from these calculations are
shown in Table Bl Again, the results appear quite uni-
form (with the exception of £ = (2, 3), to which we return
in the next section), and even the £ = (3, 8) pair does not
appear anomalous for any of the maps.

Based on this analysis, we conclude that the results of
Copi et all (2004) are due to a combination of a poorly
defined statistic and unreliable data. The anomaly does
not survive when subjected to a more careful statistical
analysis.

5.2. Quadrupole and octopole correlations

A similar type of anomaly was reported by
de Oliveira-Costa et all (2004). They found that the oc-
topole (£ = 3 mode) of the WMAP data spans a plane
on the sky, and further, that the normal to this plane
is strongly aligned with the quadrupole plane. This
anomaly has since then been extensively studied with dif-
ferent techniques (e.g., Weeks 2004; Eriksen et al. 2004c),
and is well established by now.

The multipole vector framework is particularly suited
for this particular anomaly. Recalling that the multipole
vectors of order £ contain terms of orders £,£—2,0—4, .. .,
we see that the quadrupole only consists of a quadratic
term plus a constant, while the octopole consists of a cu-
bic and a linear term. Further, it can be shown that the
cross-vectors for a given multipole point toward the sad-
dle points of the term of order ¢ of each multipole (but,
unfortunately, not toward the saddle points of the mul-
tipole as a whole.) For the quadrupole, a quite intuitive



TABLE 2
Low-¢ MULTIPOLE CORRELATIONS BY RANK ORDERING

Normalized Cross-Cross

Unnormalized Cross-Cross

(£1,£2) LILC WILC TOH-DQ PE LILC WILC TOH-DQ PE
(2,3) 1.73% 5.04% 2.19% 1.45% 1.75% 1.38% 0.11% 3.62%
(2,4) 28.16% 55.78%  58.73%  43.21% 25.28% 83.86%  89.44% 57.50%
(2,5) 79.97% T7.17%  23.15%  34.36% 99.22% 91.30%  66.77% 76.92%
(2,6) 81.53% 88.36%  87.40%  37.27% 64.73%  96.36% 78.55% 19.57%
(2,7) 91.08% 99.56%  93.20%  79.47% 91.54% 94.03%  86.24% 68.07%
(2,8) 82.55% 60.75%  89.81%  47.06% 67.23% 94.84%  68.29% 28.47%
(3,4) 8.28%  6.56% 17.02%  69.95% 14.97% 12.61%  30.85% 70.68%
(3,5) 45.95% 70.13%  37.40%  30.05% 58.86% 74.46%  65.30% 64.63%
(3,6) 57.59% 46.74%  73.13%  32.75% 75.31% 55.18%  92.67% 70.25%
(3,7) 59.28% 70.55%  53.90%  89.17% 86.54% 84.12% 74.25% 75.14%
(3,8) 88.47% 86.21%  99.99%  51.26% 97.75% 98.33%  99.75% 52.92%
(4,5) 45.67% 48.51%  53.44%  35.19% 70.24% 68.26%  53.26% 37.53%
(4,6) 97.59% 86.04%  74.28%  56.19% 87.02% 72.28%  62.90%  40.57%
(4,7) 58.15% 97.56%  53.43%  82.42% 24.69% 32.10%  88.82% 98.15%
(4,8) 81.16% 88.23%  85.67%  79.73% 86.53% 95.20%  99.00% 69.17%
(5,6) 94.28% 99.93%  66.08%  59.03% 95.95% 85.30%  83.88% 24.12%
(5,7) 99.70% 95.69%  59.87%  84.32% 98.19% 98.45%  69.04% 95.96%
(5,8) 81.17% 78.64%  31.27%  63.85% 30.90% 33.36%  24.40% 76.85%
(6,7) 55.27% 59.56%  20.41% 8.19% 63.74% T7.77T%  97.42% 16.48%
(6,8) 56.28% 80.03%  72.51%  76.98% 48.28% 66.79%  62.53% 51.73%
(7,8) 7.99% 18.78% 9.70% 7.69% 10.26% 24.76%  25.11% 5.18%
NOTE. — Probabilities of obtaining a lower cross-cross statistic value than that observed in the

first-year WMAP data, measured relative to MC simulations by means of rank ordering (Copi_ef._all
2004). The statistics were computed for the LILC, WILC, TOH-DQ), and PE filtered V-band WMAP

maps.

