
ar
X

iv
:a

st
ro

-p
h/

06
09

22
8v

1 
 8

 S
ep

 2
00

6

Mon. Not. R. Astron. Soc. 000, 1–12 (2006) Printed 12 August 2008 (MN LATEX style file v2.2)

CMB signal in WMAP 3yr data with fastica

D. Maino1⋆, S. Donzelli1, A. J. Banday2, F. Stivoli3, C. Baccigalupi3,4
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ABSTRACT

We present an application of the fast Independent Component Analysis (fastica) to
the WMAP 3yr data with the goal of extracting the CMB signal. We evaluate the con-
fidence of our results by means of Monte Carlo simulations including CMB, foreground
contaminations and instrumental noise specific of each WMAP frequency band. We
perform a complete analysis involving all or a subset of the WMAP channels in order
to select the optimal combination for CMB extraction, using the frequency scaling
of the reconstructed component as a figure of merit. We found that the combination
KQVW provides the best CMB frequency scaling, indicating that the low frequency
foreground contamination in Q, V and W bands is better traced by the emission in
the K band.
The CMB angular power spectrum is recovered up to the degree scale, it is consistent
within errors for all WMAP channel combination considered, and in close agreement
with the WMAP 3yr results.
We perform a statistical analysis of the recovered CMB pattern, and confirm the sky
asymmetry reported in several previous works with independent techniques.

Key words: methods – data analysis – techniques: image processing – cosmic mi-
crowave background.

1 INTRODUCTION

The Cosmic Microwave Background (CMB) anisotropies are at present the main tracer of the physical processes occurred in the

very early universe; a complete mapping of them may reveal crucial clues about the statistics of the primordial perturbations,

the existence of gravity waves, the global geometry of the universe as well as the physical components responsible for the

accelerated expansion eras in the very early and recent universe, known as inflation and dark energy, respectively.

For these reasons, a great experimental work is being carried out in order to measure the finest structure of the CMB

anisotropies. In total intensity, right after successful sub-orbital observations, the Wilkinson Microwave Anisotropy Probe

(WMAP ) satellite is performing all sky observations of the CMB in five frequency bands ranging between 22 and 90 GHz

(see Spergel et al. 2006 and references therein). The first detections of the CMB polarization have been made from the ground

(Kovac et al. 2002), balloons (Montroy et al. 2005) as well as from the WMAP satellite itself (Page et al. 2006). In a few

years the Planck satellite1 will be launched, performing all sky measurements of the CMB total intensity and polarization

anisotropy in 9 frequency bands between 30 and 857 GHz, with an angular resolution reaching 5 arcminutes with a sensitivity

of a few micro-Kelvin. Next generation sub-orbital and satellite observations are ongoing or planned2.

The observations are confirming that the Galactic and extra-Galactic foreground emissions represent one of the two most

challenging obstacles to the complete knowledge of CMB anisotropies. The other one is represented by the control of instru-

mental systematics. In total intensity the sky at high Galactic latitudes appears dominated by the CMB emission at least

⋆ E-mail: davide.maino@mi.infn.it
1 http://www.rssd.esa.int/Planck
2 http://lambda.gsfc.nasa.gov/

http://lanl.arXiv.org/abs/astro-ph/0609228v1
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in the frequency range between 60 and 90 GHz observed by WMAP , although residual foreground contamination might be

responsible for the deviations of the observed signal from a Gaussian statistics (see Copi et al. (2006) and references therein).

In polarization the sky remains foreground dominated even if the region containing the brightest Galactic emission is cut out

(Page et al. 2006). In particular, foregrounds are likely to be comparable or higher to the the curl component in the CMB

polarization at all frequencies, and in any region of the sky (Baccigalupi 2003).

