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Abstract

A galaxy is modeled as a stationary axially symmetric pressure-free fluid in
general relativity. For the weak gravitational fields under consideration, the field
equations and the equations of motion ultimately lead to one linear and one non-
linear equation relating the angular velocity to the fluid density. It is shown that
the rotation curves for the Milky Way, NGC 3031, NGC 3198 and NGC 7331 are
consistent with the mass density distributions of the visible matter concentrated in
flattened disks. Thus the need for a massive halo of exotic dark matter is removed.
For these galaxies we determine the mass density for the luminous threshold as
10−21.75 kg·m−3.

Subject headings : galaxies: kinematics and dynamics-gravitation-relativity-dark matter

1 Introduction

The problem of accounting for the observed essentially flat galactic rotation curves has

been a central issue in astrophysics. There has been much speculation over the question
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of the nature of the dark matter that is believed to be required for the consistency of

the observations with Newtonian gravitational theory. Clearly the issue is of paramount

importance given that the dark matter is said to constitute the dominant constituent of

a galactic mass [1]. The dark matter enigma has served as a spur for particle theorists

to devise acceptable candidates for its constitution. While physicists and astrophysicists

have pondered over the issue, other researchers have devised new theories of gravity to

account for the observations (see for example [3]). However the latter approaches, imag-

inative as they may be, have met with understandable skepticism, having been devised

solely for the purpose of the task at hand. General relativity remains the preferred the-

ory of gravity with Newtonian theory as its limit. General relativity has been successful

in every test that it has encountered, going beyond Newtonian theory where required.

It is understandable that the conventional gravity approach has focused upon New-

tonian theory in the study of galactic dynamics as the galactic field is weak (apart from

the deep core regions where black holes are said to reside) and the motions are non-

relativistic (v ≪ c). It was this approach that led to the inconsistency between the

theoretical Newtonian-based predictions and the observations of the visible sources. To

reconcile the theory with the observations, researchers subsequently concluded that dark

matter must be present around galaxies in vast massive halos that constitute the great

bulk of the galactic masses 1. However, in dismissing general relativity in favor of New-

tonian gravitational theory for the study of galactic dynamics, insufficient attention has

been paid to the fact that the stars that compose the galaxies are essentially in motion

under gravity alone (“gravitationally bound”). It has been known since the time of Ed-

1See however [4] who argues for a much less massive halo based upon gravitational lensing data.
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dington that the gravitationally bound problem in general relativity is an intrinsically

non-linear problem even when the conditions are such that the field is weak and the

motions are non-relativistic, at least in the time-dependent case. Most significantly, we

have found that under these conditions, the general relativistic analysis of the problem is

also non-linear for the stationary (non-time-dependent) case at hand. Thus the intrin-

sically linear Newtonian-based approach used to this point has been inadequate for the

description of the galactic dynamics and Einstein’s general relativity should be brought

into the analysis within the framework of established gravitational theory2. This is an

essential departure from conventional thinking on the subject and it leads to major con-

sequences as we discuss in what follows. We will demonstrate that via general relativity,

the generating potentials producing the observed flattened galactic rotation curves are

necessarily linked to the mass density distributions of the flattened disks, obviating any

necessity for dark matter halos in the total galactic composition. We will also present

the indicator that the threshold for luminosity occurs at a density of 10−21.75 kg·m−3.

2 The Model Galaxy

Within the context of Newtonian theory, Mestel [2] considered a special rotating disk

with surface density inversely proportional to radius. Using a disk potential with Bessel

functions that we will also use in what follows but in quite a different manner, he found

2Actually within the framework of Newtonian theory, it is possible to define an “effective” potential
(see for example [1] page 136) to incorporate the centrifugal acceleration in a rotating coordinate system
with a given angular velocity. Since this contains the square of the angular velocity of the rotating frame,
there is already the hint of non-linearity present. However, in what follows in general relativity, we will
see the non-linearity related to the angular velocity as a variable function. Moreover, for a system in
rotation, this non-linearity cannot be removed globally.
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that it leads to an absolutely flat galactic rotation velocity curve.3 Interestingly, the

gradient of the potential in this, as in all Newtonian treatments, relates to accelera-

tion whereas in the general relativistic treatment, we will show that the gradient of a

“generating potential” gives the tangential velocity (15).

