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The Interplay between Star Formation and the Nuclear

Environment of our Galaxy: Deep X-ray Observations of the

Galactic Center Arches and Quintuplet Clusters
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ABSTRACT

The Galactic center (GC) provides a unique laboratory for a detailed examination of the
interplay between massive star formation and the nuclear environment of our Galaxy. Here, we
present an 100 ks Chandra ACIS observation of the Arches and Quintuplet star clusters. We also
report on a complementary mapping of the dense molecular gas near the Arches cluster made
with the Owens Valley Millimeter Array. We present a catalog of 244 point-like X-ray sources
detected in the observation. Their number-flux relation indicates an over-population of relatively
bright X-ray sources, which are apparently associated with the clusters. The sources in the core of
the Arches and Quintuplet clusters are most likely extreme colliding wind massive star binaries.
The diffuse X-ray emission from the core of the Arches cluster has a spectrum showing a 6.7-keV
emission line and a surface intensity profile declining steeply with radius, indicating an origin in a
cluster wind. In the outer regions near the Arches cluster, the overall diffuse X-ray enhancement
demonstrates a bow shock morphology and is prominent in the Fe Kα 6.4-keV line emission
with an equivalent width of ∼ 1.4 keV. Much of this enhancement may result from an ongoing
collision between the cluster and the adjacent molecular cloud, which have a relative velocity
& 120 km−1. The older and less compact Quintuplet cluster contains much weaker X-ray sources
and diffuse emission, probably originating from low-mass stellar objects as well as a cluster wind.
However, the overall population of these objects, constrained by the observed total diffuse X-ray
luminosities, is substantially smaller than expected for both clusters, if they have normal Miller
& Scalo initial mass functions. This deficiency of low-mass objects may be a manifestation of the
unique star formation environment of the Galactic center, where high-velocity cloud-cloud and
cloud-cluster collisions are frequent.

Subject headings: Galaxy: center, individual (Arches, Quintuplet) — X-rays: ISM — stars: formation,
Wolf-Rayet, winds, outflows — ISM: clouds

1. Introduction

Nuclear regions of galaxies are the breeding
ground of high energy phenomena and processes,
which are manifested observationally by active
galactic nuclei (AGNs) and star-bursts. Such
activities are believed to be important in both
regulating galaxy evolution and generating ther-
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mal and chemical feedback into the intergalactic
medium. The best site for a detailed study of
the activities and their complex interaction with
the physically extreme environment in the nuclear
regions of galaxies is our own nucleus, only ∼ 8
kpc away. We can observe the Galactic center
(GC) with a spatial resolution and sensitivity that
are factors & 300 and & 105 better than those
available for even nearby nuclear starburst galax-
ies (e.g., M82 and NGC 253) or AGNs (e.g., M81).

While the super-massive black hole at the dy-
namic center of the Galaxy is only weakly active at
present (Baganoff et al. 2001), much of the cur-
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rent high-energy activity in the GC is due to the
presence of the three young massive stellar clus-
ters in the central 50 pc: Arches (with age equal
to 2 − 3 × 106 yrs; core or half-mass radius 0.4
pc), Quintuplet (3 − 6 × 106 yrs; 1.0 pc), and the
Central cluster (3 − 7 × 106 yrs; 0.5 pc) (Figer et
al. 1999, 2002, 2004; Stolte et al. 2002; Genzel et
al. 2003). These clusters are responsible for about
half of the Lyman continuum flux emitted in the
central several 102 pc of the GC. Massive stars are
also expected to release large amounts of mechani-
cal energy into the GC region in form of fast stellar
winds and supernovae, although the actual rate is
highly uncertain. This mechanical energy input
shapes the surrounding ISM. The present work fo-
cuses on the Arches and Quintuplet clusters. The
GC cluster is less massive and older. Its location
in the circum-nuclear region makes its X-ray prop-
erties difficult to characterize and will not be dealt
with here (however see Nayakshin et al. 2005).

Both the Arches and Quintuplet clusters are
known X-ray emitters. Discovered serendipitously
at a large off-axis angle (∼ 7′) in an initial 50 ks
Chandra ACIS-I observation (Yusef-Zadeh et al.
2002), the X-ray emission arising from the Arches
cluster was resolved into discrete and diffuse com-
ponents. In a later 12 ks ACIS-I observation dur-
ing a large-scale GC survey (Wang et al. 2002a),
the X-ray core of the cluster was further resolved
into two separate components (Wang 2003; Law
& Yusef-Zadeh 2004). The apparent diffuse X-
ray component was speculated to arise from the
so-called cluster wind (Raga et al. 2001; Yusef-
Zadeh et al. 2002). Because of the high number
density of massive stars, their stellar winds collide
with each other and can be largely thermalized to
form a plasma with an initial temperature of a few
times 107 K. The expanding of this plasma may
then be considered as a wind from the entire clus-
ter. However, the quality of the previous observa-
tions is not adequate for a quantitative test of this
scenario. In particular, the diffuse X-ray spectrum
shows a distinct 6.4-keV emission line from neu-
tral or weakly ionized irons. The origin of this line
is unknown. The X-ray emission from the Quintu-
plet cluster is substantially weaker. The detection
of a few discrete sources and possible diffuse emis-
sion in the region has been reported; but detailed
spectral and timing information is not yet avail-
able (Wang 2003; Law & Yusef-Zadeh 2004)

To further the study of these two clusters and
their relationship to the environment, we have ob-
tained an 100 ks Chandra ACIS-I observation.
We have further carried out a complementary
imaging study of the molecular gas in the im-
mediate surroundings of the Arches cluster us-
ing the six-element Owens Valley Millimeter Ar-
ray. With these observations and other multi-
wavelength data, we present an in-depth study of
various point-like and diffuse X-ray sources in and
around the clusters.

In this paper, we assume that the distance to
the GC is 8 kpc (hence 1′ = 2.5 pc) and quote
statistical errors from our X-ray data analysis at
the 90% confidence level, unless being pointed out
otherwise. The solar abundance is in reference to
Anders & Grevesse (1989); thus the number of
iron relative to hydrogen is 4.68 × 10−5, which is
considerably greater than 2.69 × 10−5 in the so-
called ISM abundance (Wilms & McCray 2002),
for example.

2. Observations and Data Reduction

2.1. Chandra Observations

Our deep Chandra ACIS-I observation (Obs.
ID: 4500) was carried out on June 9, 2004. The
Arches cluster was placed about 1′ away from the
aim-point to minimize the effect of the CCD gaps
on mapping the extended X-ray emission around
the cluster. This slight offset from the axis had
a negligible effect on the spatial resolution for the
Arches cluster. We used the “very faint” mode
for a better discrimination and removal of charged
particle induced events. We have reprocessed the
data, using the CIAO software (version 3.2.1)
and calibration database (version 3.0.0). This
reprocessing includes both charge transfer ineffi-
ciency (CTI) and gain corrections as well as the
removal of time intervals contaminated by back-
ground flares. The total reprocessed good time
(live-time) is 98.6 ks. We create ACIS-I event im-
ages and corresponding exposure maps in the 1-
2.5, 2.5-4, 4-6, and 6-9 keV bands.

We detect X-ray sources, following the same
procedure as detailed in Wang (2004). The detec-
tion, optimized for point-like sources, uses a com-
bination of algorithms: wavelet, sliding-box, and
maximum likelihood centroid fitting. The source
detections are carried out in the 1-4 keV, 4-9 keV,
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and 1-9 keV bands. The detected sources in the
three bands are merged together. Multiple detec-
tions with overlapping 2σ centroid error circles are
considered to be the same source, and the centroid
with the smallest error is adopted. The accepted
source candidates generally have individual local
false detection probabilities P ≤ 10−7. But in the
vicinity (2′ × 2′ field) of the clusters, we also in-
clude sources detected with reduced significances
10−7 < P ≤ 10−5. Over the entire search, the
expected false detection probability is ∼ 1.

We check the astrometry of the X-ray observa-
tion, based on the multi-wavelength comparisons.
A SIMBAD search gives some potential counter-
parts within the 3σ error radius around each de-
tected X-ray source. A few sources in the Arches
cluster have radio counterparts, which have ac-
curate positions (∼ 0.′′1; Lang et al. 2005. A
comparison of the two bright X-ray/radio pairs
(92/AR1 and 93/AR4; Table 2) shows that their
positions are all within 0.′′3, consistent with their
statistical and systematic uncertainties (Table 1).
Finding exact matches of X-ray sources with near-
IR objects is generally more difficult, because they
are numerous and typically have relatively large
absolute position uncertainties of ∼ 1′′ − 2′′. We
approximately correct for the relatively shifts of
the near-IR positions to the X-ray positions, us-
ing the original HST NICMOS observations of the
Arches and Quintuplet clusters as well as the co-
ordinates of individual NIR objects (2, 6, 7, and 9
for the Arches and 211, 242, 231, and 257 for the
Quintuplet) listed in (Figer et al. 1999a; Figer et
al. 2002). The HST-to-Chandra RA. and Dec.
shifts are -0.′′52 and 0.′′29 for the Arches cluster
and -0.′′43 and -0.′′32 for the Quintuplet cluster,
respectively. These shifts are then applied to the
NICMOS images to facilitate the comparison with
the X-ray data. The uncertainties in these astrom-
etry corrections should be around 0.′′3, dominated
by the errors in the X-ray source centroids.

To construct “diffuse” X-ray maps, we ex-
cise the detected sources from the ACIS-I data.
For each source with a count rate (CR) ≤

0.01 counts s−1, we exclude a circular region with
a radius of 1.5 times the 90% PSF energy enclosed
radius (EER). For sources with CR > 0.01 cts/s,
this radius is multiplied by an additional factor of
1+log(CR/0.01) to further minimize the contam-
ination from the PSF wing.