For these reasons it is important to study and test data analysis algorithms which are able to remove foreground contami-

nation from the data. The class of these tools is called component separation, and they all make use of the multi-frequency

superposition of the background and foreground emissions in order to separate them out. The concepts and means they use,

however, are very different. The category of non-blind methods uses prior knowledge of the foreground emission in order

to recover the CMB component (Brandt et al. 1994; Termark & Efstathiou 1996; Hobson et al. 1998; Bouchet et al. 1999;

Barreiro et al. 2004; Stolyarov et al. 2005). Blind methods exploit the statistical independence between background and fore-

grounds. Among them, the Independent Component Analysis (ICA, see Amari & Chichocki 1998, and references therein) has

provided interesting results on simulated data in total intensity (Baccigalupi et al. 2000; Maino et al. 2002) and polarization

(Baccigalupi et al. 2004; Stivoli et al. 2006), as well as on the real data by COBE-DMR (Maino et al. 2003) and BEAST

(Donzelli et al. 2006); these results are based on an implementation of the ICA technique capable to rapidly achieve conver-

gence to the solution if the hypothesis of statistical independence among the signals is verified (fastica Hyvärinen 1999).

Recently, hybrids techniques merging the blind and non-blind categories and largely based on a parametric description of the

foreground emission have been proposed (Delabrouille et al. 2003; Patanchon et al. 2005; Eriksen et al. 2006).

As we already mentioned, the design and testing of the component separation algorithms has been successful on real data.

This, together with the results presented here, indicates that these techniques may become standard data analysis techniques,

complementary to the methods of CMB extraction exploited so far. In this work we apply the fastica algorithm to the total

intensity WMAP 3yr data. Our purpose is to identify the CMB among the separated components and study its pattern in

comparison with the findings of other works exploiting different techniques. The paper is organized as follows. In Section 2

we outline the main features of the fastica algorithm. In Section 3 we evaluate its capabilities on simulated WMAP data.

In Section 4 we apply the fastica to the WMAP data and study the recovered CMB. Finally, in Section 5 we draw our

conclusions.

2 COMPONENT SEPARATION PROBLEM

We report here a brief description of the fastica algorithm, focusing on how the data are modeled and its principal assump-

tions. For further details we refer to the original theoretical papers in signal processing (Hyvärinen 1999; Hyvärinen & Oja

2000) and to the CMB applications, in total intensity (Maino et al. 2002) and polarization (Baccigalupi et al. 2004).

Let us suppose that the sky radiation at a given frequency ν is the superposition of N different physical processes and

that frequency and spatial dependencies can be factorized into two separated terms:

x̃(r , ν) =

N∑

j=1

s̄j(r)fj(ν) . (1)

By definition, and without loss of generality, the f functions may be defined to be 1 at a given reference frequency. In this

case the signals s represent the actual emissions at that frequency. In order to exploit the different spectral behavior of CMB

and foreground emissions, an M -frequencies experiment is usually exploited. Individual detectors are also coupled with an

optical system, whose beam pattern is in general modeled, at each frequency, as a position invariant point spread function

(PSF) B(r , ν). In addition any real experiment adds instrumental noise ǫν(r) in the output signal. Indicating with ν1, ..., νM

the M frequencies of a given experiment, one can define the scaling coefficients aij = fj(νi), and construct the M ×N mixing

matrix A accordingly. Within these assumptions the observed signal is expressed by

x(r) = As̄(r) ∗ B(r) + ǫ(r) = As(r) + ǫ(r) , (2)

where for each position r, x and ǫ are vectors with M rows, and the star represents the convolution of the PSF with the sky

signals s̄, indicated simply as s afterward; note that we further assumed that the beam function is frequency independent i.e.

the signals at different frequencies are smoothed at the same angular resolution.

The problem is solved obtaining both the mixing matrix A and the signals s from the observed data x. In the ICA

approach, the lack of determination in the problem is compensated by assuming that the signals to recover are random

realizations of independent distributions: this means that the joint probability distribution of the superposition is a product

of the single ones for each signal; in particular this implies that all of them, but at most one, have non-Gaussian distributions.

The actual separation is achieved by means of linear combinations of the input data at different frequencies, corresponding to

the maxima of a suitable neg-entropy approximation and thus of the non-Gaussianity. The maxima are in the form of vectors

w, rows of the separation matrix W such that the transformed variables y = Wx are indeed independent components. The
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neg-entropy approximation is achieved by a non-linear re-mapping of the input data (Hyvärinen 1999; Hyvärinen & Oja 2000)

exploiting suitably functions g, i.e. g(u) = u3, g(u) = tanh(u) and g(u) = uexp(−u2) where u are the principal component

projected data. In the following these functions will be indicated as p, t and g. It is not possible to decide a priori which

function will work better on a given data set: this indeed depends on the statistics of the independent signals which are

not known a priori. In particular p, which corresponds to the kurtosis, should be used for sub-Gaussian components but

it is strongly sensitive to outliers in the distributions; g is for super-Gaussian signals while t is a general purpose function

(Hyvärinen 1999). Therefore this optimization step is something that have to be verified on a case-by-case basis. Similarly to

previous works, in the application to the WMAP data we have verified that best performances are obtained with g and we

present results obtained with this function only.

