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ABSTRACT

We propose a solution to the CMB component separation problem based on standard parameter
estimation techniques. We assume a parametric spectral model for each signal component, and fit the
corresponding parameters pixel by pixel in a two-stage process. First we fit for the full parameter
set (e.g., component amplitudes and spectral indices) in low-resolution and high signal-to-noise ratio
maps using MCMC, obtaining both best-fit values for each parameter, and the associated uncertainty.
The goodness-of-fit is evaluated by a χ2 statistic. Then we fix all non-linear parameters at their low-
resolution best-fit values, and solve analytically for high-resolution component amplitude maps. This
likelihood approach has many advantages: The fitted model may be chosen freely, and the method is
therefore completely general; all assumptions are transparent; no restrictions on spatial variations of
foreground properties are imposed; the results may be rigorously monitored by goodness-of-fit tests;
and, most importantly, we obtain reliable error estimates on all estimated quantities. We apply the
method to simulated Planck and six-year WMAP data based on realistic models, and show that
separation at the µK level is indeed possible in these cases. We also outline how the foreground
uncertainties may be rigorously propagated through to the CMB power spectrum and cosmological
parameters using a Gibbs sampling technique.
Subject headings: cosmic microwave background — cosmology: observations — methods: numerical

1. INTRODUCTION

As experimental techniques improve rapidly, and new
high-sensitivity ground-based, balloon-borne, and satel-
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lite missions are being planned and implemented, the
main problem in CMB measurement has changed from
instrumental noise to separation of the cosmological
CMB signal from non-cosmological foreground signals.
This problem will become even more important as our fo-
cus shifts from observations of temperature anisotropies
to polarization anisotropies; while a simple template-
fitting approach proved adequate for the first-year
WMAP analysis (Bennett et al. 2003a,b; Hinshaw et al.
2003), no such hopes can be held for future polarization
experiments.

While component separation is a difficult problem,
it is not intractable. Since the cosmological CMB
radiation follows a virtually perfect black body spec-
trum (Mather et al. 1999), whereas all known non-
cosmological signals have non-thermal spectra, it should
be possible to disentangle the various contributions us-
ing spectral information. This fact motivated multi-
ple frequencies on the COBE -DMR experiment (three
bands between 31 and 90GHz), the current WMAP ex-
periment (five bands between 23 and 94GHz), and the
future Planck experiment (nine bands between 30 and
857GHz).

While the necessity of multi-frequency observa-
tions has been recognized within the cosmological
community for a long time, there has been un-
certainty about how those observations should be
utilized. Many different methods have been pro-
posed, including the Maximum Entropy Method
(Barreiro et al. 2004; Bennett et al. 2003b; Hobson et al.
1998; Stolyarov et al. 2002, 2005), the Internal Lin-
ear Combination method (Bennett et al. 2003b;
Tegmark et al. 2003; Eriksen et al. 2004a), Wiener fil-
tering (Bouchet & Gispert 1999; Tegmark & Efstathiou
1996), and the Independent Component Analysis
method (Maino et al. 2002, 2003; Donzelli et al. 2005).

http://lanl.arXiv.org/abs/astro-ph/0508268v1
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Some of these methods (e.g., Baccigalupi et al. 2004 and
Stivoli et al. 2005) have been applied to polarization
data. These methods all have their origins in the field of
computational image processing.

In this paper, we advocate a more direct approach
to the component separation problem, following in the
footsteps of Brandt et al. (1994). We choose a phys-
ically motivated parametric model for each significant
signal component, and fit the free parameters by means
of well-established algorithms, such as MCMC and non-
linear searches. (For an alternative spectral matching al-
gorithm, see Delabrouille, Cardoso & Patanchon 2003.)
The advantages of this approach are many: it does not
require priors (although it can benefit from them); no as-
sumptions about the spatial structure of the foreground
properties are imposed; the method scales proportion-
ally to the number of pixels; the results may be verified
by means of goodness-of-fit tests; and, most importantly,
the method yields accurate uncertainties for all estimated
quantities.

We begin by developing a simple algorithm that is able
to analyze real-world data in the presence of realistic
noise. Whereas Brandt et al. (1994) relied exclusively on
non-linear fitting, and was therefore quite unstable with
respect to noise, we take advantage of more recent devel-
opments (most importantly Markov Chain Monte Carlo)
to make the algorithm both more robust, and also to
produce accurate errors. We also suggest a procedure
for propagating these results into final data products,
namely the CMB power spectrum and cosmological pa-
rameters, by means of a Gibbs sampling method.

After establishing the algorithm, we apply it to realis-
tic simulations corresponding to the future Planck and
six-year WMAP data, taking into account the predicted
noise distributions of each experiment. We attempt to
model the foregrounds as accurately as possible, given
our current understanding of the involved foregrounds.

2. LIKELIHOOD FORMULATION OF THE COMPONENT
SEPARATION PROBLEM

Assume that the observed data take the form of a
multi-frequency set of sky maps, dν , each of which may
be written in the form

dν = Asν + nν , (1)

where ν identifies frequency bands and sky maps 1
through N , sν is the true sky signal at the corresponding
frequency band, nν is instrumental noise, and A denotes
convolution with the instrument beam.

We assume the noise component nν to be Gaussian dis-
tributed with vanishing mean and variance σ2

ν(p), where
p is the pixel number. Thus, the noise is uncorrelated
both between pixels and between frequency channels, but
spatial variations in the variance are allowed.

Note that there is no frequency index on the beam
operator in Equation 1, indicating that all channels are
assumed to have the same beam response. For multi-
resolution experiments, this implies that the sky maps
must be smoothed to a common resolution prior to anal-
ysis. Equation 1 is no longer strictly valid, since the
noise is then correlated; however, in practice it works
reasonably well to approximate the noise term as uncor-
related between pixels, with rms levels determined by
Monte Carlo simulations of processed noise.

The signal sν may be decomposed into a sum of com-
ponents, sν =

∑

i s
i
ν , in which the most important

ones are the cosmological CMB signal and three galac-
tic foregrounds; synchrotron, free-free and dust emission.
Compact (unresolved) galactic and extra-galactic sources
could also be included in the list, but these are more con-
veniently detected by other methods, such as wavelets
(e.g., Vielva et al. 2003). In this paper we consider com-
pact source removal as a part of the pre-processing stage,
and assume that resolved sources are either masked, me-
dian filtered or fitted prior to analysis. Thus, we include
only diffuse foregrounds in the following, but note that
more work is needed on this issue.

Assume also that the frequency spectrum of each sig-
nal component may be parametrized by a small number
of free parameters, for instance an amplitude and a spec-

tral index S = A (ν/ν0)
β . Given a set of multi-frequency

CMB sky maps as described above, and a parametric sig-
nal model Sν(θ) with free parameters θ, we now establish

both a point estimate θ̂ for the free parameters, and the
corresponding uncertainties. To do so, we use standard
likelihood methods of parameter estimation.

Since the noise is assumed to be Gaussian distributed
and uncorrelated between pixels, the likelihood L reduces
to χ2, independent between pixels13,

lnL = −1

2

N
∑

ν=1

(

dν − Sν(θ)

σν

)2

= −1

2
χ2. (2)

The problem is thus reduced to mapping out a likelihood
by some numerical technique, for instance grid computa-
tion, MCMC, or non-linear searches.

We illustrate the procedure in Figure 1, where the re-
sults from an analysis of one arbitrarily chosen pixel are
shown (see § 6 for details). The observed data points
are marked by black circles, and the fitted components
are shown as smooth, colored curves. The dashed black
curve shows the sum of all components. Four signal com-
ponents are included in this model, CMB, synchrotron,
free-free, and thermal dust emission. The parametric
models for the foregrounds are perfect power laws for
synchrotron and free-free emission, and a one-component
model for dust (see Equation 12).

Although we focus on temperature anisotropies in
the present paper, the method can handle polarization
anisotropies equally well. In that case, the χ2 takes the
form

χ2 =

N
∑

ν=1

(

d̄ν − S̄ν(θ)
)T

N
−1
ν

(

d̄ν − S̄ν(θ)
)

, (3)

where

d̄ν =





dI
ν

dQ
ν

dU
ν



 , S̄ν(θ) =





SI
ν (θ)

SQ
ν (θ)

SU
ν (θ)



 (4)

are the Stoke’s I, Q, and U parameters for the data and
model respectively, and Nν is the 3 × 3 (I, Q, U) noise

13 In practice this is not strictly correct, since the CMB and
foreground components are indeed correlated between pixels, and
we will at some point work with smoothed sky maps, but it is a
good approximation for component separation purposes. Further,
as described in § 5.6, at least spatial CMB correlations may be
taken into account by Gibbs sampling.
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Fig. 1.— Component separation using multi-frequency measurements (linear units in left panel, logarithmic units in right panel). Most
signal components has a well-defined frequency spectrum that may be parametrized by one or a few parameters, and component separation
may therefore be viewed as a standard parameter estimation problem. The example shown here is based on one single pixel in a simulated
data set corresponding to the six-year WMAP and the Planck experiments, as discussed in § 6. The error bars on the data points are
multiplied by a factor of 50 in order to make them visible on this scale. (Due to modeling errors, this particular fit has a χ2 of 44, and
with five degrees of freedom, it is rejected at the 99.9999% confidence level.)

correlation matrix for the pixel. (We still assume uncor-
related noise between pixels and frequency bands, but
not between the three Stoke’s parameters for each indi-
vidual pixel.)

