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ABSTRACT

We repeat the directional spherical real Morlet wavelet lywis, used to detect
non-Gaussianity in the Wilkinson Microwave Anisotropy Peo(WMAP) 1-year data
(McEwen et al. 20093 on the WMAP 3-year data. The non-Gaussian signal prelyious
detected is indeed present in the 3-year data, althoughighdicance of the detection is
reduced. Using our most conservative method for constrgsignificance measures, we find
the significance of the detection of non-Gaussianity drops©83+0.4% to 949+ 0.7%; the
significance drops from 98+ 0.3% to 972 + 0.5% using a method based on tyestatistic.
The wavelet analysis allows us to localise most likely searaf non-Gaussianity on the sky.
We detect very similar localised regions in the WMAP 1-yead 8-year data, although the
regions extracted appear more pronounced in the 3-year\tatan all localised regions are

excluded from the analysis the 3-year data is consisteht@atussianity.
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1 INTRODUCTION

Recent measurements of the cosmic microwave background

(CMB) anisotropies, in particular those made by the Wilkims
Microwave Anisotropy Probe (WMAP), provide data of unprece
dented precision with which to study the origin of the unseer
Such observations have lent strong support to the standed c
mological concordance model. Nevertheless, many detailsaa-
sumptions of the concordance model are still under closgisgr
One of the most important and topical assumptions of thedarah
model is that of the statistics of the primordial fluctuatidhat give
rise to the anisotropies of the CMB. In the simplest infladign
models, primordial perturbations seed Gaussian temperé#tic-
tuations in the CMB that are statistically isotropic ovee tky.
However, this is not necessarily the case for non-standdlation-
ary models or various cosmic defect scenarios.

The assumptions of Gaussianity and isotropy have been ques
tioned recently with many works highlighting deviationorfr
Gaussianity in the WMAP 1-year data (WMAPBgennett et al.
2003, calculating measures such as the bispectrum and Minkowsk
functionals Komatsu etal. 2003 Magueijo & Medeiros 2004
Land & Magueijo 2005aMedeiros & Contaldi 200f the genus
(Colley & Gott 2003 Eriksen et al. 200y correlation functions
(Gaztanaga & Wagg 200&riksen et al. 2005Tojeiro et al. 2008,
low-multipole alignment statisticsd¢ Oliveira-Costa et al. 2004
Copi etal. 2004 2005 Schwarz etal. 20Q4 Slosar & Seljak
2004 Weeks 2004Land & Magueijo 2005[x,d,e; Bielewicz et al.
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2005 de Oliveira-Costa & Tegmark 20)6 structure alignment
statistics (Viaux et al. 200y phase associationsC{iiang et al.
2003 Chiang & Naselsky 20Q4Coles et al. 2004 Dineen et al.
2009, local curvature flansen et al. 20G4Cabella et al. 2005
the higher criticism statistic((ayon et al. 2005 hot and cold
spot statistics l(arson & Wandelt 2004 2009, fractal statis-
tics (Sadegh Movahed et al. 200and wavelet co@icient statis-
tics (Vielva et al. 2003 Mukherjee & Wang 2004McEwen et al.
200552006 Cruz et al. 200520069. Some statistics show consis-
tency with Gaussianity, whereas others provide some evaléor

a non-Gaussian signal giod an asymmetry between the northern
and southern Galactic hemispheres. Although the recegitpsed
WMAP 3-year data (WMAP3Hinshaw et al. 2006is consistent
with the WMAP1 data, a more thorough treatment of beams; fore
grounds and systematics in the 3-year data, in addition tar-a f
ther two years of observing time, mean that WMAP3 provides a

more reliable data-set on which to confirm or refute previmis
sults. A Gaussianity analysis is performed on the WMAP3 data
by Spergel et al(2006), using the one point distribution function,
Minkowski functionals, the bispectrum and the trispectruvio
evidence is found for non-Gaussianity; however, the asttuur
not re-evaluate the large number of statistical tests the¢ fbeen
used to detect non-Gaussianity in the WMAP1 data. Indeed; de
ations from Gaussianity and isotropy have recently beeectiet

in the WMAP3 data, using measures such as anisotropy statis-
tics (Helling et al. 2006 Bernui et al. 200p phase associations
(Chiang et al. 200pand wavelet ca@icient statistics Cruz et al.
2006h, with little change in the significance levels obtained by
each technique for the first and third year data. Althougldépar-


http://lanl.arXiv.org/abs/astro-ph/0604305v2

2 J.D. McEwen et al.

tures from Gaussianity and isotropy detected in the WMAPRA an
WMAP3 data may simply highlight unremoved foreground con-
tamination or other systematics, which itself is of impoda for
cosmological inferences drawn from the data, if the souft¢kese
detections is of cosmological origin then this would havpamant
implications for the standard cosmological model.