Once the separation matrix W is obtained the underlying components are given by x = W−1y. This equation allows us to

derive the frequency scalings for each independent component (Maino et al. 2002): the scaling between ν and ν′ of the jth

component is given by the ratio of W−1

νj /W−1

ν′j
. This ratio is directly related to the spectral index of the frequency spectrum

of the component which, for a power law behavior, is written as β = log[W−1

νj /W−1

ν′j
]/log[ν/ν′].

The signal-to-noise ratio for the reconstructed components can also be recovered, as the noise enters into the separation

process through the noise covariance Σ (Hyvärinen & Oja 2000). Therefore, noise constrained realization nx for each frequency

channels can be built and combined accordingly to the weights obtained by the separation matrix W. This is exactly what

we have done for evaluating the noise angular power spectrum in the recovered CMB component, as it was done for the

fastica application to the COBE-DMR and BEAST data Maino et al. (2003); Donzelli et al. (2006).

3 CALIBRATION WITH SIMULATIONS AND IDEAL PERFORMANCES

In order to construct an expectation of the results we obtain when applying fastica to the WMAP 3yr data, we first tested

the algorithm by means of Monte Carlo (MC) simulations. These give hints on performances in ideal situation and could be

used, when compared to results from real data, to judge the accuracy of sky and instrument model adopted.

3.1 Simulation pipeline

We created synthetic skies at the 5 WMAP frequency bands (23, 33, 41, 61 and 94 GHz) including instrumental noise

and smoothed with a Gaussian beam of 1 degree FWHM. The sky signal is made of the CMB and the three major diffuse

foreground emissions, namely synchrotron, free-free and dust. Their contribution has been derived using the following models.

The CMB template varies in the MC chains, corresponding to Gaussian realizations of the theoretical no running best fit

CMB angular power spectrum from WMAP 3 obtained with the cmbfast code (Seljak & Zaldarriaga 1996). We have verified

that up to ℓ <
∼ 400, which are the scales of interest for 1◦ smoothed data, differences between 3yr and 1yr best-fit model

are less than 1.5%. For synchrotron, we use the all sky template at 408 MHz by Haslam et al. (1982); note that this does

not include the extension by Giardino et al. (2002) on sub-degree angular scale in total intensity and polarization following

the data in the radio band (Jonas et al. 1998; Reich & Reich 1986; Duncan et al. 1999; Uyaniker et al. 1999). For the dust,

the 100 µm map by Finkbeiner et al. (1999) has been used; the free-free template is derived assuming correlation with the

Hα emission (Finkbeiner 2004). These templates have been scaled to WMAP frequencies assuming the weights given in

Table 4 of the work by Bennett et al. (2003b). The sky maps are treated following the HEALPix sphere pixelization scheme4

at Nside = 512 resolution parameter corresponding to about 7 arcminutes pixels. Our foreground model is based on 1-year

WMAP results. A more realistic approach to foreground emissions could use either the K-Ka template for “synchrotron”

emission or the 3-year MEM foreground results (Hinshaw et al. 2006). However the use of these maps introduces subtleties

mainly related to the noise in the data. Although the K-Ka map is likely a superior tracer of the synchrotron emission than

Haslam at WMAP frequencies, for our demonstration purposes the model used is sufficient.

The complete pipeline considered is therefore based on the following steps:

(i) simulating CMB sky according to the WMAP best-fit model convolved with the channel-specific beams;

(ii) adding foreground emission scaled to each frequency band using the WMAP weights specified above;

(iii) adding noise realizations according to the sensitivity maps provided by the WMAP team;

(iv) deconvolving the beam and smooth to 1◦ FWHM each frequency channel simulation;

(v) applying fastica on the simulated set of maps.

From each simulation we collect the results building figures of merit both on the full-sky and excluding Galactic plane regions

with the Kp2 mask, used by the WMAP team for their CMB analysis and described in Bennett et al. (2003b).