3. PARAMETRIC MODEL FITS

In this section we introduce the parametric model that
we fit to the data in the likelihood analysis, starting with
a review of the currently favored parametric signal mod-
els s

i
ν for each signal component. We emphasize that the

procedure as such is general, and any parametric model
may be included in the analysis. Then we discuss how
to take into account the effect of non-zero instrumen-
tal bandwidths, and discuss implementation details that
lead to more transparent computer code. Note that the
parametric signal models we adopt for fitting the various
components may differ from the parametric models that
are used for modeling the components later in section 6.1,
as will certainly be the case in dealing with real data.

3.1. Signal components

CMB anisotropies— The cosmological background com-
ponent is, due to its black body nature (Mather et al.
1999), most easily characterized by its thermodynamic
temperature TCMB, or equivalently, the anisotropy tem-
perature ∆TCMB = TCMB − T0, where T0 = 2.725 K
(Fixsen & Mather 2002) is the average CMB tempera-
ture. However, as discussed later, the foreground com-
ponents are more easily described in terms of antenna
temperatures, and therefore we choose to convert the
CMB signal accordingly. The CMB signal model then
reads

sCMB(ν) = ∆TCMB
x2ex

(ex − 1)2
, (5)

where x = hν/kT0, h is the Planck constant, and k is
Boltzmann’s constant.

Synchrotron emission— Synchrotron emission from the
Galaxy originates in relativistic cosmic ray (CR) elec-
trons spiraling in the Galactic magnetic field. The mor-
phology of the observed emission depends on the distri-
bution of the relativistic electrons in the Galaxy, and the
Galactic magnetic field structure. In the Galactic plane,
the latter exhibits a large-scale ordering with the field
parallel to the spiral arms (the regular component). Su-
perimposed on this is real small-scale structure (the irreg-
ular component) which shows variations between the arm
and inter-arm regions and with gas phase. The regular
and irregular components seem to be of comparable mag-
nitude. At high latitudes, there is a contribution from the
Galactic halo, and specific nearby structures (e.g., the
North Polar Spur). Variations in the frequency spectral
index of the synchrotron continuum emission arise from
variations in the CR electron energy spectrum, which has
a range of distributions depending on age and the envi-
ronment of origin (e.g., supernova explosions or diffuse
shocks in the interstellar medium).

The synchrotron emission may be accurately modeled
by means of a simple power law over a considerable range
of frequencies,

ss(ν) = As

(

ν

ν0,s

)βs

. (6)

Here As is the synchrotron amplitude14(measured in an-
tenna temperature µK) at some reference frequency ν0,s,
and βs is the synchrotron spectral index. Since the spec-
tral index varies with both frequency and position on the
sky, at least two free parameters are required to describe
the synchrotron emission properly in a given direction.

Lawson et al. (1987) studied the spectral index vari-
ation based on low-frequency radio surveys, and found
that the brighter regions away from the Galactic plane

14 Note that italic font A is used for component amplitudes,
while bold font A is used for beam convolution.
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have typical values of β at 100 and 800 MHz of 2.55 and
2.8, respectively. Reich & Reich (1988) used radio con-
tinuum surveys of the Northern sky at 408 and 1420 MHz
to demonstrate a range of spectral index values between
2.3 and 3.0, with a typical dispersion ∆β = ±0.15. The
steepest spectra were observed towards the North Polar
Spur, and there was a flattening in spectral index to-
wards higher latitudes in the Galactic anti-centre direc-
tion. Such behavior has been confirmed over the full sky
by Reich et al. (2003), who find that spectral flattening
is particularly pronounced in the Southern hemisphere

At higher frequencies, the brightness temperature
spectral index is expected to steepen by∼ 0.5 due to elec-
tron energy losses (Platania et al. 1998). Banday et al.
(2003) derived a mean spectral index between 408 MHz
and 19.2GHz from the Cottingham (1987) survey and be-
tween 31.5, 53, and 90GHz from the COBE-DMR data.
The steep spectral index of ∼ 3.1 for Galactic latitudes
|b| > 15◦ is consistent with expectations. Bennett et al.
(2003b) claim that the spectral break occurs near the K-
band. Spectral indices above 10GHz are likely between
2.7 to 3.2.

Free-free emission—Free-free emission is the brems-
strahlung radiation resulting from the Coulomb interac-
tion between free electrons and ions in the Galaxy. Free-
free emission is weaker than synchrotron emission at fre-
quencies below ∼ 1 GHz over most regions of the sky,
with exceptions in the Galactic ridge and the brighter
features of the local Gould Belt system (Dickinson et al.
2003). Free-free almost never dominates at high latitudes
in any frequency band, and is therefore difficult both to
observe and to simulate.

Using the relations summarized in Dickinson et al.
(2003), it can be shown that the brightness temperature
of the free-free emission is described by the relation

Tff,b ∝ ν−2 T−0.5
e

(

ln[0.04995ν−1] + 1.5 lnTe

)

(7)
where Te is the electron temperature.

Shaver et al. (1983) used radio recombination lines to
show that the electron temperature of Hii regions at the
galactocentric radius of the Sun (R0 = 8.5 kpc) is 7200±
1200K. Paladini et al. (2005) found similar results from
a larger sample containing many weaker sources. At high
galactic latitudes, the ionized hydrogen typically will be
within ∼ 1 kpc of the Sun (Dickinson et al. 2003), and
we expect the electron temperature to be in the range
Te = 7000–8000K, although it is possible that the diffuse
emission at a given Galactocentric distance may differ
from that of the higher density Hii regions on the plane.

The frequency dependence is therefore well con-
strained, with an effective spectral index of βff = −2.14
at the frequencies of interest, the range over 10–100GHz
being of order −2.1 to −2.2 and steepening still further
to −2.3 at hundreds ofGHz.

Finkbeiner (2004a) has analyzed the WMAP data and
found a significant component with a free-free like spec-
trum within 30◦ of the Galactic center. The component
is uncorrelated with Hα emission and may be indicative
of hot (∼ 106 K) gas. We do not attempt to include such
a component here.

In this paper, we model free-free emission as a simple
power law with a fixed spectral index,

sff(ν) = Aff

(

ν

ν0,ff

)

−2.14

. (8)

Thus only one parameter is required for free-free emis-
sion. Future experiments may need to estimate the elec-
tron temperature directly from the data. In that case
Equation 7 should be used directly, at the cost of intro-
ducing one extra free parameter into the fit.

Thermal dust emission—The thermal dust emission that
contributes to the frequencies of interest for CMB anal-
ysis arises from grains large enough to be in thermal
equilibrium with the interstellar radiation field, and is
known from analysis of the IRAS and COBE -DIRBE
data to peak at a wavelength of approximately 140µm.
At higher frequencies, there is a contribution from the
optically active modes of PAH molecules, but these are
not of interest here.

Currently preferred dust emission models
(Finkbeiner et al. 1999) extrapolate from high-frequency
COBE -FIRAS and -DIRBE observations to CMB fre-
quencies using combinations of modified blackbody fits
and accounting for dust temperature variations. Such
fits approximate the integrated contributions to the
emission from multiple components of dust, i.e., with
different grain properties (chemical composition and
size) and equilibrium temperatures. The best-fit model
(model 8 of Finkbeiner et al. 1999) assumes two main
components:

sd(ν) = F

(

ν

ν0,d

)βd(ν)

. (9)

Here F represents the combined COBE -DIRBE and
IRAS template (Schlegel et al. 1998), ν0,d = 3000GHz,
and βd(ν) is dependent on the frequency as discussed
above,

βd(ν) =
log d(ν)

d(ν0,d)

log ν
ν0,d

, (10)

d(ν) =
q1

q2
f1

(

ν

ν0,d

)3+α1 1

e
hν

kT1 − 1
+

f2

(

ν

ν0,d

)3+α2 1

e
hν

kT2 − 1
.

(11)

with best-fit parameters f1 = 0.0363, q1/q2 = 13, α1 =
1.67, α2 = 2.70, T1 = 9.4K, T2 = 16.2K, and f2 = 1−f1

Finkbeiner et al. (1999).
In principle, these equations may serve as our paramet-

ric model for fitting the dust emission spectrum. How-
ever, few (current or future) CMB experiments have suf-
ficient power to constrain six parameters for dust alone,
and simplifications are therefore unavoidable. Rather
than fitting the full form as given above, we therefore
choose the simpler “model 3” of Finkbeiner et al. (1999),
setting f1 = 1 and T1 = 18.1 K, but letting α1 vary freely.
Equation 9 may then be simplified to

sd(ν) = Ad
ν

e
hν

kT1 − 1

e
hνd,0
kT1 − 1

νd,0

(

ν

νd,0

)βd

, (12)

where Ad is the thermal dust amplitude at a reference
frequency νd,0, and a βd is a free parameter. Thus, the
fitted model is a power law modulated by a slowly de-
creasing function of order unity over the frequencies of
interest.
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Such a parameterization does not allow for the spec-
tral break that does exist in the COBE -FIRAS at ap-
proximately 500GHz, and which may reflect either the
emissivity of different grain components, frequency de-
pendence of the emissivity of the dominant grain compo-
nent, or possibly a population of cold dust grains mixed
with the warmer dust (Reach et al. 1995). However, at
500GHz the signal of dust anisotropies is so strong com-
pared with CMB anisotropies that it is useless for pur-
poses of component separation.

Anomalous dust emission—Cross-correlation of the
COBE -DMR data with the DIRBE map of thermal dust
emission at 140µm in Kogut et al. (1996) revealed an
anomalous component with rising spectrum from 53 to
31.5GHz. Banday et al. (2003), again using the DMR
data together with a survey at 19.2GHz, and indepen-
dently the WMAP team (Bennett et al. 2003b), sug-
gested that this component was well-described by a
power-law spectrum with index −2.5 for frequencies in
the range ∼20–60GHz. The latter proposed that the
emission originates in star-forming regions close to the
Galactic plane. However, the favored model to explain
this anomalous dust-correlated component is in terms of
the rotational emission from very small grains.