TABLE 3
LOW-£ MULTIPOLE CORRELATIONS BY DOT PRODUCTS
(¢1,65) LILC WILC TOH-DQ PE  PE (norm)
(2,3)  97.16% 99.29%  99.87%  95.43%  98.82%
(2,4)  18.06% 36.71%  34.72%  26.77%  41.30%
(2,5)  31.94% 64.20%  51.29%  18.24%  32.34%
(2,6) 22.30% 63.83%  62.02% = 8.64%  15.88%
(2,7)  27.44% 49.98%  79.38%  30.72%  82.54%
(2,8)  23.71% 45.93%  76.57%  13.70%  22.63%
(3,4)  819% 6.31% 11.74%  31.43%  28.21%
(3,5) 66.52% 55.50% 55.61%  49.25%  57.42%
(3,6) 63.03% 67.86% 71.35%  37.73%  78.77%
(3,7) 57.68% 53.91%  66.51%  41.84%  70.52%
(3,8) 51.58% 38.07%  47.64%  22.06% 8.36%
(4,5)  66.54% 68.05%  75.88%  92.05%  67.29%
(4,6)  42.59% 33.51%  57.19%  32.64%  51.10%
(4,7)  21.56% 23.02%  46.10%  45.83%  46.38%
(4,8)  44.77% 48.59%  57.79%  71.25%  45.38%
(5,6) 70.94% 82.05%  79.16%  24.32%  31.81%
(5,7)  64.26% 73.48%  T7.59%  42.08%  46.88%
(5,8)  97.68% 97.32%  97.86%  89.23%  54.70%
(6,7) 64.16% 77.42%  64.94% = 6.83%  92.13%
(6,8) 87.23% 90.25%  73.87%  14.50%  83.13%
(7,8)  8.67% 12.84%  30.35%  2.74% 8.11%

NOTE.

— Probabilities of finding a value of the Scc statis-

tic lower than the observed WMAP values, estimated from en-

sembles of 10000 MC simulations.

The cross-products are all

unnormalized (corresponding to the “oriented area” statistic of
Schwarz et al. 2004), except for the last column. The PE filter
results were obtained from the V-band alone, imposing the Kp2

mask.

interpretation of the two multipole vectors is therefore
readily available: their cross-product point towards the
saddle point. For WMAP, a similar statement is very
nearly true for even the three octopole cross-vectors.
Based on these observations, we can make a connec-
tion between the multipole vector framework and the

approach taken by lde Oliveira-Costa et all (2004); since
the WMAP octopole is planar, its saddle points are
clustered, and all its cross-products point roughly to-
wards the same point on the sky. Furthermore, since
the quadrupole plane is aligned with the octopole plane,
even this cross-product points towards the same point on



TABLE 4
QUADRUPOLE-OCTOPOLE CORRELATIONS

Data Vec-Vec  Vec-Cross Cross-Vec  Cross-Cross

Sensitivity to method

LILC 92.04% 2.47% 2.27% 98.57%
WILC 83.28% 2.24% 2.94% 97.31%
TOH-DQ  90.69% 2.03% 1.82% 98.65%
PE 91.36% 1.62% 1.05% 98.82%
Sensitivity to frequency
Q band 93.13% 0.44% 0.45% 99.61%
V band 91.36% 1.62% 1.05% 98.82%
W band 89.28% 1.74% 1.30% 98.73%
Sensitivity to sky coverage
Kp2 91.36% 1.62% 1.05% 98.82%
KpO 89.66% 2.06% 37.91% 89.92%
20+ 90.43% 8.95% 57.92% 81.45%

NOTE. — Probabilities of finding a value of the S statistic
for (¢1,¢2) = (2,3) lower than that of the observed WMAP
data for various foreground cleaning methods, frequencies and
sky cuts. The default sky mask for the PE filter method is
Kp2. The row marked by PE shows results for the PE method
applied to the template-corrected V-band WMAP map (see
text for details). The cross-products are normalized, following
Weekd (2004).

the sky. This is clearly seen in Figure Bl where we plot
the positions of the quadrupole and the three octopole
cross-product vectors on the sky, in ecliptic projection.
Clearly, the four vectors are strongly clustered on the
sky, as discussed above.