In this letter we focus on the significant detection of non-
Gaussianity that we made previously in the WMAP1 data using
directional spherical wavelet&/ICEwen et al. 20055 to see if the
detection is still present in the WMAP3 data. The remainder o
this letter is organised as follows. In Sectigrwe briefly review
the analysis procedure and discuss the data maps consitred
sults are presented and discussed in Se@jdrefore concluding
remarks are made in Sectidn

2 NON-GAUSSIANITY ANALYSIS

We repeat on the WMAP3 data our non-Gaussianity analysis per
formed previously on the WMAP1 dat&iCEwen et al. 2005z fo-
cusing only on the most significant detection of non-Gaustsia
made previously. We refer the reader to our previous work
(McEwen et al. 2005afor a detailed description of the analysis
procedure and present here only a very brief overview.

We apply a spherical wavelet analysis to probe the WMAP
data for non-Gaussianity. Wavelets are an ideal tool tockefar
deviations from Gaussianity due to the scale and spatialikz
tion inherent in a wavelet analysis. To perform a waveletyana
sis of full-sky CMB maps we apply our fast continuous spredric
wavelet transform (CSWTYIcEwen et al. 2005)) which is based
on the spherical wavelet transform developed by Antoiney-Va
dergheynst and colleaguesr(foine & Vandergheynst 1998999
Antoine et al. 20022004 Wiaux et al. 200y and the fast spher-
ical convolution developed byvandelt & Gorski(2001). We use
only the real Morlet wavelet in this analysis since it gave th
most significant detection of non-Gaussianity in the WMAR1ad
(McEwen et al. 2005a

To minimise the contribution of foregrounds and systemat-
ics to CMB anisotropy measurements, the WMAP assembly con-
tains a number of receivers that observe at a range of fretegen
(Bennett et al. 20083 In this analysis we consider the signal-to-
noise ratio enhanced co-added map constructed from the WAVIAP
data. This map is constructed by the same procedure dedggne
erally by Komatsu et al(2003 and described in the context of our
non-Gaussian analysis bycEwen et al(20059. We use the fore-
ground reduced sky maps and apply the KpO mask to remove resid
ual Galactic emission and known point sources. The foregtou
maps and mask are available from the Legacy Archive for Mi-
crowave Background Data Analysis (LAMBDA) website

To quantify the significance of any deviations from Gaussian
ity we perform 1000 Monte Carlo simulations. This involvass-
lating 1000 Gaussian co-added maps. Each simulated map-s co
structed in an analogous manner to the co-added map caestruc
from the data. A Gaussian CMB realisation is simulated from t
theoretical power spectrum fitted by the WMAP team (the power
spectrum we use is also available from LAMBDA). Measurersent
made by the various receivers are then simulated by comglvi
with realistic beams and adding anisotropic WMAP3 noise for

1 httpy/cmbdata.gsfc.nasa.gov
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Figure 1. Real Morlet wavelet cdéicient skewness statisticy (= 72°).

Points are plotted for the WMAP1 data (solid, green, squai®AP3

data (solid, blue, circles) and the WMAP3 data with localisegions re-
moved (dashed, blue, triangles). Confidence regions aatairom 1000
WMAP3 Monte Carlo simulations are shown for 68% (red), 95%&ai(ge)
and 99% (yellow) levels, as is the mean (solid white line).

each receiver. The simulated observations for each recaig¢hen
combined to give a co-added map.
To probe the WMAP3 data for deviations from Gaussianity the

skewness of the real Morlet wavelet ¢ogents is examined over

a range of scales and orientations (the scales and or@mgaton-
sidered are defined inicEwen et al. 20052 Any deviation from
zero is an indication of non-Gaussianity in the data. An fidah
analysis is performed on the 1000 Gaussian simulationsantijy

the significance of any deviations.