Draine & Lazarian (1998) have developed a three com-
ponent model of this ’spinning dust’ which contains
contributions from the three phases of the interstellar
medium—the Cold Neutral Medium, the Warm Neutral
Medium, and the Warm Ionised Medium. The charac-
teristic spectral behavior of the model includes a rising
spectrum up to a turn-over in the range 10–20GHz, then
a rapidly falling spectrum which can be characterized by
an effective spectral index in excess of 3 beyond 30GHz.

Recent observations by Finkbeiner (2004b) of dust cor-
related emission outside of Hii regions between 8 and
14GHz shows a rising spectral slope and amplitude far
exceeding that associated with thermal dust emission.
More importantly, Watson et al. (2005) show that obser-
vations of the Perseus molecular cloud made between 11
and 17GHz and augmented with the WMAP data can be
adequately fitted by a spinning dust model. Neverthe-
less, although the case is compelling for describing the
anomalous emission by such models, the detailed mor-
phology of the emission remains uncertain and no un-
ambiguous template to trace it exists. It is also possible
that the emission may be confined to specific clouds at
relatively low Galactic latitude, leading to a more patchy
distribution than for the diffuse thermal dust contribu-
tion with some additional sensitivity to environment. In-
deed, Lagache (2003) presents evidence that the excess
emission is associated with small transiently heated dust
particles, which may be destroyed under certain physical
conditions. Given these uncertainties, we do not include
this foreground component in our studies.

3.2. Non-zero bandwidths

The previous sections describe the basic behavior of
each signal component as a function of well-defined fre-
quencies. However, real experiments integrate over a
range of frequencies (a “frequency band”), typically with
unequal weights, and the observed signal strength does
not equal that given by the central frequency alone.

We take into account this effect through the concept

of an “effective frequency” νeff, defined by

S(νeff) =

∫

f(ν)Sνdν, (13)

where Sν is the frequency spectrum of the signal, and
f(ν) is the frequency response profile of the detector.
Thus, the spectrum at the effective frequency equals the
average over the frequency band. The advantage of doing
this is simply that computationally expensive integrals
are replaced by single point computations.

In this paper we assume for simplicity that all fre-
quency response functions correspond to flat bandpass
filters with sharp frequency cutoffs at νa and νb. For
simple power law models, such as those of synchrotron
and free-free emission as described above, the effective
frequency of a signal component with spectral index β is
then given by

νeff =

(

1

β + 1

νβ+1
b − νβ+1

a

νb − νa

)1/β

(14)

For more complicated spectra, Equation 13 must be
solved numerically. Fortunately, it is straightforward to
pre-compute a grid of the effective frequencies prior to
the full analysis, since they only depend on the frequency
scalings and not the component amplitudes, and compu-
tational speed is not compromised.

3.3. Implementation details

To simplify the computer code, it is convenient to in-
troduce some general notation. For instance, if we can
write all signal models in a common form, we do not have
to consider a list of special cases, but rather handle all
cases with the same code.

Indeed, all frequency spectra discussed above may be
written in a common form, namely that of a power law
modulated by an arbitrary frequency-dependent func-
tion,

sν(p) =

Ncomp
∑

i=1

Ai(p)ci,νeff,i

(

νeff,i

ν0,i

)βi(p)

. (15)

Here Ai(p) and βi(p) are the “free” amplitude and index
parameters for component i in each pixel p, and ci,νeffi

is
an arbitrary function only dependent on frequency.

Specifically, synchrotron and free-free emission are in-
cluded simply by setting ci,ν = 1, while the CMB compo-
nent is defined by βCMB ≡ 0 and ccmb,ν = x2ex/(ex−1)2,
as discussed above. For dust, cd,ν is given by equation
12.

Even anomalous dust could be included within this no-
tation. One option is simply to tailor the correction fac-
tors ci,ν to match the predicted spinning dust spectrum
(Draine & Lazarian 1998), fix the corresponding spectral
index at zero, and then fit for the amplitude only. An-
other is to merge the spectrum with that of the thermal
dust emission, and thereby enforce identical spatial tem-
plates.

4. SUMMARY OF PREVIOUS RESULTS

This paper may be seen as a natural continuation of
the work started by Brandt et al. (1994), who consid-
ered how well future experiments could reconstruct the
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CMB signal in presence of noise and foregrounds. Their
approach, parameter estimation, was the same as ours;
however, they relied solely on maximum likelihood es-
timation (i.e., non-linear fitting), and their results were
therefore less stable with respect to noise than the ones
we present here, as will be seen below. Nevertheless, sev-
eral of the conclusions drawn by Brandt et al. (1994) are
still valid for our work, and well worth repeating:

1. The number of frequencies must equal or exceed
the number of fitted parameters, else the problem
is mathematically degenerate. This is obvious, but
not trivial: no experiment to date has had the min-
imum number of frequencies required to separate
CMB, synchrotron, free-free, and dust fluctuations,
even in their simplest form.

2. One should attempt to reduce the number of free
parameters in the problem, as this gives greater sta-
bility with respect to noise. Seemingly gross simpli-
fications, such as approximating both synchrotron
and free-free emission by a single power law, can
often yield improvements in the reconstruction.

3. It is usually advantageous to fit spectral parameters
to reduced-resolution and low-noise data, and then
solve for the amplitudes in the full-resolution data,
fixing the indices at the smoothed values.

4. Due to the similarity between the synchrotron
and free-free emission, better results are obtained
whenever the latter is not a significant contami-
nant. Thus, if the free-free contamination could be
constrained by radiation physics knowledge, it is
well worth trying.

While working on the present analysis, we have repro-
duced all of these conclusions, and most of them have
been taken into account when establishing the prescrip-
tion described below. However, we will not elaborate
further on these issues here, but rather refer the inter-
ested reader to Brandt et al. (1994), and come back the
above points as they are needed in the analysis.

5. METHOD

In this section we propose an algorithm for solving the
parameter estimation problem with sufficient speed and
accuracy to be useful for practical analysis of current
and future data. Each step of the algorithm consists of
well-established methods, and the approach should seem
quite familiar.

5.1. Overview

The goal is to establish both a point estimate of all
interesting parameters, and their uncertainties. Our pre-
scription for doing so is as follows:

1. If required by noise levels or computational re-
sources, downgrade all sky maps both in pixel and
beam resolution.

2. For each low-resolution pixel,

(a) choose a parametric model,

(b) solve for all parameters jointly by MCMC,

(c) estimate non-linear parameters and corre-
sponding uncertainties by marginalizing over
all other parameters,

(d) find the goodness-of-fit in terms of the χ2.

3. For each high-resolution pixel within a low-
resolution pixel,

(a) either (fast but approximate analytical ap-
proach)

i. fix the non-linear parameters at the low-
resolution pixel values,

ii. find maximum-likelihood estimates for all
linear parameters (i.e., component ampli-
tudes) by solving a linear equation,

iii. find corresponding uncertainties by ana-
lytic error propagation formula,

iv. estimate the goodness-of-fit in terms of
the χ2 again.

(b) or (exact but expensive Gibbs sampling ap-
proach)

i. use the low-resolution MCMC distribu-
tions to sample non-linear parameters nu-
merically,

ii. given a set of non-linear parameters, sam-
ple amplitudes from their corresponding
Gaussian distribution,

iii. given foregrounds, sample CMB sky map
and power spectrum.

The route outlined in step 3b) holds promise of a com-
plete solution to the foreground problem in a CMB con-
text, since, if successful, the foreground uncertainties
are propagated all the way from noisy observations to
the CMB power spectrum and cosmological parameters.
However, in this paper we only present the basic ideas,
and leave the details for a future more comprehensive
study. All high-resolution results presented in the fol-
lowing are thus based on the analytical approach.

5.2. Non-linear parameters and large-scale smoothing

One of the main themes of Brandt et al. (1994) was the
instability of a non-linear fit with respect to noise. This
is not hard to understand. In estimating multiple pa-
rameters from a limited number of frequency bands, the
maximum likelihood point may easily slide along some
degeneracy ridge on the likelihood surface in the presence
of realistic noise. For all currently planned experiments,
additional degree-scale smoothing is a requirement in or-
der to reach reconstruction errors at the µK level.

Another and more practical issue is the fact that our
main algorithm relies on MCMC analysis of each indi-
vidual pixel. This takes on the order of 100 seconds per
pixel. Even though the algorithm parallelizes trivially
because the pixels are analyzed individually, a complete
analysis at full Planck resolution (∼ 50 million pixels)
would be unfeasible.

It is important to realize, however, that a full MCMC
analysis is required only for estimating non-linear pa-
rameters, such as spectral indices or dust temperatures.
If all parameters in the problem are linear (i.e., compo-
nent amplitudes), an analytical computation is equally
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good. We therefore compute the complete probabil-
ity distributions from reduced-resolution maps, fix the
high-resolution non-linear parameters at the correspond-
ing low-resolution values, and then solve for the high-
resolution component amplitudes with alternative meth-
ods, for instance analytically or by Gibbs sampling.

When adequate data on foregrounds are in hand, the
validity of this smoothing can be tested. If preliminary
indications turn out to be true, and spectral indices vary
more slowly on the sky than amplitudes, the smoothing
process will not lead to significant loss of information. In
any case, the smoothing scale can be optimized within
the bounds of computational resources.

5.3. Model selection

A second main theme of Brandt et al. (1994) was the
importance of model selection. They clearly demon-
strated that a large number of parameters does not nec-
essarily yield a better CMB reconstruction. Quite the
contrary, too many parameters often yield unphysical re-
sults. In general, one should never fit more parameters
than required by the data.