3 http://lambda.gsfc.nasa.gov/data/map/powspec/wmap− lcdm−pl−model−yr1−v1.txt
4 http://healpix.jpl.nasa.gov
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Figure 1. ICA reconstructed CMB frequency scalings derived from 100 MC simulations. Boxes and circles represent full sky and Kp2
scalings respectively. The left (right) panel shows ideal results for noiseless (noisy) simulations. Also shown are the expected CMB
frequency scaling and the 1-σ error (gray band) from the WMAP analysis (Bennett et al. 2003a).

3.2 Simulations results and performances

From these set of simulations we derived the distributions for the CMB frequency scaling in each frequency band. This is

obtained by taking the sum of the elements in the row of the W matrix which corresponds to the extracted CMB signal and

multiply this by the corresponding column in the A matrix. Anticipating what we have done on real data, we also considered

different combinations of WMAP frequency bands with the aim of finding the optimal one for what concerns the CMB

reconstruction. Such combinations are: QVW, KaQVW, KQVW, KQV, KaQV, KKaQV and KKaVW. Figure 1 shows results

for the CMB frequency scalings reconstructed by ICA for noiseless (left panel) and noisy (right panel) simulations for both the

full-sky (filled box) and Kp2 (filled circles) analysis for the KKaQVW combination. The agreement with a pure black-body

spectrum (thick horizontal line) is quite good and almost within 1-σ limit of WMAP calibration accuracy: low frequency

channels (K and Ka bands) show larger uncertainties while if the bands considered are those where the CMB is stronger,

the reconstruction is much more faithful. The error bars in the figure are purely indicative of the expected performance of

ICA on the real data by WMAP . Indeed, the foregrounds are far too simple to accurately represent their real signal in

the microwave band, at least for the low frequency components, synchrotron and free-free, where observations are limited in

angular resolution, or indirect. Other unknowns are represented for example by the spatial variation of the frequency spectral

index. Nevertheless the shown error bars give a flavor of the kind of accuracy of the results we show in the next Section. In

addition, since for simulations we know exactly the input CMB sky, we evaluate both the average and the rms of the residual

map obtained subtracting the CMB input and output. We also consider noiseless simulations in order to check the impact of

the instrumental noise on the quality of the reconstruction. In the upper left panel of Figure 2 we show the average residual

map from 100 simulations using all WMAP channels in the ideal noiseless case: fastica removes the foregrounds to the level

indicated in the figure, in units of thermodynamical temperature, with the strongest residual signal along the plane where

the Galaxy is brighter. This is indeed expected since along the plane foreground emissions are expected to be correlated,

violating one of the fastica assumptions. The peak-to-peak amplitude of the residual is around 8µK. Excluding Galactic

plane regions and point sources with the Kp2 mask reduces sensibly the contamination (upper-right panel) down to ∼ 5µK.

Adding instrumental noise (lower-left) slightly decreases the quality of the reconstruction: the residuals are still present along

the galactic plane and structures related to the actual noise distribution in the sky appear. Although quite similar between

the WMAP channels, the non-uniform noise distribution is interpreted by the algorithm as an additional “signal” component.

However the peak-to-peak residual remains quite small being around 10.8µK. Finally in the lower-right panel we show the

standard deviation of the residual map: the largest deviations are again along the Galactic plane where a very bright spot is

clearly visible at a level of 20µK. However for the Kp2 analysis the overall rms decreases to less than 6 µK indicating a good

quality in the fastica reconstruction; the scanning pattern of WMAP is also evident.

Simulations here include only four signal components to be extracted with five frequency channels, and in the actual imple-

mentation the fastica tries to recover a number of components equal to the one of the frequency channels considered; also

we do not know a priori the order in which components are extracted. Adopting a criterion already used in previous works

(Maino et al. 2003), we were able to verify that the fifth component is clearly not physical, evaluating its signal-to-noise ratio;

however its small amplitude slightly contaminates the other extracted components, and the best configuration for fastica is

with four frequency channels at least in simulations. The situation is slightly different in the application to WMAP real data

due to the physical properties of real foregrounds.
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Figure 2. Maps of the average and standard deviation of the difference between reconstructed and input CMB maps. Each map is
computed for a total of 100 simulations. The upper panels show the residual average for the ideal noiseless case when the reconstruction
is done on the whole sky (left) and excluding the regions inside the Kp2 mask (right). The lower-left panel shows the residual average
for the full-sky analysis with instrumental noise. The lower-right panel shows the standard deviation of the residual maps for full-sky
and noisy case.