3 RESULTS

The skewness of the real Morlet wavelet fimgents of the co-
added WMAP3 map are displayed in Figutewith confidence
intervals constructed from the 1000 WMAP3 Monte Carlo simu-
lations also shown. Only the plot corresponding to the ¢aition

of the maximum deviation from Gaussianity is shown. The non-
Gaussian signal present in the WMAP1 data is clearly préséne
WMAP3 data. In particular, the large deviation on saale= 550

and orientationy = 72 is almost identical (although it is in fact
very marginally lower in the WMAP3 data).

Next we consider in more detail the most significant deviatio
from Gaussianity on scaky; = 550 and orientatiory = 72°. Fig-
ure 2 shows histograms of this particular statistic construéteoh
the WMAP1 and WMAP3 Monte Carlo simulations. The measured
statistic for the WMAP1 and WMAP3 data is also shown on the
plot, with the number of standard deviations each obsematevi-
ates from the mean of the appropriate set of simulationsdigtg-
bution of this skewness statistic is not significantly atebetween
simulations that are consistent with WMAP1 or WMAPS3 datae Th
observed statistics for the WMAP1 and WMAP3 data are similar
but the slightly lower value for WMAP3 is now more apparent.

To quantify the statistical significance of the detectedialev
tion from Gaussianity we consider two techniques. The fesht
nique involves comparing the deviation of the observedsstato
all statistics computed from the simulations. This is a v@gser-
vative means of constructing significance levels. The sétech-
nique involves performing &2 test. In both of these tests we re-
late the observation to all test statistics originally conegal, i.e.
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Figure 2. Histograms of real Morlet wavelet cfieient skewness
(a11 = 550; y = 72°) obtained from 1000 Monte Carlo simulations. His-
tograms are plotted for simulations in accordance with WNIABreen)
and WMAP3 (blue) observations. The observed statisticshierVMAP1
and WMAP3 maps are shown by the green and blue lines resglgctihe
number of standard deviations these observations deviatethe mean of
the appropriate set of simulations is also displayed.

to both skewness and kurtosis statistidSor a more thorough de-
scription of these techniques seeEwen et al(20059. Searching
through the 1000 WMAP3 simulations, 51 maps have an equiva-
lent or greater deviation that the WMAP3 data in any singit te
statistic computed for that map. Using the very consergdiist
technique, the significance of the detection of non-Ganggiin
the WMAP3 data may therefore be quoted at9940.7% (an ex-
pression for the & errors quoted on significance levels is derived
in AppendixA). The distribution ofy? values obtained from the
simulations is shown in Figur8. The y? value obtained for the
data is also shown on the plot. The distribution of jfevalues
is not significantly altered between simulations that anesisient
with WMAP1 or WMAP3 data. The value computed for the
data, however, is significantly lower for the WMAP3 data. Gom
puting the significance of the detection of non-Gaussiattiityctly
from they? distribution and observation, the significance of the de-
tection of non-Gaussianity in the WMAP3 data may be quoted at
97.2+0.5%. Using both of the techniques outlined above the signif-
icance of the detection of non-Gaussianity made with the VIRAA
data is slightly lower than that made with the WMAP1 data. Nev
ertheless, the non-Gaussian signal is still present atrafisint
level.

A wavelet analysis allows the spatial localisation of iptdf
ing signal characteristics. The most pronounced deviatioom
Gaussianity in the WMAP data may therefore be localised en th
sky. The real Morlet wavelet céiecients of the WMAP3 data cor-
responding to the most significant detection of non-Ganggian
scalea;; = 550 and orientationy = 72 are displayed in Fig-
ure4. Thresholded wavelet cicient maps for both the WMAP1
and WMAP3 data are also shown in order to localise the most
pronounced deviations. The regions localised in the WMARd. a
WMAP3 data are very similar, although the localised regiaps
pear slightly more pronounced, in the sense that the peaks ar
larger, in the WMAP3 data. To investigate the impact of |
regions on the initial detection of non-Gaussianity, thalgsis is