For the background subtraction in our imaging
analysis, we use the blank-sky data with a total
exposure of 550 ks. The data are re-projected to
mimic individual observations. The background
subtraction is mostly to remove the contribution
from events induced by charged particles. Of
course, the blank-sky data also contains cosmic
X-ray radiation. Its intensity varies from one part
of the sky to another, mostly at energies below ∼ 1
keV. At higher energies, the radiation is negligible,
compared to the fluxes due to charged particle-
induced events and to the emission from the GC
region. The combination of the background sub-
traction and the exposure correction then gives the
flat-fielded intensity images in individual bands.

In addition to the broad-band images, we also
construct narrow-band images of the prominent
6.4-keV and 6.7-keV emission lines in the energy
ranges of 6.25-6.55 keV and 6.55-7 keV. Because
the counting statistics at energies greater than 7
keV is too poor, we estimate the continuum con-
tribution to these narrow bands, based on the in-
tensities measured in the 4-5 keV and 5-6.2 keV
bands. We assume an intrinsic power law spectral
shape of the blank-sky background-subtracted dif-
fuse emission in the 4-7 keV range and account
for both the effective area and energy response of
the instrument, using the convolved model out-
puts from the X-ray spectral analysis software
XSPEC. The continuum-subtracted line intensity
image, divided by the specific continuum inten-
sity, gives the equivalent width (EW) map of the
line. The calculation at each image pixel is car-
ried out adaptively, using a Gaussian kernel with
its size adjusted to achieve a signal-to-noise ratio
greater than five at each step.

We further include all available archival ACIS-I
observations that were taken before our deep ob-
servation and covered the clusters (Yusef-Zadeh
et al. 2002; Wang et al. 2002a) in analyzes that
do not require the maximum spatial resolution of-
fered by our on-axis observation. The combined
data have an effective exposure of 157 ks at Arches
and 160 ks at Quintuplet. Source detections are
also carried out for these individual observations
and are used to examine the potential long-term
variability of the sources in the close vicinity of the
clusters. For detailed spatial and spectral analyzes
of the Arches cluster, we use only our on-axis deep
Chandra observation. But for the Quintuplet clus-
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ter, all the observations are off-axis and and are
thus used. Because the effective area and spec-
tral response depend on both time and position,
we extract spectra from individual observations
separately and then combine them together using
the FTOOLS routine “addspec”, which produces
weighted effective area and spectral response files.
All spectral extractions use the “Gaussian error”,
not the “Poisson error”, which is the default of
the CIAO psextract routine and actually uses the
Gehrels’s approximation (Gehrels 1986). This lat-
ter method could cause problems in the error prop-
agation through the spectral co-adding. For bright
X-ray point-like sources in the Arches cluster, we
typically group such spectra to achieve a minimum
20 counts per bin. For diffuse X-ray emission spec-
tra, the noise contribution from the subtracted
background becomes important. We group the
spectra to have the background-subtracted signal-
to-noise (S/N) in each bin greater than 3 for the
Arches cluster and 2 for the Quintuplet cluster
with fainter diffuse X-ray emission.

2.2. CS (J=2-1) Molecular Line Observa-
tions

The region around the GC Radio Arc (where
the Quintuplet and Arches clusters are located)
harbors a number of large, dense molecular clouds.
The so-called “−30 km s−1 cloud” is believed to
be ionized by the Arches cluster (Lang et al 2001a,
2002). High resolution (∼ 10′′) observations of
part of this cloud complex which immediately sur-
rounds the Arches cluster were made in the 3.4
mm continuum and CS (J=2-1) line using the
six-element millimeter array at the Owens Val-
ley Radio Observatory (OVRO) in March, April,
May and June 2002. Two telescope configura-
tions (equatorial and low) were used, with base-
lines ranging from 15 to 100 m. Six fields with
a primary beam of 60′′ were observed in a mo-
saic pattern, with a spacing of 30′′. The resulting
mosaic covers an area of approximately 4′×3′ cen-
tered on the position RA = 17h46m51s, DEC =
−28◦49′00′′ (J2000). The total integration time on
each of the six fields was approximately 4 hours.

NRAO 530, 3C 273, and Neptune were used
for gain, passband, and absolute flux calibra-
tion, respectively. The data were calibrated us-
ing the MMA package (Scoville et al. 1993), and
the mosaicking was carried out with the max-

imum entropy method of de-convolution imple-
mented in the MIRIAD routine MOSMEM (Corn-
well & Braun 1988; Sault, Staveley-Smith, &
Brouw 1996). The CS (J=2-1) line data were
taken at a rest frequency of 97.981 GHz, with 64
channels of 0.5 MHz width, corresponding to a ve-
locity resolution of 1.53 km s−1 and a total veloc-
ity coverage of 96 km s−1. The line was centered
on vLSR = −20 km s−1. Simultaneous 3.4 mm
continuum observations were made with a band-
width of 1 GHz.

The largest spatial scale to which the OVRO
interferometer is sensitive is 20′′, corresponding to
the shortest baseline of 15 m at 3.4 mm. There-
fore, more extended structures are not detected.
In order to recover the missing flux density, the
total power measurements from single-dish obser-
vations of this region have been added. Single-
dish observations of the CS (2-1) line in the -30
km s−1 molecular cloud were carried out with

the IRAM 30 m telescope by (Serabyn & Gusten
1987). Spectra in the vicinity of the Arched Fila-
ments complex were obtained at regular grid spac-
ings of 18′′ and imaged with a single-dish beam
size of 25′′. These observations were centered at
vLSR = 0 km s−1, using a 512-channel filter bank
with 1 MHz resolution, which corresponds to a ve-
locity resolution of 3.06 km s−1.

Since there is reasonable overlap between the
shortest spacings of the OVRO interferometer (4
kilo-lambda) and the diameter of the 30 m an-
tenna (8 kilo-lambda), the linear technique of
“feathering” single-dish and interferometer data
is appropriate. This method requires that the
single-dish data be a good representation of the
object at low spatial frequencies, and that the in-
terferometer mosaic be a good representation at
mid-to-high spatial frequencies. The feathering
technique can be carried out using the MIRIAD
task IMMERGE. We input de-convolved and re-
stored single-dish and interferometric images with
the same velocity resolution and spatial grid.
IMMERGE first transforms the images into the
Fourier plane, where the data are combined. In
the case of the 30 m single dish data and OVRO
millimeter array data, the flux densities in the
overlap region (4-8 kilolambda) agree at the 10%
level. The single-dish data are given unit weight,
and the low spatial frequencies of the interferom-
eter data are adjusted in the Fourier plane with a
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taper such that a combination of the single-dish
and interferometer data results in an image with a
Gaussian beam equal in diameter to the beam of
the input interferometer mosaic image (∼9′′ ×9′′).

3. Analysis and Results

The entire field of our deep ACIS-I observa-
tion is shown in Fig. 1, while Fig. 2 gives close-
ups of the Arches and Quintuplet clusters. In
this section, we first examine the overall X-ray
source population in the field of the observation
and then present a detailed characterization of dis-
crete sources and diffuse emission in the Arches
and Quintuplet regions, separately.

3.1. Discrete X-ray Sources

Table 1 summarizes the key parameters of our
detected X-ray sources in the deep ACIS-I obser-
vation. The note to this table explains various
parameters listed. The hardness ratios, in par-
ticular, provide simple source spectral character-
istics, which may be compared with model pre-
dictions (e.g., Fig. 3). A few sources show excep-
tionally large HR2 values, which could be repro-
duced with the assumed models only with abnor-
mal parameters (e.g., a power law with a photon
index Γ < 0 or a plasma with an iron abundance
> 2×solar). Assuming a plasma with a higher
temperature (& 6 keV) would not help, which re-
duces the He-like Fe line emission and hence the
HR2 value.

We check timing variability for each of the
sources, based on a Kolmogorov-Smirnov test with
the light curve of the source-removed background
as a reference. The test is performed in all three
source detection energy bands. Only Source #20
(J174532.27-285052.3) in the table shows marginal
evidence (3σ) for variability.

The brightest source in the field is LMXB 1E
1743.1-2843 with an X-ray luminosity of LX ∼ 2×
1036 ergs s−1 in the 2-10 keV band (assuming at
the distance of the GC; Porquet et al. 2003). The
second brightest source is apparently a renewed X-
ray burst of XMMU J174554.4-285456 (Porquet
et al. 2005), detected during an XMM-Newton

observation performed on October 3, 2002. This
source did not appear in a Chandra observation
(OBSID #3549, June, 19, 2003) in-between the
XMM-Newton observation and our detection here

(June 9, 2004). The source was also present in
the two subsequent Chandra observations (OBSID
#4683, July 5, 2004 and #4684, July 6, 2004), but
not in later ones (e.g., OBSID # 5360, August 28,
2004).

The X-ray sources in the close vicinities of
the Arches and Quintuplet clusters are marked in
Fig. 2. Those in the NICMOS fields are listed
in Table 2, including apparent near-IR and radio
counterparts, which most likely represent massive
stars if at the distance of the GC. In particular,
two of the three strongest X-ray sources in the
Arches cluster have radio counterparts (AR1 and
AR4; Lang et al. 2005). The faint and apparently
resolved J174549.73-284926.1 is probably associ-
ated with a close pair of radio sources of AR6 and
AR10 (Lang et al. 2005); AR6, in particular, has
a unique nonthermal radio spectrum with a spec-
tral index of −0.7, whereas other radio sources
in the field all have positive indexes (Lang et al
2001b; Lang et al. 2005).

To characterize the X-ray source number-flux
relation (NFR) in the region, we need to ac-
count for various complications involved in the
source detection and the confusion with interlop-
ers (foreground stars and background AGNs). For
simplicity, our NFR analysis here uses only the
sources best-detected in the B band and with
P ≤ 10−7 (Table 1) and with count rates smaller
than 2 × 10−2 counts s−1 (hence both LMXB 1E
1743.1-2843 and the transient XMMU J174554.4-
285456 are excluded). This filtering, resulting in
a sample of total 186 sources, minimizes the con-
fusion with foreground stars (typically with soft
X-ray spectra and relatively low sight-line absorp-
tions) and background AGNs (hard spectra and
high absorptions), which should be preferentially
detected in either the 1-4 keV band (a total of 18
sources) or the 4-9 keV band (29 sources), respec-
tively. Eleven of the 18 soft sources and nine of the
29 hard sources are also detected in the 1-9 keV
band, though not preferentially. As will be shown
in § 3.2 and § 3.3, the absorptions towards the
Arches and Quintuplet are ∼ 5 and 8×1022 cm−2,
sampling a reasonable range of the column den-
sity toward the GC over the ACIS-I field (Fig. 1).
The average total column density through the en-
tire Galactic disk in the field is thus likely to be
∼ (1 − 2) × 1023 cm−2.