4 APPLICATION TO WMAP 3YR DATA

In this Section we show the results obtained by applying the fastica algorithm to the WMAP data. There are three main

findings and criteria, namely the combination of the different WMAP channels, the results for the power spectrum and the

distribution of the CMB power as recovered by the fastica across the sky, which are the subjects of the following sub-sections.

4.1 Selection of input maps

fastica operates onto the WMAP 3yr data smoothed at 1 degree FWHM at Nside = 512, on the full sky and using the Kp2

mask. It is interesting to study the results for several combinations of the WMAP channels, selecting in particular the optimal

one for what concerns the CMB reconstruction. We have performed our analysis considering the whole set of WMAP data as

well as suitable subsets thereof. In particular we have set the minimum number of input channels to three taking the following

combinations: QVW, KQVW, KaQVW, KQV, KaQV, KKaQV and KKaVW. The first three include high frequency CMB

dominated channels: the rationale of adding to QVW the data in K or in Ka band is to provide the fastica dataset with a

frequency band where the low frequency foregrounds dominate to better assess and remove the corresponding contamination

to the CMB, and to check which between the K and Ka bands is more representative of such contamination. The next three

sets exclude the W band data in order to see which channel dominates the CMB reconstruction, while the final one is included

since the final WMAP 3-yr CMB angular power spectrum for ℓ > 12 has been obtained by combining V and W bands data

after subtraction of the K-Ka map plus free-free and dust templates. Several things have to be noted.

First all the recovered full-sky CMB maps show clearly a residual contamination along the galactic plane; we report in

Fig. 3 the fastica CMB reconstruction from the KKaQVW combination as well as the difference between this map and the

corresponding one from the Kp2 analysis.

The Galactic residual contamination is due to the fact that along the plane the foreground emissions are expected to be

correlated, violating one of the fastica assumptions, as it was already evident in the simulations in the previous Section,

although in that case the effect is much smaller in amplitude. This is an indication of the fact that our sky model is too

far simple to properly reproduce the case with real data. This issue could be solved in principle by using a sort of Internal

Template approach as exploited by Hansen et al. (2006) and currently under study (Stivoli et al. 2006b). In the difference
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Table 1. FASTICA weights for different channels combination

K Ka Q V W

Full-sky

0.001610 0.039723 -0.932632 2.02027 -0.128972
- - -0.832358 1.93718 -0.104825

0.002866 - -0.849484 1.94972 -0.102067
- 0.007923 -0.947255 1.93514 -0.095834

-0.026772 0.104729 -0.872566 1.79461 -
-0.008567 - -0.755391 1.76396 -

- -0.034631 -0.730927 1.76556 -
0.108010 -0.680878 - 1.64439 -0.071519

Kp2 sky cut

-0.183053 0.248303 -0.158422 0.767720 0.325453
- - -0.810260 2.231690 -0.421430

-0.148842 - 0.232536 0.748460 0.167486
- -0.573262 0.524846 1.23660 -0.188187

0.074617 -0.413025 -0.327681 1.66609 -
0.001962 - -0.750511 1.74855 -

- -0.436905 0.295693 1.14121 -
-0.508637 1.18968 - -0.703798 1.02276

Figure 3. Left - CMB ICA map for full sky KKaQVW analysis. The residual along the Galactic plane is evident. Right - Difference
between full sky and Kp2 ICA CMB maps: some residual Galactic signals is present near the edge of the sky mask and around some
bright sources. High latitudes, large scale residual patterns are also present.

Figure 4. CMB frequency scaling for full-sky (left panel) and Kp2 analysis (right panel). Plus signs refer to KKaQVW combination,
asterisks to QVW, rombs to KQVW, triangles to KaQVW, empty square to KKaQV, crosses to KQV, filled squares to KaQV and filled
circles to KKaVW.
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map large residuals are mainly located near the edge of the sky mask and around bright point sources: this is not surprising

as we will see shortly. Moreover large scale residual is also present and we will comment on this when considering power

spectrum analysis.