To assess the estimator uncertainty (i.e., due to the sky
cut) in the position of each of the low-£ cross-product
vectors, we used the foreground-free Monte Carlo PE
simulations described earlier. For each simulation, we
computed the cross-products from both the input map
and the reconstructed PE-filtered map (for the V-band
alone), and computed the absolute angular distance be-
tween the input and output vectors for all possible pair-
ings, and chose the relative ordering with the smallest
sum of errors. (This is necessary because the multipole
vectors are not internally ordered.) Such computations
show that the mean angular error is about 4° for the
quadrupole cross-vector, and 6-9° for the three octopole
vectors. Thus, the error in each case roughly equals the
size of each dot in Figure B

Returning to the quadrupole-octopole anomaly, we
note that the previously defined S statistics involving
cross-products are well suited for measuring the degree
of alignment for these two modes, due to the above ar-
gument. Following [Weeks (2004), we therefore adopt the
normalized S¢. statistic for this particular analysis, and
the corresponding results are tabulated in Table El

In the top section, results for different foreground
cleaning methods are given. Clearly, the quadrupole-
octopole alignment is quite stable (although not perfectly
s0) with respect to foreground cleaning method: the re-
sults for the cross-product type statistics are all at the
98% confidence level, in good agreement with the 98.7%

significance obtained using the angular momentum dis-
persion statistic of lde_Oliveira-Costa. et. all (2004).

In the middle section, we list the same statistic from
each of the three cosmologically interesting WMAP fre-
quency bands using the PE filter. Again, the results
are very stable, and this gives us confidence that the ef-
fect is indeed a feature of the CMB field, rather than
caused by residual foregrounds. Further, we also point
out that this particular set of results clearly demonstrates
the strength of the PE filter method; while the other
methods only allow for frequency averaged conclusions,
the PE method can provide frequency specific results,
and therefore much greater control over foregrounds.

Finally, in the bottom section of Table Hl we give the
PE filter results for different sky cuts as applied to the
V-band WMAP data. (Here we note that the PE estima-
tor uncertainties for the large 20+ cuts are considerably
larger than for the Kp2 and KpO masks, as discussed by
Bielewicz et al. 2004, and the numbers are only included
here for completeness.)

5.3. Ecliptic correlations

Finally, we consider a set of claims made by
Schwarz et_all (2004); that the low-£ anisotropy pattern
observed by WMAP could have a very local origin, and
that there could be yet unknown microwave sources or
sinks within our own solar system. These claims were
based on measuring alignments between the multipole
vector cross-products for £ = 2 and 3 and a pre-defined
set of fixed axes. These axes ranged from the somewhat
plausible (the super-galactic and ecliptic) to the highly
surprising (the equinoxes). Their main result was that
the four £ = 2 and 3 cross-product vectors were nearly
orthogonal to the ecliptic north-south axis, as measured
by the dot product. This can visually be seen in Fig-
ure B as the dots all lie along the equator in the ecliptic
frame, and, indeed, clustered near the vernal equinox.

We now repeat the calculations of ISchwarz et all
(2004), applying the PE filter method to the Q-, V-
and W-band WMAP maps, and imposing the Kp2, Kp0
and 20+ sky cuts. We compute the sum of dot prod-
ucts between the ecliptic north-south axis and the union
of the { = 2 and 3 cross-product vectors, following
Schwarz et all (2004), and also for each mode individ-
ually, up to £ = 6. The results from these computations
are summarized in Table

Again starting with the top section, we see that the
numbers (except for the quadrupole alone) are not very
sensitive to the particular foreground correction method.
Further, for the particular combination in question (¢ = 2
and 3), the alignment is in fact stronger for the PE fil-
tered V-band map than for the more contaminated maps
(although this may be somewhat of a coincidence, look-
ing at the £ = 2 and 3 numbers individually). The num-
bers also do not depend strongly on frequency or sky
cut. As far as these numbers are concerned, the align-
ment must therefore be assumed to be of CMB origin,
and not of foreground origin. Taken at face value, these
results therefore appear to confirm the claims made by
Schwarz et all (2004).