The source detection completeness varies across
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Table 1

Chandra Source List

Source CXGCS Name δx (′′) CR ( cts ks−1) HR HR2 Flag

(1) (2) (3) (4) (5) (6) (7)

85 J174549.73-284926.1 0.3 0.43 ± 0.08 – – B, H
90 J174550.26-284911.9 0.2 7.48 ± 0.29 −0.32 ± 0.05 −0.30 ± 0.06 B, S, H
92 J174550.41-284922.4 0.2 11.03 ± 0.36 −0.34 ± 0.04 −0.40 ± 0.05 B, S, H
93 J174550.47-284919.7 0.2 6.90 ± 0.29 −0.39 ± 0.05 −0.50 ± 0.06 B, S, H
213 J174614.44-284908.6 0.6 1.49 ± 0.14 0.27 ± 0.12 −0.65 ± 0.09 B, H, S
214 J174614.51-284937.2 0.6 0.70 ± 0.11 −0.81 ± 0.12 – B, S
215 J174614.67-284940.3 0.7 0.34 ± 0.09 – – B, S
216 J174615.14-284932.9 0.7 0.50 ± 0.10 – – B, S
217 J174615.85-284945.5 0.8 0.57 ± 0.10 – – B, H
219 J174616.29-284940.8 0.8 0.34 ± 0.09 – – B, H

Sources detected with 10−7 < P < 10−5 and in the vicinity of the Arches and Quintuplet clusters

240 J174549.35-284919.0 0.4 0.16 ± 0.05 – – B
243 J174614.43-284900.0 0.7 0.25 ± 0.08 – – S
244 J174616.66-284909.2 0.7 0.26 ± 0.08 – – B

Note.—The printed version of the table includes only the sources within the HST NICMOS fields
of the Arches and Quintuplet clusters (Fig. 2s c and d); the full source list is published only electron-
ically. The definition of the bands: 1–2.5 (S1), 2.5–4 (S2), 4–6 (H1), and 6–9 keV (H2). In addition,
S=S1+S2, H=H1+H2, and B=S+H. Column (1): Generic source number. (2): Chandra X-ray Observa-
tory (registered) source name, following the Chandra naming convention and the IAU Recommendation
for Nomenclature (e.g., http://cdsweb.u-strasbg.fr/iau-spec.html). (3): Position uncertainty, including an
1σ statistical error calculated from the maximum likelihood centroiding and an approximate off-axis angle
(r) dependent systematic error 0.′′2 + 1.′′4(r/8′)2 (an approximation to Fig. 4 of Feigelson et al. (2002)),
which are added in quadrature. (4): On-axis source broad-band count rate — the sum of the exposure-
corrected count rates in the four bands. (5-6): The hardness ratios defined as HR = (H − S2)/(H + S2),
and HR2 = (H2 − H1)/H, listed only for values with uncertainties less than 0.2. (7): The labels “B”, “S”,
and/or “H” mark the bands in which a source is detected; the band which generates the most accurate
X-ray centroid position, as adopted in Column (2), is listed first.
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Fig. 1.— Tri-color presentation of the 100 ks Chandra ACIS-I observation. Artifacts due to the gaps between the
four CCDs and to their outer edge are still visible and are partly caused by sharp changes in the counting statistics.

the ACIS-I field, depending on the local PSF, ef-
fective exposure, and background (Wang 2004).
Fig. 4 presents the dependence of both the
source count rate distribution and the detec-
tion completeness on the off-axis distance. The
detection limit of the count rate varies from
∼ 1 × 10−4 counts s−1 near the telescope axis
to 10−3 counts s−1 at the ACIS-I corners. The
detection is also subject to the so-called X-ray
Eddington bias: more intrinsically faint sources
statistically appear to have higher fluxes than the

other way around (Wang 2004). We correct for
both the incompleteness and bias in our NFR
analysis, following the approach detailed in Wang
(2004). Briefly, the NFR is analyzed as if it is an
X-ray spectrum with the field-integrated incom-
pleteness and flux bias included in the weighted
effective area and response matrix.

We first estimate the background AGN con-
tribution in our source detection. We adopt the
AGN NFR from the Chandra deep surveys in the
2-10 band (Morreti et al. 2003). The energy
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Fig. 2.— ACIS-I 1-9 keV band images of the Arches (a) and Quintuplet (b) clusters. These X-ray images are
smoothed with the CIAO routine csmooth to achieve a background-subtracted signal-to-noise ratio of ∼ 3 (Ebeling et
al. 2006). The intensity contour levels are at 20, 23, 27, 33, 43, 57, 80, 180, 482, and 1351 (above a local background
of 13.4) for (a), at 17, 29, 33, 42, 54, and 72 (above 17) for (b); all in units of 10−3 counts s−1 arcmin−2. The two
large squares in (a) and (b) outline the fields covered by the HST NICMOS F205W images of the Arches (c) and
Quintuplet (d), respectively (Figer et al. 1999a; Figer et al. 2002). The contours are the same as in (a) and (b),
except for excluding the first four levels in (b). The detected sources (Table 1) are marked with crosses in (a) and
(b). Several bright X-ray sources named previously (Table 2) are labeled.

flux in the NFR is converted into the 1-9 keV band count rate, using the same intrinsic power-
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Fig. 3.— Color-color diagrams of X-ray sources with the plotted hardness ratios (HR and HR2) and their 1σ error
bars as listed in Table 1. The generic source numbers (Table 1) are marked. Also included in the plot are hardness-
ratio models: the solid thick curves are for the power-law model with the photon index equal to 3, 2, 1, and 0, whereas
the solid thin curves are for a thermal plasma (XSPEC MEKAL; 2×solar metal abundances) with the temperature
equal to 0.3, 1, 3, and 6 keV (all from the bottom to the top). The absorbing gas column densities are 1, 3, 10, and
30 ×1022 cm−2 for both models (dashed curves from the left to the right).
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Fig. 4.— Count rates of the sources best-detected in
the 1-9 keV band versus their off-axis angles in the 100
ks ACIS-I observation. The curves illustrate the detection
thresholds (Smin): The upper curve is calculated via an
azimuthal average, whereas the lower curve is obtained by
choosing the lowest value in each concentric annulus around
the aiming point of the observation.

law spectrum with Γ = 1.4 as assumed in Mor-
reti et al. (2003) and the sight-line absorption
NH = (1−2)×1023 cm−2 in our field. Accounting
for both the incompleteness and bias, we estimate
the corresponding expected number of AGNs in
the field to be 18-7, consistent with nine sources
preferentially detected in the 4-9 keV band and ex-
cluded from our NFR analysis of the sources that
are best-detected in the 1-9 keV band.

Fig. 5.— Observed differential NFR of the sources best-
detected in the 1-9 keV band, compared with the best-fit
power-law model. The data are grouped to have a mini-
mum four sources per bin; the fit uses the Cash-statistic
and is satisfactory, judged from simulations in XSPEC.

Fig. 5 shows the differential NFR of the all se-
lected sources (as in Fig. 4) and the best-fit power-
law

(

dN

dS

)

= AS−α−1, (1)

where S is in units of counts s−1, while α =

1.28+0.14
−0.13 and A = 10−2.1+0.5

−0.4 sources per counts s−1

(error bars are all at the 90% confidence). To
compare with similar results obtained by Muno et
al. (2006) for various GC regions, we adopt the
same fiducial power law spectrum with Γ = 1.5
and absorbed by NH = 6 × 1022 cm−2. The con-
version from the 1-9 keV count rate to the ob-
served 0.5-8 keV photon flux is then 3 × 10−3

(ph cm−2 s−1)/(counts s−1), while the conver-
sion to the corresponding absorption-corrected
flux is 6 × 10−11 (ergs cm−2 s−1)/(counts s−1).
Thus the detection limit of ∼ 1× 10−4 counts s−1

corresponds to a 0.5-8 keV luminosity of 4 ×

1031 ergs s−1 at the distance of the GC. To get
the accumulated NFR, we convert S to the above
photon flux, integrate Eq. 1 to infinity, and ac-
count for our source detection area of 278 arcmin2.
The resultant accumulated NFR is

N(< S) = N0

(

S

S0

)−α

, (2)

where the scaling factor S0 = 3×10−6 ph cm−2 s−1,
and N0 = 0.14 sources arcmin−2. The above
parameter values can be compared to the re-
sults based on 28 X-ray sources detected in a
50 ks ACIS-I observation of the radio Arc re-
gion (Muno et al. 2006, their Table 2): N0 =
0.17 sources arcmin−2 and α = 1.1 ± 0.2 (1σ er-
ror bar), which largely overlaps in field with the
present observation. The two analyzes are in
good agreement. The slightly low N0 value in
the present analysis is apparently due to our ex-
clusion of both the very soft and hard sources (a
factor of 20%). A re-analysis with these sources
included confirms this conclusion, but does not
change the α value significantly. This insensitivity
to the exclusion of the potential foreground and
background interlopers indicates that the above
estimated NFR is robust.
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3.2. Arches Cluster

3.2.1. Discrete X-ray Sources

The X-ray sources, A1N, A1S and A2, stand
out in the Arches field (Fig. 6). The reasonably
good counting statistics of these sources allow for
individual spectral analysis. We extract the on-
source spectra from the circle around each source
as illustrated in the figure. The spectra of the
sources are remarkably similar, in terms of both
the overall spectral shape and the presence of the
strong 6.7-keV emission line (Fig. 7). A character-
ization of the spectra with an optically-thin ther-
mal plasma (XSPEC MEKAL model) gives sta-
tistically consistent temperatures and metal abun-
dances as well as the foreground absorptions (Ta-
ble 3), although there are significant flux excesses
above the model at & 7 keV, indicating the pres-
ence of a harder component (Fig. 7).