In addition we report in Fig. 4 fastica reconstructed CMB frequency scalings for both full-sky (left panel) and Kp2 sky

cut (right panel) analysis. The improvement in the reconstruction when working with the Kp2 mask is evident at least for the

low frequencies (K, Ka and Q bands) but not marked. Indeed the two CMB dominated channels are closer to the expected

scaling for the full sky analysis than when Kp2 mask is applied: deviations are clear for the QVW combination and particularly

for KKaVW channels which are quite peculiar as we will see below. This indicates that these three channels (QVW) do not

provide enough information to fastica on the low-frequency contamination to properly perform a CMB cleaning.

For what concerns the frequency scaling the optimal combination is the one with KQVW where the deviation from the

expected value of 1 for the highest frequency channels is smaller. This is an interesting result: it indicates that according to

the figure of merit adopted, the low foreground emission is better “read” by fastica by means of the information in the

K-band which is then subtracted optimally in the Q, V and W ones. On the other hand, this maximum in the quality of the

CMB reconstruction lies in a plateau, in the sense that the results for other combinations are stable and pretty consistent

with each other, as the rest of the analysis shows.

In Table 1 we also report the fastica weights for the different channel combinations and sky cuts. It may be immediately

noted that the number variation is macroscopic, even within a given case, either on the full sky or outside the Kp2 mask. Indeed,

a different combination of the WMAP channels implies a different relative distribution of the background and foreground

components, making fastica converging to a different separation matrix. The difference in the dataset by selecting different

channel combinations is enhanced by the fact that WMAP foregrounds are real, e.g. they possess a space varying spectral

index. On different combinations fastica deals with a different sky rather than the same one at different frequencies, making

the problem and the solution markedly varying. Despite of this, the reconstructed CMB power spectrum is pretty consistent

in the different cases, as we see in a moment, and some general trends are clearly visible. First of all the dominant component

with respect to the weight amplitude is always V-band for both full sky and Kp2 analysis. This is not surprising since it

has the lowest foreground contamination. Furthermore in full sky analysis Q-band has always large negative weights almost

stable with respect to the different combinations and similarly to the W-band they are both stable and negative. The Kp2

analysis assigns again largest weights to the V-band, apart from the KKaVW combination, while the overall behaviour of

the results is less stable possibly due to the difference in the sky that fastica has to deal in each case, due to the fact that

the data are real in the present case. A possible trend is that when both K- and W-bands are included, the weights in K are

positive while they are negative for W-band. This could be related to the fact that the W band traces dust possibly both

thermal and anomalous component, and K presumably contains some anomalous dust too. We also verified that the same

instability in the weights recovered by the fastica occurs considering the other masks provided by the WMAP team (namely

the Kp0 and the Kp2 extended mask). Specifically, keeping the channel combination fixed but varying the mask, the weights

variation has roughly the same magnitude as in Table 1. The interpretation we give is the relevance of the foreground signal

on the ridge of a given mask, where the foreground themselves are more intense. Changing the cut is equivalent to include or

exclude areas where the foreground emission is intense, and most likely exhibits different properties, as expected for realistic

astrophysical emissions. Thus fastica deals in each case with a different problem, with the result of finding different weights

of the different channels which maximize the independence of background and foregrounds. This situation is clearly evident,

as reported commenting the derived frequency scalings, for the KKaVW combination: W-band is almost left untouched while

other frequencies combine to create the “foreground” map to be subtracted from the W-band data. This is completely different

from the previous findings and it is another indication of what reported before: different combinations are indeed different

skies to be analysed. In this specific case without Q-band and without the region near the galactic plane, fastica detects

different signal statistics as demonstrated by the different weights obtained. However the quality of the CMB reconstruction is

still quite good given the high statistical independence of CMB with respect foregrounds as reported in the following analysis

on the power spectrum.

4.2 Power Spectrum

Here we derive the angular power spectrum from the ICA CMB maps discussed above using the MASTER algorithm

(Hivon et al. 2002), restricting to the cases in which the Kp2 mask has been used. This means that we also consider the

full sky results after applying the Kp2 mask. Noise biases are obtained from noise-only simulations of the WMAP frequency

channels, combined with derived ICA weights (see Table 1) specific of each channel combination considered.