However, while the nominal significance of the results
seems solid, a much more fundamental objection may be
raised against this detection, namely its strong depen-
dence on a-posteriori choices. Two particular problems



. . TOH map
B B TOH (DQ) map

B B FE filter map

b) Frequency dependence

=2 j=3

B Kp2 mask
B B Kpo mask

c) Sky cg pendence

F1G. 2.— Multipole cross-product vectors on the sky as a function of cleaning method (top panel), frequency band (middle panel) and
sky coverage (bottom panel). Default options for the PE filter results are the V-band map and Kp2 sky cut. The maps are shown in the
ecliptic reference frame with the vernal equinox at the center. The radius of each dot is 5°.
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TABLE 5
LOW-£-ECLIPTIC CORRELATIONS

Data (=2 (=3 (=243 (=4 (=5 (=6
Sensitivity to method

LILC 7.7%  3.3% 1.0% 61.8% 20.5% 41.6%

WILC 13.6% 4.0% 1.5% 67.0% 29.5% 41.0%

TOH 0.0%  3.6% 0.7% 76.8% 16.9% 42.4%

TOH-DQ 2.6% 3.6% 0.9% 76.8% 16.9%  42.4%

PE 9.2%  2.3% 0.6% 71.4% 19.8% 65.6%

Sensitivity to frequency

Q band 3.9% 1.8% 0.4% 44.4%  9.9%  32.1%
V band 9.2% 2.3% 0.6% 71.4% 19.8% 65.6%
W band 14.6% 2.9% 1.2% 56.7% 16.9% 57.5%

Sensitivity to sky coverage

Kp2 9.2% 2.3% 0.6% 71.4% 19.8% 65.6%
Kp0 52.0% 1.7% 3.4% 88.5% 20.9% 51.3%
20+ 58.1% 5.0% 12.3% 34.2% 16.0% 53.3%
NoOTE. — Probabilities of finding a value of the Scc statistic

lower than the observed WMAP data for various £’s, foreground
cleaning methods, frequencies and sky cuts. Default sky cut for
the PE filter method is Kp2. The row marked by PE shows re-
sults for the PE method applied to the template-corrected V-band
WMAP map (see text for details). The cross-products are nor-
malized, following [Weekd (2004).

may be identified, namely the choice of multipoles to in-
clude, and the choice of external axis.

In the first case, we see in Table H that the ecliptic
alignment is only significant if one takes into account
both ¢ = 2 and ¢ = 3 simultaneously, and no other mul-
tipoles. Further, the quadrupole-ecliptic alignment alone
is only significant in the TOH map, and quite insignifi-
cant in the PE filtered map. In fact, the numbers for the
quadrupole alignment (both for different methods and
for different frequencies) imply that a significant amount
of foreground residuals is present in this mode, and that
its true direction is not well constrained. Results that
strongly depends on this mode cannot be trusted.

As far as the choice of axis goes, it is important to
remember that the ecliptic axis was identified after look-
ing at the data. It is therefore very difficult to assess the
true significance of the alignment — the set of possible
choices one could have considered is indeed large. How-
ever, some quantification may be provided by means of
the following arguments.

First, it is important to remember that no known non-
cosmological physical mechanism is able to produce a
frequency-independent signature similar to the one dis-
cussed here. A very good null-hypothesis is therefore
that the internal correlations seen in the CMB pattern
are in fact of cosmological origin. Next, as discussed
in the previous section, it is well known by now that
(de_Oliveira-Costa. et all [2004)

1. the octopole moment is somewhat planar, and

2. that the quadrupole plane is strongly aligned with
the octopole plane.

Again, as described in the previous section, the first point

implies that the three octopole cross-vectors are aligned
along some axis, and the second point implies that the
quadrupole cross-vector is aligned along the same axis.
Thus, all four cross-vectors point toward roughly the
same point on the sky. Such arrangements could be es-
tablished either by means of cosmological physics (e.g.,
non-trivial topologies, cosmic vorticity/shear etc.) or by
local physics (e.g., galactic foregrounds).