Fig. 6.— ACIS-I close-up of the Arches cluster core.
The count image is smoothed with a Gaussian with a
FWHM of 0.′′3. The circles outlines the regions for the
source spectral extractions. Background is extracted
within a concentric circle of 50′′ radius, excluding the
source regions.

To further tighten the constraints on the in-
trinsic spectral shape, we jointly fit the spectra of
the three sources, reasonably assuming that they
have the same abundance and absorption, as mem-

bers of the same stellar cluster. The fit is satis-
factory (χ2/d.o.f. = 96/95; Fig. 7d) and gives the
best-fit parameters as NH=7.7+0.8

−0.8 × 1022 cm−2,

abundance=1.8+0.8
−0.2 solar, and kT = 1.8+0.2

−0.2 keV

(A1N), 2.2+0.4
−0.3 keV (A1S) and 2.5+0.4

−0.3 keV (A2).

The spectra shown in Fig. 7 represent a sub-
stantial improvement in quality than those in
Yusef-Zadeh et al. (2002). The on-axis spatial
resolution of our new observation allows us not
only to separate the spectra of A1N and A1S, but
also to minimize the contamination of surround-
ing diffuse emission (Fig. 6). The calibration of the
data has also been improved significantly (e.g., the
inclusion of the CTI correction). These improve-
ments probably account for the discrepancies be-
tween the present results and those presented in
Yusef-Zadeh et al. (2002). Our analysis shows
that one-temperature plasma is adequate to fit
each of the above spectra and that our inferred
total 0.2-10 keV luminosities of the sources are
smaller than that of Yusef-Zadeh et al. (2002)
by a factor more than 15. These two discrep-
ancies are actually related. The use of the two-
temperature plasma model in Yusef-Zadeh et al.
(2002) required a very high hydrogen column den-
sity (NH = 12.4+2.9

−2.0 × 1022 cm−2), which in turn
gave a large absorption-corrected luminosities.

3.2.2. Diffuse X-ray Emission

Fig. 2 and 8 show that the enhanced diffuse X-
ray emission is distributed over a region greater
than the stellar core of the Arches cluster. The
diffuse X-ray enhancement is quite isolated within
a radius r ∼ 60′′ and is spectrally harder than
large-scale diffuse X-ray emission in the region
to the southeast (Fig. 1). We extract a spec-
trum of this enhancement from this radius and a
background from a 100′′ circle to the west within
the same CCD chip. The background-subtracted
spectrum of the diffuse emission exhibits signifi-
cant line emission in the energy range of 6.4 to
6.7 keV. The continuum-subtracted narrow band
images of the diffuse emission (§ 2.1) further show
that the ∼ 6.7-keV line emission arises in a plume
from the cluster core (Fig. 10). This plume has a
size of ∼ 30′′ at the Arches cluster and elongated
toward the northeast. The 6.4-keV line emission is
certainly more extended, although its exact extent
is difficult to determine; low surface brightness
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Table 2

Identifications of the X-ray Sources

Source Sourcea NIRb Radioc

(1) (2) (3) (4)

Arches Cluster

85 A6 2 (WNL) AR6+AR10
90 A2 9 (WNL) –
92 A1S 6 (WNL) AR1
93 A1N 7 (WNL) AR4

Quintuplet Cluster

214 QX1 242 –
215 QX5 231 (DWCL) QR7
216 QX2 257 (B0 I) QR6
217 QX3 211 (DWCL) –
219 QX4 – –
244 344 (B1 I-B3 I) –

aAlternative X-ray source names given by Yusef-
Zadeh et al. (2002); Law & Yusef-Zadeh (2004).

bNear-infrared counterparts: FMS1999 from Figer
et al. (1999a) for the Quintuplet and FNG2002 from
Figer et al. (2002) for the Arches: WNL - late-type
WN stars (WN7-WN9); DWCL - dusty late-type WC
stars.

cRadio counterparts from Lang et al. (2005).

Table 3

Spectral Fits for X-ray Sources in the Arches Cluster

Name NH(1022 cm−2) kT (keV) Abundance χ2/d.o.f LX
a log(Lx/Lbol)

A1N 7.3+1.5
−1.1 1.87+0.39

−0.32 2.8+10.1
−1.5 16.9/23 7.2 -5.8

A1S 8.1+1.1
−1.2 2.1+0.58

−0.34 1.5+1.2
−0.6 42.2/40 11 -5.7

A2 6.4+2.5
−1.6 3.25+2.62

−1.24 1.6+2.1
−0.6 33.9/28 4.6 -5.9

aThe luminosity is in units of 1033 ergs s−1 and in the 0.3-8 keV band.
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(a) (b)

(c) (d)

Fig. 7.— ACIS-I spectra of the three brightest X-ray sources in the Arches cluster and the best-fit thermal plasma
models: (a) A1N, (b) A1S, (c) A2, and (d) the combination of A1N + A1S + A2. The lower panels show the
respective fit residuals relative to the errors of each bin. The spectra are grouped to have at least 20 counts per bin.

6.4-keV line emission of similar EW is ubiquitous
in the GC (Wang et al. 2002a). This enhance-
ment of the 6.4-keV line (as well as the continuum
emission) around the Arches cluster is particularly
strong in an extension from the cluster toward the
southeast (SE). The overall morphological appear-
ance of this enhancement is quite irregular (see
§ 3.4 for a discussion on the possible connection
to the adjacent “−30 km s−1” molecular cloud).

We extract two diffuse X-ray spectra: one from
the central 6.7-keV line plume, and the other from
the SE 6.4-keV line extension from the regions
outlined in Fig. 8(a). We fit the spectra with a
power law plus a Gaussian line (its width is fixed
to zero) to characterize the Fe line centroid and
EW, which are 6.60+0.10

−0.14 keV and 1.2+1.0
−0.9 keV for

the plume and 6.39+0.05
−0.05 keV and 1.4+0.9

−0.5 keV for
the SE extension, respectively. The line and con-
tinuum fluxes are 0.25 and 1.3 for the plume, and
0.64 and 2.8 for the SE extension; all in units of
10−13 ergs s−1 cm−2. The fits are all satisfactory.
But the power law component is reasonably con-
strained only for the SE extension, and the fitted

parameters are included in Table 4. The best-
fit power law index and line centroid of the SE
extension spectrum agree well with the theoret-
ical prediction for the emission from low-energy
cosmic-ray electrons interacting with the ambient
medium (Valinia et al. 2000; see § 4.4).

While a collisionally ionization equilibrium
plasma gives a good fit to the spectrum of the
plume (Table 4), the 6.4-keV line in the spec-
trum of the SE extension may indicate a plasma
in a non-equilibrium ionization (NEI) state (see
§ 4). We thus try a fit of the spectrum with
the XSPEC NEI model with a metal abundance
equal to 2×solar. The fit to the spectrum of the
SE extension requires an ionization time scale of
τ ∼ net < 1.1× 1010 cm−3 s, too small to be con-
sistent with any dynamic model of the plasma on
the observed spatial scale (§ 4).

We further extract a spectrum of the low-
surface brightness X-ray emission (LSBXE) from
the large circle in Fig. 8a minus the plume and the
extension regions. This spectrum (Fig. 9c) also
shows both the 6.4-keV line and the He-like S XV
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Fig. 8.— Diffuse X-ray emission intensity distributions of the Arches (a) and Quintuplet (b) regions. The excised
source positions are marked (see Fig. 2). These X-ray images are adaptively smoothed to achieve a background-
subtracted signal-to-noise ratio of ∼ 6 to show low-surface brightness emission. The intensity contour levels are at
2.1, 2.3, 2.9, 4.1, 6.4, 11, 21, and 39 (above a local background of 1.8) for (a) and at 3.3, 4.1, and 5.7 (above a local
background of ∼ 2.5) for (b); all in units of 10−3 counts s−1 arcmin−2. The large circles in (a) and (b) outline the
regions that we use to estimate the total diffuse X-ray emission from the clusters. The two ellipses in (a) outline the
regions from which the spectra in Fig. 9 are extracted. The plus signs mark the centroid positions of the clusters.

Kα line at ∼ 2.5 keV, indicating a mixture of mul-
tiple components. Motivated by the above spec-
tral analysis of the plume and the SE extension,
we characterize the LSBXE spectrum, using a sim-
ple combination of a MEKAL plasma, a power law
with Γ = 1.3, and a Gaussian line with its centroid
fixed at 6.4 keV. This combination gives a reason-
able fit to the spectrum, and the fitted parameters
are included in Table 4.

3.3. Quintuplet Cluster

3.3.1. Discrete Sources

Within the field of view of the NICMOS obser-
vation (Fig. 2d), we find eight X-ray sources (Ta-
ble 2). J174614.67-284940.3 is located close to a
source candidate first suspected by Law & Yusef-
Zadeh (2004) (their QX5 or J174614.7-284947,
which should have been named J174614.7-284942).
This faint source is now well separated from QX1
and has a near-IR counterpart [FNG2002] 231.
Compared to those in the Arches cluster, all of the
eight sources are rather faint; in particular, the to-

tal number of counts of the four relatively bright
sources in the core (QX1-4) is only about 4× 102.
They also show diverse spectral characteristics, as
indicated by their significantly different hardness
ratios (Table 1). Fig. 11 presents two extreme ex-
amples of the source spectra. It is clear that QX1
is very soft, whereas QX4 appears extremely hard.
The spectral characteristics of QX2 and QX3 fall
between these two extremes. To quantify the di-
versity, we assume that all these sources have an
approximately same intrinsic spectral shape, but
have different foreground absorptions. A joint fit
of the spectra with a MEKAL plasma model (as-
suming a metal abundance of 2× solar) gives a
characteristic temperature of >8.52 keV and the
absorptions along the sight-lines to QX1, QX2,
QX3, and QX4 as NH(1022 cm−2) = 1.3+0.5

−0.3,

4.8+2.4
−1.3, 4.3+2.4

−1.5, and 9.3+6.9
−3.5, respectively. Clearly,

the absorption toward QX1 is significantly smaller
than toward other sources. Thus QX1 is likely
a foreground star. Without a near-IR counter-
part, QX4 is likely a background source (e.g., an
AGN) or a stellar object that is still deeply em-
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(a) (b) (c)

Fig. 9.— ACIS-I diffuse X-ray emission spectra: the 6.7-keV plume (a), the southeast extension (b), and the low-
surface brightness outer region (c) of the Arches cluster. The spectra, grouped with a background-subtracted S/N>3,
are fitted with the NEI for (a), PL+GAU for (b) and MEKAL+PL+GAU for (c) (Table 4).