In principle, it would be useful to have an automated
prescription to identify the optimal model for a given
pixel. To some extent, such a procedure is provided by
means of the so-called information criterion (IC), an idea
that was introduced to CMB analysis by Liddle (2004).
The fundamental idea in this approach is not to maximize
the likelihood alone, but rather minimize the IC, defined
as follows,

IC = −2 lnL+ αk. (16)

Here k is the number of parameters in the fit, and α is
a penalty factor. (Two useful choices for α are αA = 2,
the Akaike information criterion, and αB = lnN , the
Bayesian information criterion, N being the number of
data points.) Within this framework, a new parameter
must prove its usefulness by returning a significant im-
provement in the χ2 fit to be included in the model.

We implemented this approach in our codes, and ob-
tained reasonable results. However, the model sky map
had a clear tendency to be patchy, and not necessar-
ily well correlated with physical structures. In the cur-
rent implementation, we therefore only use the infor-
mation criterion approach to inform our model choices,
and tailor the model map manually according to known
structures. For instance, in the example given in § 6,
we use a full four-component model (CMB, synchrotron,
free-free, and dust) inside an expanded Kp0 galactic
cut (Bennett et al. 2003b), as well as in a few selected
patches (e.g., the LMC), but we ignore free-free other-
wise. However, we expect that the information crite-
rion approach may be developed further, and should be
a valuable tool for future experiments.

Realistically, model selection is likely to be an iterative
process, as will be demonstrated in the worked example
of § 6. Typically, one constructs an initial physically mo-
tivated model map, and performs the analysis with that
model set. Based on the results, one then evaluates the
goodness-of-fit for each pixel (i.e., the χ2 as defined by
equation 2), and compares the results with a simple χ2

distribution with the appropriate number of degrees of
freedom (number of frequencies minus the number of free
parameters). If the agreement is poor, the model set can

be modified, or offending pixels can be rejected from fur-
ther analysis.

Using such methods, model selection is likely to be a
relatively straightforward (although somewhat tedious)
process for future experiments. However, in the present
paper we are satisfied with a very simple choice of mod-
els, based on established sky masks.

5.4. Parameter estimation by MCMC

By now, parameter estimation by Markov Chain Monte
Carlo is a well established technique within the CMB
community, with its most visible application being esti-
mation of cosmological parameters from the CMB power
spectrum. To our knowledge, it has not yet been ap-
plied to component separation, and we therefore briefly
describe the algorithm here. For more details, we refer
the interested reader to, e.g., Lewis & Bridle (2002) or
Verde et al. (2003).

5.4.1. Algorithm

Suppose we want to estimate a set of parameters and
corresponding uncertainties from a set of observed data,
and that we know how to compute the likelihood given an
arbitrary combination of parameters. The Markov Chain
Monte Carlo algorithm is then given by the following
simple steps:

1. Choose any initial point in parameter space, θ0,
and compute the corresponding likelihood, L0 =
L(θ0).

2. Define a stochastic function f that, given param-
eters θi, returns a new set of parameters θi+1 =
f(θi).

3. Compute θi+1 given by f and the corresponding
likelihood, Li+1 = L(θi+1).

4. Set θi+1 = θi (i.e., reject the proposal) with prob-
ability p = 1−min(Li+1/Li, 1).

5. Go to step no. 3, and iterate as long as necessary.

This procedure returns a chain of parameter samples
θi, i = 1, . . . , Nsamples, and their multi-dimensional his-
togram equals the likelihood in the limit of an infinite
number of samples.

Some intuition for the process may be gained by notic-
ing the form of the “jump probability” given in step 4 of
the algorithm: If the likelihood of the proposed point is
larger than that of the old point, we never reject the
proposed point; we always move towards more likely
solutions when proposed. However, if the likelihood is
smaller, we still accept the proposed point with proba-
bility p = Li+1/Li. This guarantees that we spend most
of the time around the peak position, but still explore
less likely points. Indeed, it may be proven that the time
spent at a given point in parameter space is proportional
to the likelihood itself.

5.4.2. Automated MCMC in practice

In practice, there are several problems connected to
MCMC parameter estimation; usually, most of these may
be identified (and often solved) by simple visual inspec-
tion of the Markov chains. However, since we want to
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analyze many thousands of independent pixels, finding
automated and yet robust solutions to the same prob-
lems is of critical importance; a solution that works in
99% of all cases is not good enough.

Burn-in— Although it is true that the initial guess may
be chosen arbitrarily, and that the chain eventually will
burn in to the right solution, it is difficult to construct
a truly reliable automated prescription for when burn-
in has occurred. Also, since computational speed is of
critical importance, it is not acceptable to spend a long
time in the burn-in phase. For both of these reasons, we
choose to initialize the chains at the maximum-likelihood
point, which we find using a standard non-linear fitting
algorithm. (We have found that a sequential quadratic
programming (SQP) method works very well for this
task.)

Proposal function— In step 2 of the algorithm, we must
establish a proposal function f . A simple example of
such a function would be θj

i+1 = θj
i + δθjηj , where j is a

parameter index, δθj is a pre-defined rms step size, and
ηj is a Gaussian stochastic variate of zero mean and unit
variance. However, since most parameters of interest are
usually strongly correlated, this choice is quite inefficient.

Our current best solution is to run a preliminary chain
(using the univariate Gaussian proposal function de-
scribed above, with manually set step sizes), and com-
pute the covariance matrix Cij =

〈

δθiδθj
〉

of the result-
ing samples. We then Cholesky-decompose this matrix,
C = LL

t, and define our new proposal function to be
θi+1 = θi+αLη, where η now is a vector of Gaussian vari-
ates and α is an overall scale factor, typically initialized
at ∼ 0.3. This ensures that the proposed samples have
approximately the correct covariance structure, and the
overall sampling efficiency is thereby greatly improved.

To avoid too large or too small step sizes, we also im-
pose the requirements that the acceptance ratio (the ra-
tio of accepted to rejected proposals) must be higher than
5%, and lower than 80%. If one of these two criteria is
violated, we divide or multiply α by 2, and re-start the
MCMC analysis.

Convergence— Finally, we must decide when a sufficient
number of samples has been accumulated. No general
solutions are available. We have adapted a good work-
ing solution proposed by Gelman & Rubin (1992), as fol-
lows. Run m independent MCMC chains in parallel for
the same pixel, each producing n samples. Compute the
following quantities,

W =
1

m(n− 1)

m
∑

j=1

n
∑

i=1

(

θj
i − θ̂j

i

)2

, (17)

B =
n

m− 1

m
∑

j=1

(

θj − θ̂
)2

, (18)

V =

(

1− 1

n

)

W +
1

n
B, (19)

R =
V

W
, (20)

where θ̂ is the average over all m·n samples, and θ̂j is the
average of the samples within chain number j. W esti-
mates the variance within each chain individually, while

B estimates the variance between the chains. When the
chains have converged properly, V and W should be iden-
tical, and R should be close to unity.

Gelman & Rubin (1992) make the general recommen-
dations that the initial points for the m chains should
be over-dispersed relative to the true distribution, and
that the chains should be run until R < 1.2. However,
as discussed above, we initialize the chains at the max-
imum likelihood value in order to avoid burn-in prob-
lems, and thus the first point is certainly not fulfilled
in our approach. Consequently, the numerical value of
the convergence criterion they give does not apply to our
prescription.

To remedy this situation, we impose two alternative
criteria. First, we require that the chains run for a min-
imum number of samples (typically on the order of 107,
but only storing every, say, 500th sample, to reduce cor-
relations). Second, we require that the largest value of
R, individually computed for all parameters included in
the model, must be smaller than 1.01. In most cases, we
find that the latter criterion is fulfilled long before the
former, indicating that the overall CPU time may be de-
creased somewhat. However, since we cannot inspect the
chains manually for more than a few pixels, we consider
safety to be more important than speed, and adopt a
very conservative approach. With the criteria discussed
here, we have found excellent convergence in all cases we
have inspected, and the Monte Carlo error (the error on
the error due to a finite number of samples) is typically
less than 1%.

5.4.3. Point estimators and uncertainties

The MCMC algorithm provides us with a large num-
ber of multi-variate samples drawn from the likelihood,
and these may be used to form a great variety of use-
ful statistics. Here we focus on the uni-variate distri-
butions for each parameter, marginalizing over all oth-
ers. (Marginalization with MCMC samples is straight-
forward: simply disregard the “uninteresting” parame-
ters, and make a histogram of the “interesting” parame-
ter sample values. Priors are discussed briefly in the next
section.)

Our point estimate for each parameter value is then
defined to be the mean of the MCMC samples, with
an uncertainty given by variance of the samples. As
shown later in practical examples, this Gaussian approx-
imation is quite good for both the CMB temperature
and the spectral indices, while the distributions for the
synchrotron and free-free amplitudes tend to be non-
Gaussian due to a combination of strong internal cor-
relations and a positivity prior.

One of the most important differences between our ap-
proach and that taken by Brandt et al. (1994) is that
they chose the maximum likelihood value as their point
estimate, whereas we choose the mean. This makes our
estimate considerably more stable with respect to noise,
since it takes more to shift the entire likelihood volume
than to change its shape. Therefore, not only does our
method yield accurate error bars on all relevant quanti-
ties, but also the point estimates are more reliable.

5.4.4. Priors



9

Bayes’ theorem states that the posterior distribution
P (θ|d) is given by

P (θ|d) ∝ P (d|θ)P (θ) = L(θ)P (θ), (21)

where L(θ) = P (d|θ) is the likelihood and P (θ) is a prior.
Implicit in the above discussion, we have adopted the
simplest possible choice for this paper, namely uniform
priors between two (not necessarily finite) limits. Specifi-
cally, we impose no constraints on the CMB temperature,
and only a positivity constraint (A > 0) on the fore-
ground amplitudes. For the spectral indices, our priors
are sufficiently generously chosen to never exclude phys-
ically realizable values (−4 < βs < −2.2 for synchrotron,
and 1 < βd < 3 for thermal dust). However, anticipating
a future WMAP -only analysis, priors may then become
considerably more important due to the high noise levels
of the experiment.