To model a galaxy in its simplest form in terms of its essential characteristics, we

consider a uniformly rotating fluid without pressure and symmetric about its axis of

rotation. We do so within the context of general relativity. The stationary axially

symmetric metric can be described in generality in the form

ds2 = −eν−w(udz2 + dr2) − r2e−wdφ2 + ew(cdt − Ndφ)2 (1)

where u, ν, w and N are functions of cylindrical polar coordinates r, z. It is easy to

show that to the order required, u can be taken to be unity. It is most simple to work

in the frame that is co-moving with the matter

U i = δi
0

(2)

where U i is the 4-velocity4. This was done in the pioneering paper by van Stockum [6]

who set w = 0 from the outset5. As in [7], we perform a purely local (r, z held fixed)

transformation

φ̄ = φ + ω(r, z) t (3)

that locally diagonalizes the metric. In this manner, we are able to deduce the local

3This is also the case for the MOND [3] model.
4This is reminiscent of the standard approach that is followed for FRW cosmologies. However, the

FRW spacetimes are homogeneous and they are not stationary
5Interestingly, the geodesic equations imply that w = constant (which can be taken to be zero as in

[6]) even for the exact Einstein field equations as studied in [6] (see (8) and (9)).
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angular velocity ω and the tangential velocity V as

ω =
Ncew

r2e−w − N2ew
≈ Nc

r2
,

V = ωr

(4)

with the approximate value applicable for the weak fields under consideration. The

Einstein field equations to order G are6

2rνr + N2

r − N2

z = 0,

rνz + NrNz = 0,

N2

r + N2

z + 2r2(νrr + νzz) = 0,

Nrr + Nzz −
Nr

r
= 0,

(

wrr + wzz +
wr

r

)

+
3

4
r−2(N2

r + N2

z )

+Nr−2

(

Nrr + Nzz −
Nr

r

)

− 1

2
(νrr + νzz) =

8πGρ

c2

(5)

where G is the gravitational constant and ρ is the mass density. Subscripts denote

partial differentiation with respect to the indicated variable. These equations are easily

combined to yield

∇2w +
N2

r + N2

z

r2
=

8πGρ

c2
(6)

where

∇2w ≡ wrr + wzz +
wr

r
(7)

and ν would be determined by quadratures. Since the pressure-free fluid elements must

satisfy the geodesic equation as their equation of motion

dU i

ds
+ Γi

klU
kU l = 0 (8)

6This is a loose notation favored by many relativists but adequate for our purposes here as a smallness
parameter.
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we find using (1) and (2) that

wr = wz = 0 (9)

and hence

∇2w = 0 (10)

within the fluid7. It is to be noted that it is the freely gravitating motion of the source

material (the stars) in conjunction with the choice of co-moving coordinates (2) that

leads to the constancy of w within the source. Had there been pressure, w would have

been variable8. With this freely gravitating constraint, the interior field equations for N

and ρ are reduced to

Nrr + Nzz −
Nr

r
= 0 (11)

N2

r + N2

z

r2
=

8πGρ

c2
(12)

Note that from both the field equation for ρ and the expression for ω that N is of order

G1/2. The non-linearity of the galactic dynamical problem is manifest through the non-

linear relation9 between the functions ρ and N . Rotation under freely gravitating motion

is the key here. By contrast, for time-independence in the non-rotating problem, there

must be pressure present to maintain a static configuration, N vanishes for vanishing ω

7Normally, the fall-off of w with R ≡
√

r2 + z2 is used to derive the total mass of an isolated system.
However, w is constant in this system of coordinates by (9) and we cannot do so here. The w constancy
does not imply that that the mass is zero. In other (non-co-moving) coordinate systems, w would be
seen to be variable. With the field being weak and the system being non-relativistic, the mass is well-
approximated simply by the integral of ρ over coordinate volume. Moreover, we will choose solutions
that are free of singularities and hence free of the ambiguities present in [7].

8Even in freely gravitating motion, w would have been variable had we opted for non-co-moving
coordinates.

9While we have eliminated w using (8) to get (12) by choice of co-moving coordinates, N cannot be
eliminated and hence non-linearity is intrinsic to the study of the galactic dynamics.
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and ∇2w is non-zero yielding the familiar Poisson equation of Newtonian gravity. In the

present case, it is the rotation via the function N that connects directly to the density

and the now non-linear equation is in sharp contrast to the linear Poisson equation.