Table 4

Diffuse X-ray spectral fits for the Arches cluster

Region Model Key Model Parameters NH χ2/d.o.f LX

Central Plume NEI kT = 2.56(> 1.18), τ = 101.1(>0.9) 11.0+4.0
−2.4 12.0/33 3.8

MEKAL kT = 1.88+4.19
−0.61 10.8+5.3

−5.6 13.3/34 3.2
SE Extension PL+GAU Γ = 1.3+1.4

−1.1 6.2+2.7
−5.6 29.2/57 4.1

LSBXE MEKAL+POW+GAU kT = 0.45+0.25
−0.10, Γ = 1.3 (fixed) 9.2+1.8

−2.3 62.3/52 12

Note.—The spectral model names are from XSPEC: NEI - non-equilibrium ionization collisional plasma;
MEKAL - collisional ionization equilibrium plasma; PL - power law; and GAU - Gaussian line. The metal
abundances of plasma is fixed to be 2×solar, as inferred from the point-like source spectra. The plasma
temperature (kT ), ionization time scale (τ), absorption column density (NH), and the 2-8 keV luminosity
(LX) are in the units of keV, cm−3 s, 1022 cm−2, and 1033 ergs −1, respectively.

bedded in dense gas. QX2 and QX3 do have near-
IR counterparts tentatively classified as B0I and
dust-enshrouded WCL stars (Table 2). Because
of this diversity, we cannot rule out that QX4 is
a member of the Quintuplet cluster. We thus fit
the combined spectrum of QX2, QX3 and QX4,
which have relatively comparable spectral char-
acteristics. The accumulated spectrum shows an
emission line at ∼ 6.7 keV and can be character-
ized (χ2/d.o.f. = 34.4/31) by a MEKAL model
with kT = 8.68+9.05

−3.99 keV and a foreground ab-

sorption of NH = 5.9+1.9
−1.3×1022 cm−2 (Fig. 12),

which is consistent with AV = 29.0+5
−5 of this clus-

ter (1σ error bar; Figer et al. 1999a), assuming
NH/E(B−V ) ≈ 5×1021 cm−2 mag−1 (Bohlin et
al. 1978) and AV /E(B−V ) ≈ 2.6−5.5 (Schlegel
et al. 1998). The total absorption-corrected 0.3-8

keV luminosity is 7.6 × 1032 ergs s−1.

3.3.2. Diffuse emission

The extent of the diffuse X-ray enhance-
ment around the Quintuplet cluster is uncertain
(Fig. 8). The cluster seems to be embedded in a
large-scale diffuse X-ray-emitting region, although
the spectrum of the enhancement appears to be
slightly harder than that of the surrounding re-
gion (Fig. 1). We extract a spectrum of the dif-
fuse emission from a circle of r = 1′ radius around
the Quintuplet centroid (Fig. 8) and a background
spectrum from the field within a concentric annu-
lus of r=1′-2′. The background-subtracted spec-
trum can be characterized (χ2/d.o.f. = 40.5/34)
by a MEKAL plasma model (again assuming a
metal abundance of 2×solar) with kT = 10+4.6

−2.7
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(b)(a)

Fig. 11.— Example spectra of X-ray sources in the Quintuplet core: QX1 (a) and QX4 (b).

Fig. 10.— ACIS-I 6.4-keV and 6.7-keV line inten-
sity maps of the Arches cluster region. The gray-
scale (6.4-keV intensity) is in the range of 0.5 to 4
×10−3 counts s−1 arcmin−2 (see also Fig. 14), while
the overlaid 6.7-keV line intensity contours are at 0.6,
0.8, 1, 1.2, and 1.6 ×10−3 counts s−1 arcmin−2. The
plus sign marks the centroid position of the cluster.

keV and NH = 3.8+0.7
−0.5 × 1022 cm−2 (Fig. 13).

These parameters are consistent with the values
obtained from the fit to the combined spectrum
of the discrete sources in the core of the Quintu-
plet cluster. The absorption-corrected luminosity
of the diffuse emission in the 2-8 keV range is
3 × 1033 ergs s−1.

Fig. 12.— Combined ACIS-I spectrum of QX2-4 and
the best-fit thermal plasma model.

3.4. Molecular Gas near the Arches Clus-
ter

Fig. 14 presents a comparison of the distribu-
tion of the CS (J=2–1) line emission and the 6.4
-keV line emission (Fig. 10). This “clump” of
molecular gas represents one of the easternmost
parts of the “−30 km s−1 cloud” (and corresponds
to Peak 2 in the single dish study of this molec-
ular cloud; Serabyn & Gusten 1987). The fila-
mentary molecular cloud has an average velocity
of ∼ −25 km s−1, although there are large veloc-
ity gradients over the cloud and the FWHM of the
line is up to ∼ 30 km s−1. In contrast, the Arches
cluster has an average velocity of ∼ +95 km s−1

(Figer et al. 2002). Therefore, the relative veloc-
ity between the cluster and the cloud is at least
vr ∼ 120 km s−1.

Fig. 14a shows an image of the CS (J=2-1)
emission integrated over the central channels,
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Fig. 13.— ACIS-I spectrum of the diffuse emission in
the Quintuplet cluster and the best-fit thermal plasma
model.

where the line emission is present (i.e., veloci-
ties of −5 to −40 km s−1). Fig. 14b compares
this image to the distribution of the diffuse 6.4
keV X-ray emission. There is little morphological
similarity between the molecular line emission and
the diffuse X-ray emission. The CS intensity is the
strongest in the north, where there is little X-ray
emission enhancement, either in the broad band or
in the Fe Kα lines. Although the 6.4-keV emission
appears to coincide spatially with the southern ex-
tension of the molecular gas, Fig. 14b shows little
peak-to-peak correlation. The individual channel
images also reflect this distribution and the lack
of detailed physical correlation with the 6.4 keV
X-ray emission.

4. Discussion

The above results show distinctly different X-
ray properties between the Arches and Quintuplet
clusters. The Arches cluster contains three lumi-
nous point-like sources, all of which exhibit the
strong 6.7-keV emission line, and two apparently
diffuse components with either 6.4-keV or 6.7-keV
line emission. The 6.4-keV line-emitting enhance-
ment is strongly elongated, morphologically, trac-
ing the east boundary of the CS cloud’s southern
extension. These characteristics are absent in the
Quintuplet cluster, in which we detect only weak
X-ray sources, plus a very low surface brightness
diffuse emission with a hard spectrum. There is
also no evidence for any associated CS cloud. In
the following, we discuss origins of these various
X-ray components, possible causes of the distinct

differences in the X-ray properties between the two
clusters, and implications of our results.

4.1. Galactic Center Environment

We attempt to understand the Arches and
Quintuplet clusters in the context of the unique
GC environment. The generally high gas den-
sity and pressure, strong gravitational tidal force,
and large random and bulk motion velocities in
the GC affect both the formation and evolution
of young stellar clusters (Morris 1993). Here we
concentrate on the potential interplay between the
molecular gas and the Arches cluster.

Is the “−30 km s−1 cloud” and the Arches
cluster physically associated? On one hand, be-
cause of their large velocity separation, the two
systems would pass each other in only ∼ 104 yrs
if the size of the cloud along the line of sight is
comparable to that projected in the sky and at
the GC distance. On the other hand, the vol-
ume filling factor of dense molecular gas in the
region is quite high (& 0.3; Serabyn & Gusten
1987). In particular, the well-known Arched fila-
ments all have negative velocities similar to that
of the molecular gas; the photon-ionization model-
ing of these filaments suggests that they are phys-
ically in the vicinity of the Arches cluster (Lang
et al 2001a). Thus the probability for a chance
physical contact of a dense cloud with the clus-
ter is not small. An independent argument for
the association is an effective extinction deficit of
δAV ≈ 10 over a region of ∼ 15′′ from the clus-
ter core, which can be interpreted as the displace-
ment of the dusty gas by the cluster wind and/or
the dust grain destruction by the UV radiation
from the cluster (Stolte et al. 2002). The extinc-
tion is the largest towards the region just west of
the cluster (Stolte et al. 2002; Note that East
is to the right in their Figs. 3 and 8). Inter-
estingly, this extinction deficit, corresponding to
δNH ∼ 3 × 1022 cm−2, provides a natural expla-
nation for the difference between our measured X-
ray-absorbing column NH ≈ 8 × 1022 cm−2 and
the prediction from the total sight-line extinction
AV = 24 (Stolte et al. 2002; Bohlin et al. 1978;
Schlegel et al. 1998). Furthermore, the interac-
tion of the Arches cluster wind with the cloud may
also explain the strong and distinct X-ray emission
enhancement around the Arches cluster (§ 4.4).
The far-IR spectroscopy further shows the pres-
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Fig. 14.— (a) Distribution of CS (J=2-1) emission integrated over the central channels, with contour levels repre-
senting 9, 12, 15, 18, 21, 24, 27, and 30 Jy beam−1 km s−1. (b) The same CS image overlaid with the 6.4-keV line
intensity contours at 0.7, 0.9, 1.1, 1.5, 2.1, and 2.9 ×10−3 counts s−1 arcmin−2. The plus sign marks the centroid
position of the Arches cluster.

ence of a component of dusty gas at a velocity of
−70 km s−1, unique at the location of the Arches
cluster (Cotera et al. 2005). This component may
represent shocked cloud gas, deflected toward us
(e.g., in the lower left direction of Fig. 16; see § 4.4
for further discussion). Therefore, we tentatively
conclude that the “−30 km s−1 cloud” and the
cluster are undergoing a collision.