5.5. Analytic estimation of linear parameters

The low-resolution MCMC analysis is by far the most
expensive step in our algorithm. Once this step has
been completed, estimation of the component amplitudes
may be done both accurately and efficiently by solving
sets of linear equations, with negligible computational
resources.

Recall that our likelihood function takes the form of a
standard χ2,

χ2 =

Nband
∑

k=1

1

σ2
k



dk −
Ncomp
∑

i=1

Ai cik

(

νik

νi0

)βi





2

. (22)

Since the only free parameters in the problem are now the
component amplitudes Ai, and the noise is assumed to
be Gaussian, this is simply a multi-variate Gaussian dis-
tribution. Therefore the mean of the distribution equals
the maximum likelihood value, and may be determined
simply by equating the derivatives of the χ2 with respect
to the parameters to zero. In a matrix form, this reads

∂χ2

∂a
= 0 ⇒ a = M

−1
d, (23)

where a
t = (A1, . . . , ANcomp

)t,

Mij =

Nband
∑

k=1

cik cjk

σ2
k

(

νik

νi0

)βi
(

νjk

νj0

)βj

, (24)

and

di =

Nband
∑

k=1

dk cik

σ2
k

(

νik

νi0

)βi

. (25)

While the above formulae yield excellent results for the
high-resolution parameter point estimates (as long as all
amplitudes are non-negative), reliable error estimation
within this framework is complicated. One problem is
that we need to propagate the errors in the spectral in-
dices into the final data products, taking into account the
strong correlations between the errors. A second problem
is introduced by the positivity prior on the foreground
amplitudes, which leads to strongly non-Gaussian dis-
tributions when active. Nevertheless, for well-behaved
pixels (i.e., those with clear detection of all components
individually) a rough approximation may be established
by means of the usual error propagation formula.

Suppose we are interested in a quantity z = f(x, y, . . .)
that depends on a set of measured quantities x, y, . . .,
each with independent and Gaussian errors ∆x, ∆y, . . ..
In this case, the uncertainty ∆z is given by

∆z2 =

(

∂f

∂x

)2

∆x2 +

(

∂f

∂y

)2

∆y2 + · · · . (26)

This may be applied to our case by making the iden-

tification Ai = f(x) =
∑Ncomp

j=1 M−1
ij dj . The uncertain

quantities are both the observed data and the non-linear
parameters, x

t = (dν , β)t.
To compute the uncertainties, we need the partial

derivatives, which by equation 23 read

∂a

∂x
= M

−1 ∂M

∂x
M

−1
d + M

−1 ∂d

∂x
. (27)

The derivatives ∂M/∂x and ∂d/∂x are obtained from
equations 24 and 25.

Great care must be taken when applying this method
to the high-resolution data—it is strictly valid only under
the assumptions that the uncertain quantities are both
Gaussian distributed and internally independent, neither
of which is true for our problem. Nevertheless, while the
formal requirements are not strictly fulfilled, the approx-
imation may still be useful for establishing the order of
magnitude of the uncertainties.

First consider the assumption of independence. The
data points are for all practical purposes uncorrelated
with the non-linear parameters, since the latter are esti-
mated from heavily smoothed maps, and therefore aver-
aged over many pixels. Additionally, if the model only
contains one spectral index, or two weakly coupled in-
dices (e.g., synchrotron and dust indices, but not syn-
chrotron and free-free), the independence assumption is
thus nearly fulfilled.

The assumption of Gaussian distributions is generally
more problematic. On the one hand, if a particular fore-
ground component is near or below the detection limit,
the actual distribution is sharply cut off for negative val-
ues. On the other hand, if two components have simi-
lar spectral dependencies (like synchrotron and free-free
emission), the corresponding parameter probability dis-
tributions are usually strongly skewed. In either case,
the rms is not an accurate estimator of the uncertainty.

5.6. Propagation of errors to the CMB power spectrum
and cosmological parameters

The analytical approach described in the previous sec-
tion yields good point estimates for the desired param-
eters, but only approximate uncertainties. Further, it is
not straightforward to propagate the errors further into
higher-level data products such as the CMB power spec-
trum or cosmological parameters.

A much more powerful solution may be devised by
combining the methods described in the present pa-
per with the Gibbs sampling approach of Jewell et al.
(2004), Wandelt et al. (2004) and Eriksen et al. (2004b).
Whereas most other techniques only provide the user
with a very simple description of the power spectrum
probability distribution (e.g., a maximum-likelihood es-
timate and a Fisher matrix), the Gibbs sampling ap-
proach yields the complete multi-variate probability den-
sity P (Cℓ|d), Cℓ being the CMB power spectrum and
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TABLE 1
Frequency band specifications

Experiment Center frequency Bandwidth Beam FWHM RMS per 7′ pixel RMS per 60′ beam
(GHz) (GHz) (arcmin) (µK) (µK)

WMAP 23 5 52.8 50 ± 7 7.6 ± 1.1
LFI 30 6 33.0 33 ± 7 3.0 ± 0.6
WMAP 33 8 39.6 51 ± 7 5.0 ± 0.7
WMAP 41 11 30.6 49 ± 8 4.3 ± 0.7
LFI 44 8 24.0 33 ± 6 2.7 ± 0.5
WMAP 61 16 21.0 60 ± 9 4.8 ± 0.7
LFI 70 14 14.0 31 ± 6 2.4 ± 0.5
WMAP 94 24 13.2 73 ± 11 5.6 ± 0.8
HFI 100 33 9.5 14 ± 3 1.1 ± 0.2
HFI 143 48 7.1 8 ± 1 0.6 ± 0.1
HFI 217 72 5.0 11 ± 2 0.9 ± 0.2

Note. — Specifications for each frequency band used in the simulation. All beams are assumed to
be Gaussian. The RMS values for 7′ pixels are computed taking into account the scanning strategy of
each detector, but neglecting noise correlations. The RMS values per 60′ beam are estimated from 1000
Monte Carlo simulations by drawing Gaussian random numbers corresponding to the RMS level of 7′

pixels, deconvolving the instrument beam, and finally convolving with a 60′ FWHM Gaussian beam. The
values also take into account reduced pixel resolution, from 7′ to 14′ pixels. The Planck RMS values are
requirement levels, not goals.

d the data. Further, it is very straightforward to in-
troduce new sources of uncertainty into the framework,
and such uncertainties are then seamlessly propagated
through to the final data products. We outline here how
foreground uncertainties may be propagated to the CMB
power spectrum and cosmological parameters, but leave
the details for a future publication.

The Gibbs sampling approach is similar in philosophy
to the MCMC method that is used extensively in this
paper: the target density is established by drawing sam-
ples from it. In our case, we are interested in the joint
probability distribution P (Cℓ, sCMB, ss, sff, sd|d), where
si are the four interesting signal components discussed
earlier, CMB, synchrotron, free-free, and thermal dust
emission. While it is difficult to sample from this distri-
bution directly, the Gibbs sampling algorithm provides
a neat solution. Suppose we want to draw samples from
a joint distribution P (x, y), but only know how to sam-
ple from the conditional densities P (x|y) and P (y|x). In
that case, the theory of Gibbs sampling says that samples
(x, y) can be drawn by iterating the following sampling
equations,

xi+1 ← P (x|yi), (28)

yi+1 ← P (y|xi+1). (29)

The symbol ’←’ indicates that a random number is
drawn from the distribution on the right hand side. After
some burn-in period, the samples will converge to being
drawn from the required joint distribution.

Suppose now that we want to analyze a data set that
for simplicity only includes CMB and synchrotron emis-
sion, the latter being parameterized by an amplitude As

and a spectral index βs for each pixel. Suppose further
that we already have run an MCMC analysis for each
pixel as described earlier, and have access to the cor-
responding probability distributions. In that case, the
Gibbs sampling algorithm may be applied by means of

the following sampling chain:

βi+1
s ← P (βs|Ci

ℓ, A
i
s, s

i
CMB,d), (30)

Ai+1
s ← P (As|Ci

ℓ, β
i+1
s , si

CMB,d), (31)

s
i+1
CMB ← P (sCMB|Ci

ℓ, A
i+1
s , βi+1

s ,d), (32)

Ci+1
ℓ ← P (Cℓ|si+1

CMB). (33)

(The CMB power spectrum Cℓ only depends on the CMB
signal, not the foregrounds, and therefore the other com-
ponents are omitted from the right-hand side in the last
equation.) The first two rows are to be performed for
each pixel individually, while the last two rows are per-
formed in harmonic space, reflecting the intuitively pleas-
ing idea that foregrounds should be handled in pixel
space, while CMB fluctuations are better handled in har-
monic space.

To perform the analysis as described above, we have
to be able to sample from all involved conditional dis-
tributions. Sampling the CMB signal and power spec-
trum parts is detailed by, e.g., Eriksen et al. (2004b).
Sampling the foreground amplitudes given the spectral
indices is straightforward, since the corresponding distri-
butions are simple Gaussians.

However, sampling the spectral indices is a-priori not
trivial—their distributions are highly non-Gaussian, and
no analytical expressions exist. However, given that we
already have run a MCMC analysis whose product is
precisely the joint density P (sCMB, Ad, βs|d), the prob-
lem is mostly solved. We could simply generate a full
multi-dimensional histogram from the MCMC samples
(for each pixel separately), and pick out the synchrotron
index column that corresponds to the other currently
fixed parameter values. Given this one-dimensional dis-
tribution, we could then sample numerically using stan-
dard techniques.