The correct question to answer is then, given such an
arrangement of the low-¢ multipoles, what is the prob-
ability of finding a stronger alignment with the ecliptic
than the observed one? Or rather, since we presumably
would have been equally “happy” with an alignment with
the Galactic or super-Galactic reference frames, we ask,
what is the probability of finding a stronger alignment
with any one of the three frames?

To answer this question, we run the following exper-
iment. We take the set of four observed cross-vectors,
and rotate them jointly by an arbitrary Euler matrix,
conserving the relative arrangement but randomizing
the overall orientation and position. This operation is
repeated one million times, each time computing the
dot products with each of the three reference axes, and
recording the number of times any one of these is smaller
than the observed ecliptic alignment.

For the Doppler-corrected TOH map we find a stronger
alignment in 3% of the simulations, and the anomaly can
therefore be considered to be statistically robust. How-
ever, for the PE filtered maps we find a stronger align-
ment in everywhere from 3 to 39%, depending on sky
cut and frequency. Once again, the anomaly is therefore
considerably stronger in the TOH map than in the PE
filtered maps.

The large variation among the PE filtered maps stems
from the fact that the statistic is highly sensitive to the
relative orientation of all four vectors: a higher signifi-
cance is found when three of the four vectors lie on a sin-
gle great circle, than, for instance, when the fourth point
lies well inside the triangle spanned by the other three
points. Thus, the foreground-sensitive quadrupole vector
does play a significant role in this anomaly, and the par-
ticularly strong quadrupole-ecliptic anti-alignment seen
in the TOH map alone is a strong factor?.

To summarize, from the above experiments it appears
that it is not the external alignment with the ecliptic
that is anomalous, but rather the internal alignments
between the quadrupole and octopole: Given such an
arrangement, it is not unlikely to hit upon one of the
three most important reference frames.

A second observation is that the cross-vectors point
toward the ecliptic plane, not the poles. Presumably,
an alignment with the poles would have been even more
exciting than an alignment with the plane, and there-
fore a two-sided distribution should be considered when
quoting confidence limits. This further reduces the sig-
nificance of the anomaly.

In conclusion, it seems unreasonable to us to accept a
marginally significant (~99%) effect as physical in light
of the numerous problems connected to it. We believe

9 Here we also note that although [Schwarz et all ([2004) did in
fact consider the quadrupole stability issue by adding Gaussian
noise with rms of 10 uK to a20, we believe that this estimate sig-
nificantly underestimates the true quadrupole uncertainty in the
ILC maps (Eriksen et all 2004d).



that it is unnecessary to introduce the (exceedingly dif-
ficult to explain) idea of ecliptic alignment in addition
to the more general quadrupole-octopole alignment. Of
course, local physics may certainly have a role to play
with respect to the latter problem, but Galactic or extra-
Galactic contamination seems like far more plausible can-
didates than contamination of solar system origin.

6. CONCLUSIONS

In this paper, we have revisited a set of claims found in
the literature regarding the low-¢ CMB pattern and mul-
tipole vectors. We have remedied the most serious out-
standing problem connected to these analyses, in that we
have used only partial sky data to estimate the multipole
vectors. This allowed us to study the frequency-specific
WMAP sky maps individually, while imposing different
sky cuts to study regional dependence. Using these meth-
ods, the multipole vector approach may finally be used
for cosmological analysis.

Three claims were studied in depth. First, [Copi et al.
(2004) found a set of strong correlations among the
{ = 2,...,8 multipoles using the multipole vector for-
malism. Unfortunately, they only had access to two
full-sky maps (the WILC and TOH sky maps), which
are known to be contaminated by galactic foregrounds.
While we reproduced their results for these two maps, we
also found that the anomaly is not present in the best
available frequency-specific CMB maps. Therefore, as far
as the low-/£ correlations are statistically significant, they
must be considered an artifact of the TOH and WILC
sky maps, and not of the WMAP data as a whole.

Second, we revisited the much more established
anomaly first reported bylde Oliveira-Costa et all (2004);
the strong alignment between the quadrupole and oc-
topole moments. Our results confirm previous conclu-
sions: The effect is significant at the 98-99% confidence
level, and independent of frequency and sky cut. It ap-
pears to be quite robust.