The collision of such clouds with the Arches
cluster may have strongly affected its evolution.
The absence of a natal cloud associated with the
cluster at its velocity, for example, may be a con-
sequence of the collision. The removal of this natal
cloud from the cluster at an early time could have
reduced the probability for low-mass stars to form.
The cloud-cloud collision could also be responsible
for the formation of the Arches cluster itself. The
exceptionally high gas temperature and velocity
dispersion in such a formation formation process
could also result in a top-heavy initial mass func-
tion (IMF; see § 4.5 for further discussion).

Our X-ray study further provides useful mea-
surements about the GC environment. In addi-
tion to the NH measurement, we have also directly

estimated the metal abundance (mainly iron) in
the GC. Recent estimates based on near-IR spec-
troscopy of young and intermediate-age super-
giants in GC (e.g., Ramírez et al. 2000) suggest an
iron abundance that is consistent with being solar,
i.e., similar to the abundance observed in the solar
neighborhood. This result is against the general
trend of an increasing metallicity with decreasing
galacto-centric radius as observed in the disks of
the Milky Way and nearby galaxies. Our X-ray
measured iron abundance of ∼ 1.8+0.8

−0.2 solar, based
on the spectral analysis of the luminous colliding
wind candidates in the Arches cluster, agrees with
the trend. The thermal process involved in the X-
ray emission is quite simple, and the ion fraction of
the He-like Fe Kα emission is insensitive to the ex-
act plasma temperature fitted. Furthermore, the
iron abundance in the winds of the massive stars
is not expected to be contaminated by their own
nuclear synthesis in the deep cores of the stars.
Therefore, we conclude that the iron abundance
in the ISM of the GC is super-solar.
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4.2. Nature of Discrete X-ray Sources

As shown in § 3.1, our analysis confirms a rela-
tively flat source NFR in the region of the Arches
and Quintuplet clusters, as indicated first in Muno
et al. (2006). Our obtained power law slope
(α = 1.26+0.14

−0.13; 90% confidence) is flatter than
those in the deep observations of Sgr B2 (1.7±0.2)
and Sgr A∗ (1.4±0.1) as well as the 2◦×0.◦8 shallow
survey (1.5±0.1). The implied over-population of
relatively bright X-ray sources is clearly related to
the presence of the two clusters.

The discrete X-ray sources in the core of the
clusters are unlikely due to emission from individ-
ual normal massive stars or even binaries. The
X-ray emission from such a star/binary can be
characterized typically by an optically-thin ther-
mal plasma with a temperature of ∼ 0.6 keV
and a luminosity following the empirical relation
LX

Lbol

∼ 10−7, where Lbol is the bolometric lumi-
nosity. Thus the emission is too soft and faint
to be observed from the GC. Even the Pistol star
near the core of the Quintuplet cluser (Fig. 2d)
is not detected as an X-ray source. The star is a
luminous blue variable with Lbol & 106.6L⊙ and
has an extinction of AK ≈ 3.2, corresponding to
NH ≈ 5.1 × 1022 cm−2. Assuming the MEKAL

thermal plasma with a temperature of 0.6 keV,
we estimate that the 3σ upper limit to the 0.3-
8 keV luminosity is 3 ×1033 ergs s−1, consistent
with Lx/Lbol ∼ 10−7.

Most likely, the luminous X-ray sources asso-
ciated with the Arches cluster represent collid-
ing stellar winds in massive star close binaries.
The characteristic shock temperature of a collid-
ing wind is

T ≃ (3 × 107 K)v2
w,3, (3)

where vw,3 is the relative colliding wind veloc-
ity in units of 103 km s−1. Well-known exam-
ples of such systems are WR11 (kT≈ 4.3 keV,
LX ∼ 8 × 1033 ergs s−1; Schild et al. 2004)
and WR140 (kT≈ 3 keV, LX ∼ 2× 1033 ergs s−1;
Zhekov et al. 2000). Clearly, the expected tem-
peratures are similar to the measured values for
the sources in the Arches cluster, although their
luminosities seem to be substantially higher than
those confirmed colliding wind systems, which all
have LX < 1×1034 ergs s−1 (e.g., Oskinova 2005).
The unusually high X-ray luminosities of the col-

liding wind systems may be related to the com-
pactness of the Arches cluster, in which very close
binaries may form dynamically.

In contrast, the X-ray sources in the Quintuplet
cluster are probably typical colliding wind sys-
tems. They all have individual LX in the range
of (0.2 − 3) × 1033 ergs s−1 as well as the hard
X-ray spectra with the 6.7-keV emission line, as
expected.

While only relatively luminous X-ray sources
are detected individually, sources below our de-
tection limit are hidden in the “diffuse” emis-
sion. Indeed, the diffuse emission in the cores
of the Arches and Quintuplet clusters shows a
general correlation with their stellar distributions
(Fig. 15). Thus, relatively faint colliding wind bi-
naries could significantly contribute to the emis-
sion. But the bulk of the diffuse X-ray emission
in outer regions of the clusters may have differ-
ent origins for several reasons. First, the emis-
sion extends much further away from the cluster
cores than the stellar light distributions (Fig. 15).
Second, the spectrum of the diffuse emission is
harder than that of the discrete sources. Third,
the emission in the outer region of the Arches clus-
ter mainly exhibits the 6.4-keV line, inconsistent
with the the colliding wind interpretation.

4.3. Cluster Winds

In addition to colliding winds in individual mas-
sive star binaries, the collision among stellar winds
collectively becomes important in a compact clus-
ter such as the Arches. The collision results in the
thermalization of the stellar winds and their subse-
quent merging into a so-called cluster wind. Var-
ious 1-D models and 3-D hydrodynamic simula-
tions have been carried out on cluster winds (Raga
et al. 2001; Stevens & Hartwell 2003; Rockefeller
et al. 2005). Within the uncertainties of such
model parameters as overall stellar wind velocities
and mass loss rates, simulated cluster winds are
shown to explain the luminosities of diffuse X-ray
emission from several star clusters (e.g., Stevens &
Hartwell 2003; Rockefeller et al. 2005); but little
detailed comparison has yet been performed.

Fig. 15 compares the radial diffuse X-ray inten-
sity profiles from the 3-D hydro-dynamical simu-
lations, carried out specifically for the Arches and
Quintuplet clusters, approximately accounting for
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(a) (b)

Fig. 15.— Radial ACIS-I 1-9 keV intensity profiles (crosses with 1σ error bars) around the Arches (a) and Quintuplet
(b) clusters, compared with the respective NICMOS F205W stellar light distributions (connected triangles). The
cluster wind predictions are shown approximately as the solid line from 3-D simulations for the “standard” stellar
wind mass-loss rates of the two clusters (Rockefeller et al. 2005).

the discrete positions of massive stars and their in-
dividual stellar wind properties (Rockefeller et al.
2005). For the Quintuplet, the cluster wind could
account for ∼ 1/4− 1/3 of the observed diffuse X-
ray emission. For the Arches, which is much more
compact, the simulated profile gives a reasonably
good match to our measured distribution of the
diffuse X-ray intensity within ∼ 10′′, but is too
steep to explain the emission at larger radii. The
flattening of the observed intensity distribution in
the radius range of ∼ 10′′ to . 15′′) may arise
from the reverse shock heating and confinement
of the wind. At larger radii, the overall diffuse X-
ray enhancement demonstrates a bow shock mor-
phology and is prominent in the Fe Kα 6.4-keV
line emission (§ 3.2.2), inconsistent with the ex-
pectation for the cluster wind interpretation (see
below). Therefore, the cluster wind may be im-
portant in the core, but not in the outer region of
the Arches cluster.

The complexity of the diffuse X-ray emission
from the Arches cluster probably reflects its inter-
action with the CS cloud. Both the morphology of

the diffuse X-ray emission, particularly the elon-
gation of the 6.7-keV line emission, and the extinc-
tion deficit distribution indicate that the motion
of the cluster relative to the cloud is from East
to West in the sky. Because of their supersonic
relative motion, a bow-shock is expected to form
around the cluster. Fig. 16 illustrates this simple-
minded scenario for the interaction, although the
true situation is certainly more complicated.

Following van Buren & McCray (1988), we can
estimate from the ram-pressure balance the char-
acteristic radius of the reverse shock in the cluster
wind as

rs = (0.7 pc)Ṁ
1/2
w,−4v

1/2
w,3v

−1
r,2n

−1/2
a,2 , (4)

where Ṁw,−4 is the mass-loss rate of the clus-
ter wind (in units of 10−4M⊙), vr,2 is the rela-
tive velocity between the cluster and the cloud
(102 km s−1), and na,2 is the gas density in the
colliding cloud (102 cm−3). Because the contact
discontinuity has a scale lc ∼ 1.5rs, we can es-
timate the volume of shocked wind materials as
V ∼ 4π

3 (1− 1/1.53)l3c . Assuming that this volume
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corresponds to the 6.7-keV line plume, which has
a radius lc ∼ 0.6 pc (15′′) and we can infer ne ∼

5 cm−3 from the integrated emission measure of
the central plume, IEM ∼ 16 cm−6 pc3 (the
MEKAL fit in Table 4). The ram-pressure balance
also gives the density of the shocked ambient gas
na ∼ ne

4 (vw

vr

)2 ∼ (1.3 × 102 cm−3)v2
w,3v

−2
r,2 . This,

together with Eq. 4, gives Ṁ ∼ (1×10−4M⊙)vw,3.