For completeness, we note that adding more than
one foreground component is a trivial extension of this
scheme. Component amplitudes are added individually,
while there is a choice for spectral indices—one may ei-
ther sample these individually, as done above for the syn-
chrotron index, or for greater efficiency, one may also ex-
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Fig. 2.— The “high-resolution” simulations used in this paper.
Shown are the 23 GHz channel from the WMAP experiment, the
70GHz channel from the LFI experiment, and the 217GHz channel
from the HFI experiment. All maps are smoothed to a common
resolution of 1◦ FWHM.

ploit the multi-variate information given by the MCMC
analysis.

With the above prescription, it is finally possible to
propagate the foreground uncertainties rigorously all the
way from the observed data through to the CMB power
spectrum, and therefore to the cosmological parame-
ters. Further, with this approach one also obtains full-
resolution sampled uncertainties of the component ampli-
tudes, as opposed to the analytical approximations dis-
cussed in the previous section, and a complete proba-
bilistic description of the system is thereby established.

In the form described above, the algorithm requires
storage of a multi-dimensional histogram for each pixel.
This is tremendously wasteful, and clearly not feasible
due to memory limitations. A first necessary step is
therefore to compress the likelihood information into a
smaller set of numbers. One possible solution was pro-

posed by Verde et al. (2003), who fitted a 4th order poly-
nomial to the log-likelihood,

lnL = q0 +
∑

i

qi
1δi +

∑

ij

qij
2 δiδj+

+
∑

ijk

qijk
3 δiδjδk +

∑

ijkl

qijkl
4 δiδjδkδl.

(34)

Here qi are fit coefficients, and δi = (αi − α0
i )/αi, αi be-

ing parameter number i and α0
i its maximum likelihood

value15. With only 210 coefficients for a six-parameter
likelihood, this approximation at least satisfies the mem-
ory requirements for practical usage in our problem. Fur-
ther, it is straightforward to map out the required spec-
tral index distributions given a set of component ampli-
tudes using this form. Therefore, considering that the
process parallelizes trivially, there seem to be no unsur-
mountable computational problems connected to this ap-
proach.

While Gibbs sampling as currently implemented has
problems with probing the low signal-to-noise ratio
regime properly, it works very well for signal-to-noise ra-
tios larger than unity (Eriksen et al. 2004b), and this
is exactly where the foreground uncertainties dominate.
Therefore it seems reasonable to use the approach pre-
sented here to analyze the high and intermediate signal-
to-noise ratio regimes, propagating foreground uncertain-
ties to the final products, and a standard “Master”-type
analysis (Hivon et al. 2002) for the low signal-to-noise
regime, at the cost of neglecting foreground uncertain-
ties at these angular scales.

6. EXAMPLE: APPLICATION TO PLANCK AND SIX-YEAR
WMAP DATA

We now apply the MCMC component separation
method described in § 5 to simulations of the current
WMAP and the future Planck missions. We first give
a detailed presentation of the simulations and data. We
then study the behavior of the algorithm for one arbi-
trarily chosen pixel, before considering the full sky map
solutions.

We point out that our main goal in this paper is to
study the algorithm itself, and not to simulate an ac-
tual data release. We therefore choose examples both
with and without modeling errors, in order to illustrate
problems that may be encountered in an analysis of real
data.

6.1. Simulations and models

The simulations used in the following are constructed
as a sum of a cosmological CMB signal, three fore-
ground components (synchrotron, free-free, and ther-
mal dust emission) and instrumental noise. We include
five bands (centered at 23, 33, 41, 61 and 94GHz)
from WMAP, three bands (30, 44 and 70GHz) from
the Planck Low Frequency Instrument (LFI), and three
bands (100, 143 and 217GHz) from the High Frequency
Instrument (HFI), for a total of eleven bands between

15 Introducing normal parameters and/or higher-order expan-
sions may be required for obtaining sufficient accuracy; see e.g.,
Chu, Kaplinghat & Knox (2003) for an application to cosmological
parameters.
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23 and 217GHz16. Specifications for each detector are
given in Table 1.

CMB—The CMB component is assumed to be Gaus-
sian distributed, with variances given by the best-
fit WMAP power-law power spectrum (Bennett et al.
2003a; Hinshaw et al. 2003; Spergel et al. 2003), includ-
ing multipoles between ℓ = 2 and 1024. The signal
realization is filtered through the HEALPix pixel win-
dow function and the instrument specific beam windows.
(Since all the Planck beam windows are not available, we
choose for simplicity to model even the WMAP beams
as Gaussians with appropriate FWHM’s.)

Noise—The noise is assumed to be Gaussian and uncor-
related, but non-uniform according to the scanning strat-
egy of each detector. For WMAP, we assume a six-year
mission, and rescale the published first-year sensitivity
levels by 1/

√
6. For Planck, we adopt the requirement

levels, which are a factor of two worse than the goals, for
the baseline one-year mission.

Synchrotron emission—The only all-sky map currently
available to provide a template of Galactic synchrotron
emission in HEALPix format is the 408MHz survey by
Haslam et al. (1982). This has a resolution of only 51′,
thus additional power must be added on smaller angular
scales for our purposes in this paper. We adopt the model
of Giardino et al. (2002), who estimated the amplitude
and slope of the synchrotron angular power spectrum at
low Galactic latitudes for l ≥ 150. A Gaussian realization
was then generated from that power spectrum to which
was applied a Galactic modulation, multiplying the sig-
nal in each pixel by the ratio between the Haslam et al.
(1982) template in that pixel and the maximum. The fi-
nal template is added to the original Haslam et al. (1982)
map. An all-sky template for the synchrotron spectral
index was estimated combining the all-sky data from
Haslam et al. (1982), with the Northern sky observations
of Reich & Reich (1986) at 1420MHz and the southern
sky counterpart of Jonas et al. (1998) at 2300MHz17.
This constitutes our synchrotron model.

Free-free emission—Current models of the free-free emis-
sion exploit the expected correlation with Hα emission
(see Dickinson et al. 2003 and references therein), and
predict free-free emission (given in antenna temperature)
as follows

sff(ν) = AHα · 0.1366 · 100.029· 10
4K

Te G ·

·
(

Te

104K

)0.517(
ν

νref

)

−2

.
(35)

Here AHα is the Hα amplitude, G =
3.96 T 0.21

e (ν/ν0,ff)−0.14 is the Gaunt factor (Finkbeiner
2003), Te is the electron temperature, and ν0,ff = 40 GHz
is a reference frequency.

A major uncertainty when using Hα as a template
is due to the absorption of Hα by foreground dust,

16 The three highest HFI frequency bands are not included in the
analysis because they would introduce significant dust modeling
errors; we simulate dust with a two-component model, but fit for
a one-component model.

17 This hybrid spectral index model should ultimately be su-
perseded by the full-sky 1420 MHz survey described in Reich et al.
(2003).

but this can be estimated using the 100 µm maps from
Schlegel et al. (1998). The largest uncertainty, however,
is related to the fraction of dust (fd) lying in front of the
Hα-emitting region. Dickinson et al. (2003) show that
for regions 30◦ < l < 60◦ and 5◦ < |b| < 15◦, fd ≈ 0.3,
while for local high latitude regions such as Orion and
the Gum Nebula, there is little or no absorption by dust
(fd ∼ 0). The latter is supported by the cross-correlation
analysis of Banday et al. (2003) of the Hα data with
COBE -DMR, which contrasts with the value of fd ∼ 0.5
expected under the assumption that the ionized gas and
dust are coextensive along the line of sight (i.e., uni-
formly mixed), as is assumed in the WMAP analysis of
Bennett et al. (2003b) and Finkbeiner (2004a).

We correct for dust absorption, by assuming a single
component dust model, with a temperature of 18.3K,
and a absorption fraction of 0.33 up to a flux correspond-
ing to 1 magnitude. We assume an electron temperature
of Te = 7000K, and therefore an effective frequency scal-
ing close to β−2.14 over the range of frequencies consid-
ered here. For the future, a more accurate model, ac-
counting for the steepening spectral index, could be im-
plemented as a correction to the simple power-law model.

Thermal dust—We adopt model 8 of Finkbeiner et al.
(1999) for thermal dust emission, with parameters f1 =
0.0363, q1/q2 = 13, ν0,d = 3000GHz, α1 = 1.67,
α2 = 2.70, T1 = 9.4K, and T2 = 16.2K (see equations
9–11). However, this is too many parameters to fit in-
dividually, and we therefore adopt a simpler model for
reconstruction (see equation 12). Modeling errors of the
sort to be expected with real data will result.

Data processing—All simulations are initially made at a
pixel resolution of Nside = 512, corresponding to a pixel
size of 7′. However, since our method requires identi-
cal beam sizes for all frequency bands, we downgrade
each band separately to 1◦ FWHM (determined by the
52.8′ FWHM beam of the 23GHz WMAP band) and
reduce the pixel resolution to Nside = 256 (by deconvolv-
ing the original beam and pixel windows, and convolving
the common 1◦ FWHM beam and lower resolution pixel
window).

By downgrading the data, the noise specifications are
also modified. To estimate the effective noise levels af-
ter degradation, we therefore generate 1000 noise real-
izations for each band, and downgrade these in the same
manner as the actual data maps. The effective noise lev-
els of the downgraded maps are then estimated by taking
the standard deviation of the 1000 realizations.