Interestingly, (11) can be expressed as

∇2Φ = 0 (13)

where

Φ ≡
∫

N

r
dr (14)

and hence flat-space harmonic functions Φ are the generators of the axially symmetric

stationary pressure-free weak fields that we seek10. Using (4) and (14), we have the

expression for the tangential velocity of the distribution

V = c
N

r

= c
∂Φ

∂r

(15)

3 Modeling the Observed Galactic Rotation Curves

Since the field equation for ρ is non-linear, the simpler way to proceed in galactic model-

ing is to first find the required generating potential Φ and from this, derive an appropriate

function N for the galaxy that is being analyzed. With N found, (12) yields the den-

sity distribution. If this is in accord with observations, the efficacy of the approach is

established. Every galaxy is different and each requires its own composing elements to

build the generating potential. In cylindrical polar coordinates, separation of variables

10In fact Winicour [5] has shown that all such sources, even when the fields are strong, are generated
by such flat-space harmonic functions.
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Milky Way velocity curve-fit
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Figure 1: Velocity curve-fit for the Milky Way in units of m/s vs Kpc.
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Milky Way density at z=0
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Milky Way density at r=0.001 Kpc
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Figure 2: Derived density profiles in units of kg/m3 for the Milky Way at z = 0 (left)
and r = 0.001 Kpc (right).
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yields the following solution for Φ in (13):

Φ = Ce−k|z|J0(kr) (16)

where J0 is the Bessel function n = 0 of Bessel Jn(kr) and C is an arbitrary constant.

11 We use the linearity of (13) to express the general solution of this form as a linear

superposition

Φ =
∑

n

Cne−kn|z|J0(knr) (17)

with n chosen appropriately for the desired level of accuracy. From (17) and (4), the

tangential velocity 12 is

V = −c
∑

n

knCne
−kn|z|J1(knr) (18)

With the kn chosen so that the J0(knr) terms are orthogonal 13 to each other, we have

found that only 10 functions with parameters Cn, n ∈ {1 . . . 10} suffice to provide an

excellent fit14 to the velocity curve for the Milky Way. The details are provided in

11The absolute value of z must be used to provide the proper reflection of the distribution for negative
z. While this produces a discontinuity in Nz at z = 0, it is important to note that this has no physical
consequence since Nz enters as a square in the density and Nz does not play a role in the equations
of motion. Moreover, the metric itself is continuous. This is analogous to the Schwarzschild constant
density sphere problem that leads to a discontinuity in metric derivative across the matter-vacuum
interface in Schwarzschild coordinates. In principle, other coordinates could be found to render the
metric and its first partial derivatives globally continuous but this would be counter-productive as it
would unnecessarily complicate the mathematics. As in FRW, our co-moving coordinates simplify the
analysis.

12dJ0(x)/dx = −J1(x) from [8].
13Just as the sin kx functions are orthogonal for integer k, the Bessel functions J0(kr) have their

own orthogonality relation:
∫ 1

0
J0(knr)J0(kmr)rdr ∝ δmn where kn are the zeros of J0 at the limits of

integration. This orthogonality condition is on Φ rather than on V because the differential equation
dictates the integral condition.

14It should be noted that unlike typical velocity curve fits that allow arbitrary velocity functions, our
curve fits are constrained by the demand that they be created from derivatives of harmonic functions.
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the Appendix and the curve fit is shown in Figure 1. 15 From (15) and (18), the N

function is determined in detail and from (12), the density distribution. This is shown

in Figure 2 as a function of r at z = 0 as well as a function of z at r = 0.001 Kpc.

We see that the distribution is a flattened disk with good correlation with the observed

density data for the Milky Way. The integrated mass is found to be 21× 1010M⊙ which

is at the lower end of the estimated mass range of 20 × 1010M⊙ to 60 × 1010M⊙ as

established by various researchers. It is to be noted that the approximation scheme

would break down in the region of the galactic core should the core harbor a black

hole or even a naked singularity (see e.g. [12]). Most significantly, our correlation of

the flat velocity curve is achieved with disk mass of an order of magnitude smaller than

the envisaged halo mass of exotic dark matter. (See e.g. [13] for proposed values of

extended halo masses.) General relativity does not distinguish between the luminous

and non-luminous contributions. The ρ density distribution deduced is derived from the

totality of the two. Any substantial amount of non-luminous matter would necessarily

lie in the flattened region close to z = 0 because this is the region of significant ρ and

would be due to dead stars, planets, neutron stars and other normal baryonic matter

debris. Each term within the series has z-dependence of e−kn|z| which causes the steep

density fall-off profile as shown in Figure 2(b). This fortifies the picture of a standard

galactic disk-like shape as opposed to a halo sphere. From the evidence provided by

rotation curves, there is no support for the widely accepted notion of massive halos of