Finally, we also considered the claims made by
Schwarz et all (2004), that the low-¢ CMB field could
be of solar system origin. This claim was based on the
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observation that the £ = 2 and 3 multipole cross-product
vectors align with the ecliptic north-south axis, and, in-
deed, that they point towards the vernal equinox. While
the nominal significance of these results are confirmed in
this paper, we also found that it is not at all unusual
to observe such a strong alignment with one of the three
major axes (ecliptic, galactic or super-galactic), given the
peculiar internal arrangements of the quadrupole and oc-
topole. Thus, it is not the ecliptic correlation per se that
is anomalous, but rather the quadrupole-octopole align-
ment. Whether this latter feature is caused by cosmo-
logical or non-cosmological physics is not yet clear, but
solar-system physics does not appear to provide the most
plausible explanation.
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TABLE A6
LOW-£ SPHERICAL HARMONICS COEFFICIENTS
Multipole Q-band V-band ‘W-band

(¢,m) (1K) (1K) (1K)

(2,0) (11.53 + 0.00¢ ) (15.57 4+ 0.00¢ ) (10.14 + 0.00¢ )
(2,1) (-5.54 + 3.09¢ ) (-5.37 4+ 2.37i ) (-4.94 4 2.98i )
(2,2) (-9.52 - 15.897 ) (-12.31-17.78: ) (-13.46 - 18.547 )
(3,0) ( -6.92 + 0.00¢) (-5.70 4+ 0.00¢ ) (-5.41 4 0.00¢ )
(3,1) ( -4.53 - 1.53i) (-9.06 - 0.18: ) (-9.50 4+ 0.78i )
(3,2) ( 2327+ 0.12¢) (121.95 + 0.98i ) (122.04 + 0.747 )
(3,3) (-20.57 + 28.587 ) (-15.68 4+ 29.61: ) ( -14.64 + 29.40¢ )
(4,0) (19.60 + 0.00¢ ) (15.57 4+ 0.00¢ ) (121.31 + 0.00¢ )
(4,1) (-4.83 4+ 9.92¢ ) (-7.15 4+ 9.21¢ ) (-7.71 4 8.38i )
(4,2) (7.55 + 6.767 ) (19.31 + 8.05¢ ) (19.35 4+ 8.32¢ )
(4,3) (2.68-21.94i ) (5.21-21.75¢ ) (16.24 - 20.75¢ )
(4,4) (10.82 - 5.30i ) (5.89-7.75:) (14.70 - 9.36¢ )
(5,0) (16.05 + 0.00¢ ) (15.46 + 0.00¢ ) (14.35 4+ 0.00¢ )
(5,1) (123.77 4+ 6.08i ) (126.05 + 3.774 ) (24.53 + 3.08i )
(5,2) (-8.13 + 4.66i ) (-8.84 + 2.55i ) (-7.26 + 3.27%)
(5,3) (123.19 + 3.18¢ ) (120.22 + 4.13i ) (119.95 + 3.957 )
(5,4) (-3.77 4+ 8.91¢ ) (-3.42 4 8.45i ) (-2.95 4 8.147 )
(5,5) (11.21 + 18.55¢ ) (12.30 + 18.97¢ )  ( 12.82 + 20.28i )
(6,0) (5.09 4+ 0.00: ) (14.66 + 0.007 ) (11.33 4 0.007 )
(6,1) (-0.14 4 3.51%¢) (1.11 + 4.914 ) (0.66 + 5.18i )
(6,2) (8.72-5.38:) (110.20 - 6.507 ) (110.53 - 6.99¢ )
(6,3) (-4.35 4+ 1.10¢ ) (-6.06 - 0.127 ) (-7.10 - 0.537 )
(6,4) (10.46 - 1.09¢ ) (111.04 - 0.617 ) (11.10 - 0.39¢ )
(6,5) (-7.08 -6.347 ) (-6.21 - 4.957 ) (-5.53-3.99: )
(6,6) (19.01 + 10.29¢ ) (7.18 +10.947 ) (5.46 + 10.88i )

NoOTE. — Full-sky low-¢ spherical harmonics coefficients reconstructed

from the high-latitude template-corrected WMAP data by means of the PE
filter method of [Bielewicz_ef all (2004).