The data set described above constitutes our main
simulation, and is referred to in the following as “high-
resolution data”. Examples are shown in Figure 2. For
the non-linear parameter estimation step using MCMC,
we noise levels must be lower, as discussed earlier. There-
fore we smooth all maps with an additional 6◦ FWHM
Gaussian beam, and downgrade the pixel resolution to
Nside = 32. (This smoothing scale is not optimized, but
it is sufficient for the purposes of the present paper.)
Again, the effective noise levels are determined by Monte
Carlo simulations. This smoothed data set is referred to
as “low-resolution data”.

Initial model map—The initial model map is based on
the WMAP Kp0 mask (Bennett et al. 2003b). First the
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Fig. 3.— Marginalized parameter probability distributions for an arbitrarily chosen pixel inside the Galactic plane, generated by MCMC
as described in the text. The vertical lines show the true input value for the pixel. (The true value is not well defined for the dust spectral
index, since dust is modeled by a two-component spectrum, while a one-component model is fitted. However, the stronger of the two dust
components has an index parameter of α1 = 1.67.)

excluded region of the original mask is expanded by 10◦

in all directions. Then all accepted pixels (i.e., the high-
latitude region) are assigned the model that includes
CMB, synchrotron, and dust (both with free amplitude
and spectral index), while the model for the rejected pix-
els additionally includes a free-free amplitude.

6.2. Results

We now apply the method of § 5 to the simulated data
set described above.

6.2.1. Single pixel results

We first examine the performance of the MCMC algo-
rithm by studying one single pixel in the low-resolution
data set, namely pixel number 6100, which is located in-
side the Galactic plane at l = 58◦, b = 0◦. The reasons for
choosing this pixel (or one like it) are twofold. First, the
model for this pixel includes all three foreground compo-
nents, and has thus a complicated probability structure.
Second, the model is rejected by the goodness-of-fit test,
and this example therefore illustrates the modeling error
problem.

As discussed earlier, the MCMC algorithm basically
performs a random walk on the likelihood surface, pro-
ducing a set of samples from which the likelihood may
be estimated by constructing single or multi-dimensional
histograms. Examples of such histograms are shown in
Figures 3 and 4.

The first figure shows the probability distributions for
each of the six included parameters, marginalized over
all other parameters. Comparing with the true input
values (vertical lines), we see that the algorithm repro-
duces the correct values, and also that the uncertainties
are reasonable compared to the true errors.

Second, in Figure 4 we show two-dimensional proba-
bility distributions for the same parameters. The true
values are marked by a box. Several points are worth
noticing in this figure. First, all parameters are clearly
correlated, and some specific pairs very tightly so. Exam-
ples of the latter are dust amplitude versus dust spectral
index, and synchrotron amplitude versus free-free ampli-
tude.

Second, many of the distributions are clearly non-
Gaussian, and it is clear that a Gaussian approxima-
tion at this stage will not yield reliable errors. Still, the
structures appear to be reasonably well behaved, and in
principle it may be possible to find analytical parame-
ter transformations that could ease the computational
burden.

Third, while most of the true values lie inside the 3σ
confidence regions, in one case, namely the synchrotron
amplitude versus synchrotron index, it lies far outside the
acceptable region. Another perspective of this is pro-
vided by the χ2, which for this pixel is 44. With five
degrees of freedom (eleven frequencies and six free pa-
rameters), this particular model is thus ruled out at the
99.9999% confidence level. This is because we fit for a
simpler model than the one used in the simulation: the
data are smoothed by a wide 6◦ beam, and the thermal
dust is fitted with a one-component model, whereas the
simulation was based on a two-component model. This
may also be seen Figure 1, where the fitted spectra for
each component for this pixel are plotted. At low fre-
quencies, the data points lie systematically above the
fitted model, resulting in a clear rejection.

However, even though the model is strongly rejected
by the goodness-of-fit test, it is important to note all of
the univariate distributions are still reasonable, and the
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Fig. 4.— Marginalized two-dimensional probability distributions for the same pixel as in Figure 3, computed by MCMC. Boxes indicate
the true input values, and the contours mark the peak and the 68, 95 and 99.7% confidence levels.

CMB reconstruction is still useful. Therefore, a high χ2

does not necessarily imply that the pixel has to be dis-
carded from further analysis, but rather that extra care
has to be taken. Preferentially, the extra information in-
dicated by the high χ2 should be used to improve the
model.

6.2.2. Low-resolution full-sky maps

We now consider the reconstructed full-sky maps,
starting with the low-resolution maps as computed by
the MCMC analysis. The individual component maps
are shown in Figure 5, with reconstructions given in the
left column, differences between reconstructed and input
maps in the middle column, and estimated errors in the
right column. In the left column of Figure 6, we show
the model map used in the analysis and the resulting
goodness-of-fit χ2 distribution (as computed with param-
eter means, not the maximum likelihood values).

Starting with the goodness-of-fit map, we first note
that we should expect χ2 . 13 at 2σ confidence at high
latitudes, since the model has six degrees of freedom in
this region. This is indeed the case for two wide bands
on each side of the Galactic plane, and both the model
and the estimated parameters may therefore be accepted

as they stand. However, at very high latitudes and, less
surprisingly, at low latitudes, the goodness-of-fit is poor.

In the left column of Figure 5 we show the six recon-
structed parameter maps, and in the middle column the
actual output versus input errors. Clearly, the method
works very well, as the CMB sky map is virtually free of
artifacts, with residuals less than 10% even in the inner
Galactic plane. And with the exception of sharp bound-
aries in the foreground reconstruction, due to different
models used in different regions, the foreground results
also look encouraging.

However, as good as these results are, we warn the
reader against interpreting them as an expected perfor-
mance level for future missions. Even though our simula-
tions are as realistic as possible given our current under-
standing of foreground properties, they are certainly not
as complicated as the real sky. Considerable modeling
errors must be expected for real data sets, and sky cuts
are very likely still required for future work.

One note about the sharp boundaries seen in the fore-
ground maps is in order. If the reconstructed maps are
intended for foreground studies, such features are clearly
not acceptable. In such cases, post-processing may be
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Fig. 5.— Low-resolution parameter maps reconstructed by MCMC. The left column shows the parameter estimates, the middle column
shows the difference between reconstructed and input maps, and the right column shows the rms errors estimated by MCMC. From top to
bottom we show: 1) the thermodynamic CMB temperature; 2) the synchrotron emission amplitude relative to 23GHz; 3) the synchrotron
spectral index; 4) the free-free emission amplitude relative to 33GHz; 5) the thermal dust emission amplitude relative to 90GHz; and 6) the
thermal dust spectral index.

required, for instance by smoothing the boundary by a
Gaussian beam. On the other hand, if the maps are to be
used for CMB power spectrum or cosmological parame-
ter estimation, it is better to use the maps as they are,

and propagate the pixel errors reliably; the boundaries
are mainly due to different noise properties in the various
regions. However, we point out that the distinct bound-
aries seen in Figure 5 are at least partially due to a poorly
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Fig. 6.— Example of iterative improvement of the model map. Two MCMC runs using the same data were made. The first run included
CMB, synchrotron, and dust (both with free amplitude and spectral index) at high latitudes (green), and also free-free at low latitudes
(red). The second run fixed the dust index at 1.55 at very high latitudes (blue). The bottom row shows the χ2 distribution in the two
cases; notice the significant improvement at high latitudes resulting from removing a (non-critical) parameter from the system. Similar
improvements at low latitudes could be made by trial-and-error.

chosen model map, constructed from a WMAP galactic
mask, rather than the specific simulation under consider-
ation; manual tweaking would surely improve the results
considerably.

Returning for a moment to the goodness-of-fit map
shown in Figure 6 and comparing with the rms maps
shown in the right column of figure 5, we see that the
very high-latitude region with high χ2 corresponds di-
rectly to the thermal dust spectral index map. Further,
we also see that the dust amplitude is very low in the
same region. The interpretation is clear: thermal dust
is not well constrained in these regions because of its
low amplitude, leading to poorly constrained spectral in-
dices. This again propagates into the CMB component,
and the overall fit is unacceptable.

The solution to this problem seems obvious. Since the
main problem is unconstrained dust spectral indices, we
should manually fix them at some reasonable value. The
potential bias introduced in the CMB and other compo-
nents by doing so is very small because of the small dust
amplitude found by the first analysis. We implement this
by assigning a new model that fixes the dust spectral for
all pixels with a dust spectral index rms larger than 0.15
in the lower right panel of Figure 5. The fixed spectral
index value chosen is somewhat arbitrarily chosen to be
1.55. The modified model map is shown in the top right
panel of Figure 6.

We now repeat the analysis, and obtain the goodness-
of-fit map shown in the lower right panel of Figure 6.
Clearly, introducing a new model at high latitudes had a

very beneficial impact on the results. In principle, we
could now proceed with similar considerations at low
latitudes, and obtain reasonable fits over the full sky.
However, since our main purpose in this paper is to illus-
trate the method, we are content with the slightly revised
model map shown in the top right panel of Figure 6, and
use this map in the rest of the paper.

We now consider the error estimation accuracy of the
MCMC algorithm. In the left panel of Figure 7 we plot
a histogram of the relative CMB reconstruction error
δ = (∆Test − ∆Tin)/σest, where ∆Test is the estimated
CMB temperature, ∆Tin is the true value, and σest is
the estimated error. If both the amplitude and the error
are perfectly estimated, the pixel histogram will match a
Gaussian distribution with vanishing mean and unit vari-
ance. (In this plot, we include only pixels in the inter-
mediate latitude region with a goodness-of-fit χ2 < 13.)
Obviously, the algorithm works very well, as the bias is
very small indeed and the estimated error is very close
to the true error.