15Note that the J1(x) Bessel functions are 0 at x = 0 and oscillate with decreasing amplitude, falling
as 1/

√
x asymptotically [8], as desired for merging with Keplerian behavior at infinity. Also, the present

curves drop as r approaches 0. This is in contrast to the Mestel [2] and MOND [3] curves that are flat
everywhere.
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NGC 3031 velocity curve-fit
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Figure 3: Velocity curve-fit and derived density for NGC 3031

exotic dark matter surrounding visible galactic disks: conventional gravitational theory,

namely general relativity, accounts for the observed flat galactic rotation curves linked

to flattened disks with no exotic dark matter.

We have also performed curve fits for the galaxies NGC 3031, NGC 3198 and NGC

7331. The data are provided in the Appendix and the remarkably precise velocity

curve fits are shown in Figures 3 to 5 where the density profiles are presented for r at

z = 0. Again the picture is consistent with the observations and the mass is found to be

10.1 × 1010M⊙ for NGC 3198. This can be compared to the result from Milgrom’s [3]

modified Newtonian dynamics of 4.9×1010M⊙ and the value given through observations
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NGC 3198 velocity curve-fit
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Figure 4: Velocity curve-fit and derived density for NGC 3198
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NGC 7331 velocity curve-fit
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Figure 5: Velocity curve-fit and derived density for NGC 7331
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Milky Way log10(density) at z=0
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Figure 6: Log graphs of density for the Milky Way (left) and NGC 3031 (right) showing
the density fall-off. The −21.75 dashed line provides a tool to predict the outer limits of
visible matter. The fluctuations at the end are the result of limited curve-fitting terms.

(with Newtonian dynamics) by Kent [9] of 15.1×1010M⊙. While the visible light profile

terminates at r = 14 Kpc, the HI profile extends to 30 Kpc. If the density is integrated

to 14 Kpc, it yields a mass-to-light ratio of 7Υ⊙. However, integrating through the HI

outer region to r = 30 Kpc yields 14Υ⊙ using data from [10].

For NGC 7331, we calculate a mass of 26.0 × 1010M⊙. Kent [9] finds a value of

43.3× 1010M⊙. For NGC 3031, the mass is calculated to be 10.9× 1010M⊙ as compared

to Kent’s value of 13.3 × 1010M⊙. Our masses are consistently lower than the masses

projected by models invoking dark matter halos and our distributions roughly tend to

follow the contours of the optical disks.
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NGC 3198 log10(density) at z=0
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Figure 7: Log graphs of density for the NGC 3198 (left) and NGC 7331 (right) showing
the density fall-off. The −21.75 dashed line provides a tool to predict the limits of
luminous matter. As before, there are fluctuations near the border.
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It is interesting to note that from the figures provided by Kent [9]for optical intensity

curves and our log density profiles for NGC 3031, NGC 3198 and NGC 7331, we deter-

mine that the threshold for the onset of visible galactic light is at 10−21.75 kg·m−3 (Figure

6 and Figure 7). It would be of interest to explore as many sources as possible to test

the indicated hypothesis that this density is the universal optical luminosity threshold

for galaxies. Alternatively, should this hypothesis be further substantiated, the radius at

which the optical luminosity fall-off occurs can be predicted for other sources using this

special density parameter. The predicted optical luminosity fall-off for the Milky Way

is at a radius of 19-21 Kpc based upon the density threshold that we have determined.

Various authors attempt to incorporate the Tully- Fisher law [14] into their modified

theories of gravity. General relativity can provide an equivalent albeit considerably more

complicated relation but in integral form. From (11) and (15), the radial gradient of the

galactic mass can be expressed in terms of velocity as

Mr(r) =
1

2G

∫ ∞

0

(

r
(

V 2

r + V 2

z

)

+
V 2

r
+ 2V Vr

)

dz (19)

and a doubling has been used to account for the lower disk contribution.