2 Although we recognise the distinction between skewnesskarisis,
there is no reason to partition the set of test statistias sitewness and
kurtosis subsets. The full set of test statistics must bsidered.
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Figure 3. Histograms of normaliseg? test statistics computed from real
Morlet wavelet cofficient statistics obtained from 1000 Monte Carlo simu-
lations. Histograms are plotted for simulations in accoogawith WMAP1
(green) and WMAP3 (blue) observations. Tyevalue computed for the
WMAP1 and WMAP3 maps are shown by the green and blue linegcesp
tively. The significance of these observations, computenhfthe appropri-
ate set of simulations, is also displayed.

repeated with the WMAP3 localised regions excluded from the
analysis. The resulting skewness statistics are shownebgabhed
line in Figurel. Interestingly, the highly significant detections of
non-Gaussianity are eliminated when these localised msgéwe
removed.

In our previous non-Gaussianity analysisloEwen et al.
20059 we also performed a preliminary noise analysis and found
that noise was not atypical in the localised regions that eteal.
The localised regions have not changed in the WMAP3 dataehen
we do not expect this finding to change. In an additional wdrk o
ours (VicEwen et al. 200)pthat investigated a Bianchi \{{lcompo-
nent as a possible source of non-Gaussianity — which, intadlg,
we found not to be the predominant source of non-Gaussianity
performed a preliminary analysis of foregrounds and syatmEs
We concluded that foregrounds or systematics were not kiéyli
source of the detected non-Gaussianity. Again, we do no¢umel
this finding to change in the WMAP3 data since both foregreund
and systematics are treated more thoroughly.

4 SUMMARY AND DISCUSSION

We have repeated on the WMAP3 data the directional spherical
real Morlet wavelet analysis used to make a significant detec
of non-Gaussianity in the WMAP1 dat&/¢Ewen et al. 200592
The non-Gaussian signal previously detected is indeedptés
the WMAP3 data, although the significance of the detectiae-s
duced. Using our first very conservative method for consimgc
significance measures we find the significance of the detecfio
non-Gaussianity drops from @8+ 0.4% to 949+ 0.7%. Using our
second technique for constructing significance measuraishvis
based on a? analysis, the significance of the detection drops from
99.3 + 0.3% to 972 + 0.5%. We have no intuitive explanation for
this drop in significance.

The most likely sources of non-Gaussianity were also lo-
calised on the sky. We detect the same regions in the WMAP3
data as found in the WMAP1 data, although the localised negio
extracted appear slightly more pronounced in the WMAP3.data
When all localised regions are excluded from the analysiitita
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(a) WMAP3 wavelet cocients

(b) WMAPS thresholded wavelet cfiients

(c) WMAPL1 thresholded wavelet cfigients

Figure 4. Real Morlet spherical wavelet cficient maps and thresholded
versions &11 = 550;y = 72°). To localise most likely deviations from
Gaussianity on the sky, the dtieient map is thresholded so that only those
codficients above & (in absolute value) remain. All sky maps (here and
subsequently) are illustrated in Galactic coordinatet} thie Galactic cen-
ter in the middle.

is consistent with Gaussianity. An interesting structsrextracted
in the upper-left region of the thresholded maps (see Fifriee.
in the vicinity of Galactic coordinated, p) = (120, 25%). In a fu-
ture work we intend to use optimal filters on the sphere, ijuu:
tion with our fast CSWT analysis tool, to search for cosmimgs
in the CMB, a possible source of the non-Gaussianity thatave h
detected in both the WMAP1 and WMAP3 data.
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APPENDIX A: ERRORS ON SIGNIFICANCE LEVELS

In this appendix we derive the standard deviation of a sicguiite
level determined from Monte Carlo (MC) simulations. Suppag
performn independent MC simulations. Letdenote the probabil-
ity that an MC simulation chosen at random has a value for some
test statistic that is larger that the corresponding vaereved from
the real data (hencp is the underlying significance we attempt
to estimate). Choosing an MC simulation at random and definin
whether it has a test statistic greater than that of the thas.¢or-
responds to a Bernoulli trial with a probability of succegsi@ to
p.

Suppose we observesuccesses in theMC simulations. The
likelihood for x is

© 2006 RAS, MNRASD0OQ, 1-5

The maximum likelihood (ML) estimatp 6f pis most easily given

which recovers the intuitive result. Approximating the pbaf the
likelihood near its peak by a Gaussian, we may approximage th
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