Finally, in Figure 8 we plot a histogram of the χ2s
of the same pixels, and compare it to a χ2

6 distribution.
Clearly, there is a small shift towards high values, indi-
cating that there are pixels within the set for which the
model is rejected. Once again, for an analysis of real
data, we should then go back to the sky maps shown in
Figures 5 and 6, and try to locate the “offending” pixels.

We conclude this section by making a few comments
on the computational cost of the method. Running the
MCMC analysis for each pixel is by far the most ex-
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(a) Low-resolution MCMC results
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(b) High-resolution analytic results

Fig. 7.— CMB reconstruction accuracy shown as a histogram of δ = (∆Test − ∆Tin)/σest for pixels in the intermediate-latitude region.
Results from the low-resolution MCMC analysis are shown in the left panel, and from the high-resolution analytical analysis in the right
column. For perfect reconstruction of both CMB amplitude and error, both curves would match a Gaussian distribution with vanishing
mean and unit variance (dashed curve).
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Fig. 8.— Distribution of χ2 from the low-resolution MCMC anal-
ysis, shown for the intermediate latitude region, with six degrees
of freedom. The dashed curve shows the expected χ2

6
distribution.

pensive step of the algorithm. For well-behaved pixels,
we find that it takes on the order of 100 CPU seconds
(divided over four processors per pixel) to reach the con-
vergence criteria described above. For an Nside = 32
map with 12,288 pixels, it therefore takes about 350 CPU
hours per run. For clusters with of order 102 processors,
this is not a major problem. Further, since the algorithm
scales with the number of pixels, and parallelizes trivially,
it is not unreasonable to apply it at higher resolutions,
say, at Nside = 128 for 6000 CPU hours.

6.2.3. High-resolution full-sky maps

Having estimated the non-linear parameters by
MCMC, the next step is to estimate the component am-
plitudes from the full-resolution sky maps. As discussed
earlier, this can be done either with a Gibbs sampling ap-
proach or with an analytic approach. In this paper, we

choose the latter route, and leave the former to a future
publication.

The results from applying the method described in
§ 5.5 are shown in Figure 9. Once again, we see that
the reconstructed parameter maps look visually com-
pelling. There are few visible signs of contamination in
the CMB reconstruction, and, indeed, even inside the
central Galactic plane the errors are only a few tens of
µK.

In the right panel of Figure 7 we plot the relative CMB
reconstruction error for the high-resolution map, as we
did for the low-resolution map in the previous section.
Two facts are clear from this plot. First, the bias is small,
indicating that the analytic point estimator is quite accu-
rate. Second, the histogram does not match the Gaussian
distribution well, but is rather focused around smaller
values. In other words, the errors are over-estimated by
some small factor by the analytic error propagation for-
mula. This should not be surprising, given the assump-
tions that went into those calculations. Nevertheless, the
estimated errors are in fact of the correct order of magni-
tude, and they can therefore be used as a mental guide,
although not for quantitative work.

In Figure 10 we plot the power spectrum of the re-
constructed high-resolution CMB map, the true realiza-
tion specific input spectrum, and the ensemble-averaged
spectrum. The reconstructed spectrum was computed by
full-sky integrals without noise weights. The results are
therefore excellent—the reconstruction is virtually per-
fect up to ℓ = 200, after which a small noise term starts
to make an impact, before the 1◦ beam renders the recon-
struction arbitrary at ℓ = 300. From this plot it seems
clear that we were too conservative when choosing a 6◦

beam for the low-resolution analysis, and that the com-
bined Planck and six-year WMAP data can easily handle
higher resolutions.
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Fig. 9.— High-resolution parameter maps reconstructed by direct solution of linear systems, fixing spectral indices at low-resolution
map values. The left column shows the parameter estimates, the middle column shows the difference between output and input maps, and
the right column shows the analytically estimated errors. From top to bottom we show: 1) the thermodynamic CMB temperature; 2) the
synchrotron emission relative to 23GHz; 3) the free-free emission relative to 33GHz; and 4) the thermal dust emission relative to 90GHz.
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Fig. 10.— Reconstructed (blue curve) and input (red curve)
CMB power spectra. The ensemble-averaged spectrum is shown as
a black smooth curve. The reconstructed spectrum was computed
by full-sky integration without noise weights or sky cut.

7. OUTSTANDING PROBLEMS

As demonstrated in the previous section, the compo-
nent separation method presented in this paper works
well on simulated data. However, there are a few out-
standing issues that we have not taken into account, but
that will have to be addressed prior to analysis of real
data. The most important of these are gain and zero-
point calibration, dipole corrections, noise correlations,
and beam asymmetries.

First, our algorithm requires all sky maps to be prop-
erly calibrated with respect to gain and zero-point. Usu-
ally, the gain is calibrated using the CMB dipole, but this
can be difficult for channels that are highly foreground-
contaminated. Also, zero-point calibration is never easy.

Closely related to these issues is dipole subtraction.
The CMB dipole itself is hard to observe because of the
large Doppler-dipole induced by the motion of the Solar
system through space; it is usually subtracted in the map
making process. Nevertheless, residual dipoles may cause
serious problems for our algorithm unless accounted for.

Finding reliable calibration methods for each of the



19

above problems is clearly essential. Fortunately, the
number of degrees of freedom represented by these is-
sues is quite small, and it may be possible to include
them in the analysis by replacing the signal model Sν in
equation 2 with

Sν(p)← gνSν(p) +

1
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓm,νYℓm(p). (36)

Following a rough calibration with external techniques,
one could then use methods similar to those described in
this paper to optimize the gains gν and monopole and
dipole coefficients aℓm,ν.

From a conceptual point of view, correlated noise poses
a more serious problem. For Planck, for example, the
main effect will be to introduce stripes in the sky maps
along the scanning path of the detectors, and locally, this
has the same effect as an overall offset. Properly speak-
ing, correlated noise is a problem for map making more
than it is for component separation; however, residual
effects can be expected. Only when actual data are in
hand will it be clear how serious a problem it is.

Finally, in this paper we have assumed that all detec-
tors have identical beam response functions. This obvi-
ously is not true for any real system, and corresponding
errors are unavoidable. Fortunately, this is likely to have
a negligible effect on the low-resolution analysis, since we
smooth with an additional degree-scale beam, strongly
suppressing small-scale asymmetries. Only in the high-
resolution analysis is this effect likely to be important.

8. DISCUSSION

In this paper, we approach the problem of component
separation with CMB data from the perspective of pa-
rameter estimation. Our goal is to propagate foreground
uncertainties all the way from observed data through to
the final products, most importantly to the CMB power
spectrum and cosmological parameters. This is more eas-
ily facilitated with standard parameter techniques than
with image processing techniques.

We proposed and implemented one particular algo-
rithm for performing this task, based on multi-frequency
parametric model fits established by means of a hybrid of
Markov Chain Monte Carlo and analytic methods. The
method was then shown to work very well on simulated
data, with properties corresponding to those of the future
Planck and six-year WMAP experiments.

We also outlined how to propagate the foreground-
induced errors to the CMB power spectrum and cos-

mological parameter errors, using the output from the
MCMC analysis presented here as the input in a Gibbs
sampling algorithm. As always, only an actual imple-
mentation will prove whether this method works or not,
but the theoretical groundwork appears to be sound, and
no unsurmountable computational problems have been
identified. Therefore, if this approach proves success-
ful, we will have a complete, mathematically consistent,
end-to-end solution to the foreground problem in CMB
analysis.

While we only considered temperature anisotropy ob-
servations in the present paper, the method is completely
general, and can equally well handle polarization mea-
surements, as will be demonstrated in a future study.
We will also apply the method to two specific problems.
First, we will study the optimization of frequency cov-
erage and signal-to-noise ratio in future polarization ex-
periments. Since our method provides error bars on all
estimated quantities, it is straightforward to compare dif-
ferent experiment designs. Modeling errors will be an
integral part of this work, since such uncertainties have
a direct impact on the optimal frequency range to ob-
serve. Second, we will apply the method to the currently
available WMAP data.
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(Górski et al. 2005) and analysis package for deriving the
results in this paper. We also acknowledge use of the
Legacy Archive for Microwave Background Data Analy-
sis (LAMBDA). This work was partially performed at the
Jet Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronautics
and Space Administration. CB was supported in part by
the NASA Long Term Space Astrophysics (LTSA) grant
NNG04GC90G. EP is an ADVANCE fellow (NSF grant
AST-0340648), also supported by NASA grant NAG5-
11489. KMS was supported by NASA NAG5-10840,
the DOE and the Packard Foundation. This research
was supported by a Marie Curie European Reintegration
Grant within the 6th European Community Framework
Programme.

18 http://www.eso.org/science/healpix/

REFERENCES

Baccigalupi, C., Burigana, C., Perrotta, F., De Zotti, G., La Porta,
L., Maino, D., Maris, M., & Paladini, R. 2001, A&A, 372, 8

Baccigalupi, C. 2003, New Astronomy Review, 47, 1127
Baccigalupi, C., Perrotta, F., de Zotti, G., Smoot, G. F., Burigana,

C., Maino, D., Bedini, L., & Salerno, E. 2004, MNRAS, 354, 55
Banday, A. J., Dickinson, C., Davies, R. D., Davis, R. J. & Górski,
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Hivon, E., Górski, K. M., Netterfield, C. B., Crill, B. P.,Prunet, S.,

& Hansen, F. 2002, ApJ, 567, 2
Hobson, M. P., Jones, A. W., Lasenby, A. N., & Bouchet, F. R.

1998,MNRAS, 300, 1
Jewell, J., Levin, S., & Anderson, C. H. 2004, ApJ, 609, 1
Jonas, J. L., Baart, E. E., & Nicolson, G. D. 1998, MNRAS, 297,

977
Kogut, A., Banday, A.J., Bennett, C.L., Hinshaw, G.F., Górski,
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