4 Concluding Comments

One might be inclined to question how this large departure from the Newtonian picture

regarding galactic rotation curves could have arisen since the planetary motion problem

is also a gravitationally bound system and the deviations there using general relativity

are so small. The reason is that the two problems are very different: in the planetary

problem, the source of gravity is the sun and the planets are treated as test particles in
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this field (apart from contributing minor perturbations when necessary). They respond

to the field of the sun but they do not contribute to the field. By contrast, in the

galaxy problem, the source of the field is the combined rotating mass of all of the freely-

gravitating elements themselves that compose the galaxy.

We have seen that the non-linearity for the computation of density inherent in the

Einstein field equations for a stationary axially-symmetric pressure-free mass distribu-

tion, even in the case of weak fields, leads to the correct galactic velocity curves as

opposed to the incorrect curves that had been derived on the basis of Newtonian grav-

itational theory. Indeed the results were consistent with the observations of velocity as

a function of radius plotted as a rise followed by an essentially flat extended region and

no halo of exotic dark matter was required to achieve them. The density distribution

that is revealed thereby is one of a concentrated mass-density disk, in support of the

“maximum disk” ( see [11] and references therein) models but without an accompanying

extended dark matter halo. With the “dark” matter concentrated in the disk which

is itself visible, it is natural to regard the non-luminous material as normal baryonic

matter.

It is unknown how far the galactic disks extend. More data points beyond those

provided thus far by observational astronomers would enable us to extend the velocity

curves further. Presumably a point (let us call it rf) is reached where we can set ρ to

zero. At this point, (2) no longer applies as there are no longer co-rotating fluid elements

being tracked. As a result, (9) no longer applies and the w function is no longer constant.

Beyond rf , no further mass is accumulated. If we suppose that this is the case at the

extremities of the HI regions indicated, then the masses that we have derived are indeed

18



the total masses. It is to be emphasized that the flat rotation curves have been achieved

with these modest mass values, without a massive exotic dark matter halo.

Nature is merciful in providing one linear equation that enables us by superposition

to model disks of variable density distributions. This opens the way to studies of other

sources and with further refinements. Moreover, it will be of interest to extend this

general relativistic approach to the other relevant areas of astrophysics with the aim of

determining whether there is any scope remaining for the presence of any exotic dark

matter in the universe. Clearly the absence of such exotic dark matter would have

considerable significance.
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5 Appendix

The coefficients for

N(r, z) = −
10
∑

n=1

Cnkne−kn|z|J1(knr)

are tabulated in Tables 1 to 4 with r and z in Kpc. The velocity in m/sec is given by

V (r, z) =
3 × 108

r
N(r, z)

and the density in kg/m3 is given by

ρ(r, z) = 5.64 × 10−14

(

N2
r + N2

z

)

r2
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−Cnkn kn

0.0012636497740 0.06870930165
0.0004520156256 0.15771651740
0.0001785404942 0.24724936890
0.0002946610499 0.33690098400
0.0000103378815 0.42659764880
0.0002127633340 0.51631611340
-0.0000221015927 0.60604676080
0.0001346275993 0.69578490080
-0.0000123824930 0.78552797510
0.0000666973093 0.87527447050

Table 1: Curve-fitted coefficients for the Milky Way

−Cnkn kn

0.0011694103480 0.1093102526
0.0004356556836 0.2509126413
0.0003677376760 0.3933512687
0.0001484103801 0.5359788381
0.0000837048346 0.6786780777
0.0000414084713 0.8214119986
0.0000429277032 0.9641653013
0.0000550130755 1.1069305240
0.0000238560073 1.2497035970
0.0000129841761 1.3924821120

Table 2: Curve-fitted coefficients for NGC 3031
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−Cnkn kn

0.00093352334660 0.07515079869
0.00020761839560 0.17250244090
0.00022878035710 0.27042899730
0.00009325578799 0.3684854512
0.00007945062639 0.4665911784
0.00006081834319 0.5647207491
0.00003242780880 0.6628636447
0.00003006457058 0.7610147353
0.00001687931928 0.8591712228
0.00003651365250 0.9573314522

Table 3: Curve-fitted coefficients for NGC 3198

−Cnkn kn

0.0015071991080 0.0586542819
0.0003090462519 0.1346360514
0.0003960391396 0.2110665344
0.0001912008955 0.2875984009
0.0002161444650 0.3641687246
0.0000988404542 0.4407576578
0.0001046496277 0.5173569909
0.0000619051218 0.5939627202
0.0000647087250 0.6705726616
0.0000457420923 0.7471855236

Table 4: Curve-fitted coefficients for NGC 7331
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