APPENDIX
THE LOW-¢ PE MULTIPOLE COEFFICIENTS OF THE FIRST-YEAR WMAP DATA

In this Appendix, we tabulate the low-£ spherical harmonics coefficients and multipole vectors as computed with the
PE filter method. The methods used in these computations are described by [Bielewicz et all (2004) for PE filtering,
and [Copi_et_all (2004) or Weeks (2004) for multipole vector estimation.



TABLE A7
Low-£ MULTIPOLE VECTOR COORDINATES

(0, 4) LILC WILC TOH TOH-DQ PE

(2,1) (130.69°,13.56°) (120.95°,19.79°) (125.50°,22.06°) (118.96°,25.09°) (130.83°,20.83°)
(2,2) (252°,12.71°)  (15.55°,3.21°)  (6.65°,11.23°) (11.15°,16.62°)  (353.87°,11.22°)
(3,1)  (89.22°,37.70°)  (95.27°,37.04°)  (86.94°,39.30°)  (86.94°,39.30°)  (85.14°,36.77°)
(3,2)  (23.83°,9.67°)  (21.73°,9.39°)  (22.64°,9.18°)  (22.64°,9.18°)  (21.65°,11.36°)
(3,3) (312.66°,10.60°) (312.98°,10.71°)  (315.08°,8.20°)  (315.08°,8.20°)  (315.31°,7.52°)
(4,1)  (192.95°,69.87°) (199.63°,70.63°) (208.64°,76.73°) (208.64°,76.73°) (150.86°,74.40°)
(4,2) (214.60°,33.56°) (217.36°,39.46°) (206.98°,31.93°) (206.98°,31.93°) (212.50°,20.35°)
(4,3) (333.95°,28.72°) (331.69°,30.23°) (333.51°,26.86°) (333.51°,26.86°) (334.43°,27.64°)
(4,4) (72.41°,4.30°) (71.93°,6.96°)  (74.74°,5.46°)  (74.74°,5.46°)  (254.98°,0.62°)
(5,1) (227.44°,56.28°) (231.38°,54.54°) (237.31°,57.54°) (237.31°,57.54°) (234.76°,56.33°)
(5,2)  (97.61°,37.39°)  (100.79°,38.52°)  (98.70°,38.50°)  (98.70°,38.50°)  (99.99°,38.77°)
(5,3)  (43.08°,36.64°)  (40.12°,37.00°)  (44.67°,33.54°)  (44.67°,33.54°)  (46.43°,35.11°)
(5,4) (288.28°,31.08°) (286.47°,34.23%) (285.79°,31.44%) (285.79°,31.44%) (287.88°,32.28°)
(5,5) (177.04°,1.21°)  (176.05°,1.20°)  (172.84°,3.07°)  (172.84°,3.07°)  (173.91°,2.23°)
(6,1) (30.43°,52.37°)  (34.55°,53.56°)  (30.66°,54.88°)  (30.66°,54.88°)  (26.83°,51.17°)
(6,2) (242.42°,52.09°) (239.66°,55.52°) (236.10°,54.70°) (236.10°,54.70°) (244.92°,32.48°)
(6,3) (86.97°,32.38°)  (84.08°,34.58°)  (84.62°,25.31°)  (84.62°,25.31°)  (84.86°,33.38°)
(6,4) (282.14°,24.91°) (285.49°,20.96°) (296.45°,24.09°) (296.45°,24.09°) (284.29°,26.57°)
(6,5) (333.04°,16.67°) (337.00°,17.06°) (325.01°,14.58°) (325.01°,14.58°) (330.03°,15.60°)
(6,6) (218.37°,5.48°)  (212.87°,5.36°)  (35.65°,0.60°) (35.65°,0.60°)  (232.36°,23.45°)

NOTE. — Low-¢ multipole vectors galactic coordinates (I, b) of the first-year WMA P data, as computed
from the spherical harmonics coefficients listed in Table [Af] by the algorithm of [Copi_ef.all (2004).