The above inferred na and Ṁ values depend
on vw, which may be quite uncertain. In partic-
ular, the near-IR spectroscopic estimate of stellar
winds may have significantly underestimated vw

as possible low-emissivity winds in the line pro-
files were not taken into account (Cotera et al.
1996), i.e., the wind terminal velocity could be
considerably higher than 1 × 103 km s−1. Nev-
ertheless, the above inferred mass-loss rate still
appears substantially smaller (by a factor of up
to ∼ 10) than the current estimates based on ra-
dio continuum estimates (e.g., Lang et al. 2005).
Such estimates may be very uncertain (e.g., Rock-
efeller et al. 2005), particularly for binaries with
strong wind-wind interaction. The relatively small
na value is consistent with the weak CS emission
from the ambient gas, probably representing the
inter-clump medium of the colliding cloud.

While the shocked cluster wind should be
constantly flowing out from the bow shock at
a velocity comparable to the sound velocity
cs ∼ (8 × 102 km s−1)vw,3, we can also esti-
mate the ionization time scale as τ ∼ nelc/cs ∼

(1 × 1011 cm−3 s)v−1
w,3, which is much too large

to explain the 6.4-keV line emission with an NEI

plasma, but is consistent with that inferred from
the spectrum of the central plume (§ 3.2.2). There-
fore, the observed size and shape of the 6.7-keV
line plume (Fig. 10), at least qualitatively, match
the predictions of this simple bow shock inter-
pretation, within the uncertainties of the relevant
parameters.

4.4. Origin of the 6.4-keV line emission

The above discussion indicates that the 6.4-keV
line emission associated with the Arches cluster is
unlikely due to an NEI process. We thus consider
the possible origin of the line emission as the fill-
ing of iron K-shell vacancies produced by either
ionizing radiation with photon energies > 7.1 keV
or collision with low-energy cosmic-ray electrons

(LECRe; Valinia et al. 2000). The fluorescent
line emission and Thompson continuum scatter-
ing seem to give a reasonable good explanation
for those most prominent 6.4-keV enhancements
associated with well-known giant molecular clouds
such as Sgr B2 and Sgr C in the GC (Koyama et al.
1996; Cramphorn et al. 2002; Revnivtsev et al.
2004). This explanation requires the presence of
a luminous X-ray source with a spectrum consis-
tent with the observed power law continuum with
a photon index of Γ ≈ 1.8. Because such a source
is currently not present in the GC, the observed
emission is proposed to be the reflection of past Sgr
A*, with an X-ray luminosity of & 1039 ergs s−1,
about a few hundreds years ago.

However, the fluorescence interpretation has
difficulties in accounting for the 6.4-keV line emis-
sion regions closer to Sgr A*. A comparison of the
CS emission and the diffuse 6.4-keV line intensity
does not show a peak-to-peak correlation, which
should be expected because the gas traced by the
CS emission is expected to be optically thin to the
iron ionizing radiation (Wang 2003). As shown in
§ 3.4, the detailed correlation is also absent in the
Arches CS cloud. This difficulty may be avoided,
if the CS emission does not trace well the actual
gas distribution (e.g., due to the destruction of
the molecule by the strong UV radiation from the
Arches cluster). Even in this case, however, the
gas column density of the cloud cannot be much
greater than δNH ∼ 1022 cm−2, constrained by
both the X-ray absorption and the near-IR extinc-
tion distribution (§ 4.1). Following Sunyaev et al.
(1998), we estimate the required X-ray luminos-
ity of Sgr A* to produce the detected 6.4-keV line
intensity of the Arches (Fig. 14) as

LX = (4×1039 ergs s−1)(d/27 pc)2(δNH/1022 cm−2)−1,
(5)

where we have assumed the iron abundance to be
2 × solar and have scaled the distance (d) between
the cloud and Sgr A* to be their projected sepa-
ration in the sky, corresponding a light travel time
of only about 90 years. Of course, the actual dis-
tance is likely to be greater, and the required LX

should then be higher. This common interpreta-
tion of the 6.4-keV line enhancement and those
associated with Sgr B2 and Sgr C, though diffi-
cult to rule out completely, would not explain the
apparent position coincidence between the cloud
and the cluster.
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Alternatively, one may consider the Arches
cluster as the origin of the hard X-rays. But this
possibility can be easily dismissed because of the
absence of the 6.7-keV line (which is strong in both
the point-like sources and in the cluster core) in
the 6.4-keV line enhancement. Furthermore, the
observed X-ray luminosity of the cluster is more
than a factor of 102 short of what is required for
the fluorescence interpretation.

A more plausible scenario for the Arches 6.4-
keV line enhancement is the LECRe-induced Fe
K-shell vacancy filling (Valinia et al. 2000).
In this scenario, the continuum is due to the
bremsstrahlung radiation of the LECRe. The
expected power-law photon index of the contin-
uum is 1.3-1.4 over the range of 1-10 keV, con-
sistent with our measured value of the SE ex-
tension (Table 4). The LECRe may be pro-
duced in strong shocks that are present within
the Arches cluster and in both the forward bow
shock and the reverse-shock in the cluster wind
(see the discussion above). For example, Bykov
et al. (2000) have shown that a shock of ve-
locity & 102 km s−1 into a molecular cloud, ac-
companied by magneto-hydrodynamic turbulence,
can provide a spatially inhomogeneous distribu-
tion of nonthermal LECRe. Yusef-Zadeh et al.
(2003) have further presented observational evi-
dence for nonthermal diffuse radio emission from
the Arches cluster and have suggested that collid-
ing wind shocks may generate the responsible rel-
ativistic particles. The diffuse X-ray enhancement
has a bow-shock morphology and is presumably
linked to the site of particle acceleration. But, be-
cause of particle diffusion and gas flow, one does
not expect a peak-to-peak correlation of the X-
ray emission with the CS emission from the collid-
ing cloud. Following Yusef-Zadeh et al. (2002a),
we estimate the LECRe energy density required
to produce the observed 6.4-keV line intensity. If
the shocked gas density is ∼ 103 cm−3, the re-
quired energy density is then ∼ 6 × 103 eV cm−3,
substantially greater than the value 0.2 eV cm−3

from averaging over the Galactic ridge (Valinia et
al. 2000). But the implied pressure inside the
bow shock can still be balanced by the high ram-
pressure (∼ 2×10−8v2

r,2na,2 dyn cm−2) of the col-
lision between the cluster wind and the CS cloud.
In short, the bow shock provides a plausible in-
terpretation of the distinct spatial and spectral

properties of the diffuse X-ray emission around
the cluster and its physical relationship to the CS
cloud.

Shocked cloud

shocked cluster wind

Fig. 16.— An illustration of the proposed cluster-
cloud collision scenario for the Arches. The shocked
cloud gas is partly traced by the CS and 6.4-keV lines
(Fig. 14), whereas the shocked cluster wind plasma
near the cluster is by the 6.7-keV line (Fig. 10).

Finally, we consider the possibility that the 6.4-
keV line enhancement represents the reprocessed
X-rays from numerous discrete and faint sources
embedded around the Arches cluster. A natural
candidate for such sources might be low-mass pre-
main sequence young stellar objects (YSOs). But
they are in general not known to emit strong 6.4-
keV line emission. In the Orion nebula, for exam-
ple, the line emission is detected from only a few
YSOs and with EWs less than 300 keV. Therefore,
YSOs are probably not a significant contributor to
the 6.4-keV line enhancement.

4.5. YSO population and stellar IMF

The overall luminosity of the diffuse X-ray emis-
sion provides a fundamental limit to the popula-
tion of YSOs and hence the IMF of the Arches
and Quintuplet clusters. YSOs in the mass range
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of (0.3 − 3)M⊙ typically have large LX/Lbol ra-
tios and hard X-ray spectra. Most importantly,
they can be numerous, as shown in the Chandra

Orion Ultra-deep Project (Feigelson et al. 2005).
Though with a mean 2-8 keV luminosity of only
∼ 1.2 × 1030 ergs s−1 per star, YSOs collectively
account for about 75% of the luminosity of the
Orion nebula, the IMF of which is consistent with
the standard Miller & Scalo (1979; MS hereafter),
based on the work by Hillenbrand (1997). If
the clusters in the GC have a similar IMF, YSOs
should then be equally important.

At the GC, typical YSOs cannot be detected
individually, but can be constrained collectively
in Chandra observations. Based on the diffuse
X-ray intensity observed around Sgr A*, Nayak-
shin et al. (2005) find that the population of
YSOs in the GC cluster is extremely small. They
conclude that it cannot be a remnant of a mas-
sive star cluster, originated at several tens of par-
secs away from Sgr A* and then dynamically spi-
ralled in, and is thus most likely formed in situ

in a self-gravitating circum-nuclear disk and with
a top heavy IMF. While star formation around a
super-massive black hole represents an extreme, it
is clearly important to examine the IMF of the
Arches and Quintuplet clusters in the general en-
vironment of the GC.

We find a similar deficiency of YSOs in Arches
and Quintuplet clusters, which places important
constraints on their IMF. Existing near-IR stud-
ies have provided estimates on the present-day
MF of stars with masses greater than a few solar
masses in the core of the Arches cluster; MF mea-
surements in outer regions are difficult because of
severe confusion with field stars. Fig. 17 shows
the MF within r < 0.4 pc of the Arches cluster
(Stolte et al. 2005), compared with various pre-
dictions of YSOs. The standard MS IMF, normal-
ized with the number of stars in the mass range of
M > 60 M⊙, predicts at least 2×105 YSOs. Using
our measurements of the diffuse X-ray emission,
we can directly get an upper limit to the popu-
lation of YSOs over the entire cluster (r < 2.5
pc). We assume that the mean X-ray luminosity
of the YSOs in the Arches cluster to be the same
as that in the Orion nebula, because of their sim-
ilar ages. As is shown above, much of the diffuse
X-ray emission, though difficult to quantify, likely
has other origins (e.g., cluster winds) to account

for the prominent iron Kα lines. Therefore, the
use of the total 2-8 keV diffuse X-ray luminosity
of 2×1034 ergs s−1 (Table 4) gives the upper limit
as 2 × 104 YSOs, which is a factor of 10 smaller
than the above prediction from the MS IMF. The
actual discrepancy should be substantially larger.
We have neglected the mass loss in the stellar evo-
lution, which is important for the massive stars.
Considering the mass loss, the number of stars in
the above initial mass range, hence the normaliza-
tion of the IMF, would be greater. The number of
cluster stars in the region of r = 0.4−2.5 pc is also
not included, though difficult to fully quantify; for
example, there are 77 stars with M > 40M⊙ in
the radius r < 0.6 pc (Figer et al. 1999b), com-
pared to about 48 in the same mass range of the
MF obtained by Stolte et al. (2005) for r < 0.4
pc.

Fig. 17.— Present-day MF as obtained by Stolte
et al. (2005) in the r < 0.4 pc core of the Arches
cluster, compared with the power law (∝ MΓ, where
Γ = −0.86; dashed curve) fitted in the 6-60 M⊙ range
(Stolte et al. 2005)) and the MS half-Gaussian (dot-
dashed line), normalized to the number of stars in the
mass range of > 60 M⊙. The X-ray-inferred upper
limit to the number of YSOs (0.3-3 M⊙) in the entire
cluster is marked as the bar with the arrow. The MF
at M . 6 M⊙ may be significantly contaminated by
field stars (Stolte et al. 2005).

An extrapolation of a power law fit in the mass
range of 6-60 M⊙, as obtained by Stolte et al.
(2005), is consistent with the X-ray-inferred num-
ber of YSOs (Fig. 17). But, Stolte et al. (2005)
shows that the MF steepens with radius. This
steepening is expected as a result of the dynamic
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mass segregation of stars in the cluster core (Kim
et al. 2002; Portegies Zwart et al. 2002). Fur-
thermore, mergers among stars may also be im-
portant in flattening the MF toward the cluster
core. Therefore, the MF of the entire cluster, in-
cluding the region in r = 0.4 − 2.5 pc, is likely to
be steeper. If this is the case, a turnover in the
MF (e.g., at ∼ 6 M⊙, as indicated in the study
of Stolte et al. (2005), may indeed be required
to explain the X-ray-inferred upper limit on the
overall YSO population in the Arches cluster.

Similarly, we can constrain the YSO population
in the Quintuplet cluster. There are 30 stars with
masses larger than 20 M⊙ within r = 25′′ (1 pc) of
the Quintuplet cluster (Figer et al. 1999a). As-
suming the MS IMF would predict a total number
of YSOs to be at least 2×104. These YSOs would
have a 2-8 keV luminosity of ∼ 1 × 1034 ergs s−1,
accounting for the weak dependence of the mean
X-ray luminosity on the cluster age (a factor of
1.6; Preibisch et al. 2005). This predicted value
is a factor of 5 greater than our measured total dif-
fuse X-ray luminosity of 2 × 1033 ergs s−1 within
∼ 1′ of the Arches2 cluster (§ 3.2.2).

5. Summary

We have presented a deep Chandra ACIS-I
observation of the Arches and Quintuplet clus-
ters. This observation, complemented by a high-
resolution OVRO mapping of a CS cloud accom-
panied with the Arches cluster, allows for an in-
depth study of the high-energy phenomena and
processes in these two clusters and their interplay
with the GC environment. The main results of our
study are as follows:

• Point-like X-ray sources in the Chandra ob-
servation are detected down to a detection
limit of ∼ 5 × 1031 ergs s−1 in the 1-9 keV
band. This list should contain all signifi-
cant massive colliding wind binaries in the
ACIS-I field. The superb Chandra position-
ing of these sources allow for identifications
of multi-wavelength counterparts. We con-
sider those sources best-detected in the 1-
9 keV band to be likely located in the GC,
whereas those sources preferentially detected
in the 1-4 keV or 4-9 keV band are good can-
didates for foreground stars or extragalactic
AGNs. In particular, we estimate that the

AGN contribution is on the order of only a
few % of all our detected X-ray sources.

• The X-ray source number-flux relation of the
Arches and Quintuplet cluster region can
be characterized by a power law N(< S) =
N0(S/S0)

−α, where N0 = 0.14 sources arcmin−2,
α = 1.26+0.14

−0.13, and S0 = 3×10−6 ph cm−2 s−1,
equivalent to 6 × 10−14 ergs cm−2 s−1, in
the 0.5-8 keV band. This relation is sig-
nificantly flatter than those determined in
other regions of the GC (Muno et al. 2006),
apparently due to the presence of a massive
star-related population of relatively bright
X-ray sources.

• The three bright point-like X-ray sources
in the core of the Arches cluster show re-
markably similar spectra, which can all be
characterized by an optically-thin thermal
plasma with a temperature of ∼ 1.8 − 2.5
keV, a metal abundance of ∼ 1.8+0.8

−0.2 solar,

and a foreground absorption of 7.7+0.8
−0.8×1022

cm−2. The 0.3-8 keV luminosities of the
sources are in the range of (5 − 11) × 1033

ergs s−1. The sources have near-IR counter-
parts as late-type WN stars, which tend to
have massive and fast stellar winds. There-
fore, the sources likely represent the extreme
examples of colliding stellar wind binaries.
The measured super-solar metal (iron) abun-
dance is consistent with other X-ray mea-
surements of thermal hot plasma in the GC
environment.

• The X-ray sources in the core of the older
and looser Quintuplet cluster are substan-
tially dimmer and show more diverse spec-
tral characteristics. QX1, with a soft spec-
trum, is clearly a foreground star, whereas
QX4, with a very hard X-ray spectrum, but
without a near-IR counterpart, could be ei-
ther a background AGN or a strongly ob-
scured stellar object. The remaining two
(QX2 and QX3) are probably colliding wind
binary systems, albeit less energetic than
those in the Arches cluster. The Pistol
star, despite of its enormous bolometric lu-
minosity, is not detected with a 3σ upper
limit to the 0.3-8 keV luminosity as 3×1033

ergs s−1, consistent with the norminal rela-
tion Lx/Lbol ∼ 10−7.
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• Diffuse X-ray emission from both Arches and
Quintuplet clusters are unambiguously de-
tected. The emission is substantially more
extended than the stellar distributions. The
emission in the core region of Arches (r .

0.6 pc) has a 2-8 keV luminosity of 4 ×

1033 ergs s−1, a steep radial intensity de-
cline, and a hard spectrum with a strong
highly-ionized Fe Kα line. These properties
are consistent with the cluster wind inter-
pretation.

• The diffuse X-ray emission outside the
Arches core, however, has a relatively flat
and non-axis-symmetric spatial distribution.
The spectrum of the emission shows a dis-
tinct 6.4-keV line with an EW of ∼ 1.4 keV.
This line cannot be explained by the fluores-
cence of the Arches cluster X-ray emission
and is probably due to the collision of low-
energy cosmic-ray electrons with neutral or
weakly ionized irons in a bow shock, which
results from the supersonic motion of the
cluster relative to the CS cloud.

• The diffuse X-ray emission from the Quin-
tuplet cluster (LX ∼ 2 × 1033 ergs s−1)
is about a factor of 10 lower than from
the Arches cluster and can be naturally
explained by the cluster wind and a lim-
ited number of low-mass pre-main sequence
YSOs.

• There appears to be a general deficiency
of YSOs in the two clusters, relative to
the prediction from the standard Miller &
Scalo IMF. Compared with the X-ray emis-
sion from young stars in the Orion nebula,
our observed total diffuse X-ray luminosities
from the Arches and Quintuplet clusters sug-
gest that they contain no more than 2× 104

and 3×103 YSOs. These numbers are a fac-
tor of 10 and 5 smaller than what would be
expected from the IMF and the massive star
popluations observed in the cores of the two
clusters. One possibility is that the IMF in-
deed flattens at intermediate masses, as indi-
cated in a near-IR study of the inner regions
of the Arches cluster (Stolte et al. 2005).

• The CS molecular cloud appears to be collid-
ing with the Arches cluster at a relative ve-

locity of & 120 km s−1, explaining the bow
shock morphology of the associated diffuse
X-ray emission and its weak correlation with
the CS (J = 2–1) line intensity as well as the
near-IR extinction distribution and possibly
the abnormal kinematics of the dusty gas in
the field. Such collisions may be responsible
for removing the natal clouds of the clus-
ters at their early ages. High-velocity cloud-
cloud collisions might also initiate the forma-
tion of massive stellar clusters, such as the
Arches and Arches2, with top-heavy IMFs.
These are the effects unique in the Galactic
nuclear environment.
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Serabyn, E., & Güesten, R. 1987, A&A, 184, 133

Stevens, I. R., & Hartwell, J. M. 2003, MNRAS,
339, 280

Stolte, A., Grebel, E. K., Brandner, W., & Figer,
D. F. 2002, A&A, 394, 45

Stolte, A., Brandner, W., Grebel, E. K., Lenzen,
R., & Lagrange, A. 2005, ApJL, 628, 113

Sunyaev, R., & Churazov, E. 1998, MNRAS, 297,
1279

Valinia, A., Tatischeff, V., Arnaud, K., Ebisawa,
K., & Ramaty, R. 2000, ApJ, 543, 733

van Buren, D., & McCray, R. 1988, ApJL, 329, 93

Wang, Q. D., Gotthelf, E. V., & Lang, C., 2002,
Nature, 415, 148

Wang, Q. D. 2003, ANS, 324, 25

Wang, Q. D. 2004, ApJ, 612, 159

Wang, Q. D., Lu, F. J., & Gotthelf, E. V. 2006,
MNRAS, 367, 937

Wilms, A., & McCray, R. 2000, ApJ 542, 914

Yusef-Zadeh, F., Morris, M., & Chance, D. 1984,
Nature, 310, 557

Yusef-Zadeh, F., et al., 2002, ApJ, 570, 665

Yusef-Zadeh, F., Law, C., & Wardle, M. 2002a,
ApJ, 568, 121

26



Yusef-Zadeh, F., Nord, M., Wardle, M., F., Law,
C., Lang, C., & Lazio, T. J. W. 2003, ApJL,
590, 103

Zhekov, S. A., & Skinner, S. L. 2000, ApJ, 538,
808

This 2-column preprint was prepared with the AAS LATEX
macros v5.2.

27