The final WMAP 3yr power spectrum have been estimated using a combination of a maximum-likelihood approach for

multipoles ℓ < 12 and a MASTER technique for higher multipoles. However since we adopt a MASTER approach also at

low multipoles for a proper comparison we report here the full MASTER WMAP 3yr power spectrum kindly provided by

the WMAP team (Hinshaw 2006). Figure 5 presents our results for the selected channel combinations compared to the

WMAP 3yr CMB power spectrum.
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Figure 5. The power spectrum from all the WMAP channel combinations on Kp2 compared with the full MASTER WMAP 3yr power
spectrum (black thick solid line). The top panel shows the analysis considering all multipoles, while the bottom panel reports results for

low ℓs only, see text. Channel combinations are color coded: red for KKaQVW, green for QVW, blue for KQVW, yellow for KaQVW,
brown for KKaQV, indigo for KaQV, turquoise for KQV and grey for KKaVW.

There is a complete consistency between the power spectra obtained from different channel combinations and the

WMAP 3yr results. The analysis on the low ℓ part of the spectrum shows again a general good agreement between ICA results

and WMAP 3yr data almost regardless of the channel combination considered. This is interesting since the WMAP result has

been obtained considering only high frequency channels after subtraction of foreground template as traced by the difference

between low frequency channels. This result represents an indication of the high quality results that fastica can obtain in

terms of CMB reconstruction on real CMB data.

We report in Figure 6 (upper panel) a similar comparison but for the binned power spectra and the agreement is evident

both on the low multipoles as well as to higher ones up to ℓ ≃ 150. Large spread in the results is present for the highest

bins. Adopting the consistency with the WMAP 3yr power spectrum as a figure of merit, we can judge which is the optimal

combination: this is once again the KQVW, indicating that the best tracer of low frequency foreground contamination at high
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Figure 6. The binned power spectra from all WMAP channel combinations compared with the full MASTER WMAP 3yr power
spectrum for a complete Kp2 analysis (upper panel) and full sky analysis with Kp2 mask applied when computing the power spectrum

(lower panel). Channel combinations are color coded as in the previous figure.

frequencies is represented by the K band data. On the bottom panel we show similar results from the full sky analysis when

the Kp2 mask has been applied: the agreement with WMAP results are even more evident for both low and high ℓ. This is

an indication of the fact that even in presence of strong and possibly correlated foreground on the galactic plane, fastica is

not only still able to properly recover the CMB pattern at high galactic latitudes but it performs better than in the case

of a pure Kp2 analysis. This means that the level of signal correlation along the galactic plane, that violate one of the ICA

assumptions, does not compromise the reconstruction at high galactic latitudes and that the regions near the plane included

in the full sky analysis are useful for better distinguish different signal statistics.
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Figure 7. The power spectra derived on the northern (dashed line) and southern (solid line) hemisphere in the reference frame with
north pole at (θ, φ) = (80◦, 57◦). The left panel shows the spectra derived from the ICA CMB map out of Kp2. In the right panel the
CMB maps are obtained applying fastica separately on the two hemispheres. Colors mark channel combinations as in previous figure.

4.3 Power Asymmetries

Given the quality of the results obtained so far especially when considering regions outside the Kp2 cut, we push the analysis

further. Several authors (Eriksen et al. 2004b; Hansen et al. 2004, 2006), reported an unevenly distribution of large-scale

power in the WMAP 1yr data. The asymmetry is maximized in the direction defined by a north pole at (θ, φ) = (80◦, 57◦)

(Galactic co-latitude and longitude). Different and independent techniques found that in such reference frame the southern

hemisphere has significantly more power than the northern hemisphere for ℓ < 40. These findings have been confirmed in the

WMAP 3yr data. We therefore investigate the ICA CMB maps searching for this asymmetry.

As a first step, we computed the power spectrum on the ICA CMB maps, reconstructed out of Kp2, independently in

the two hemispheres defined in the new reference frame. This is done for all the combinations of input frequency channels.

The spectra are estimated in bins of 3 multipoles each from ℓ = 2 − 40 and adopting the same procedure described in the

previous Section. The results are shown in Fig. 7 (left panel). We can see that for all the channel combinations the southern

spectrum has indeed more power than the northern one over almost the entire multipole range. We also performed the same

kind of analysis starting from maps obtained from the full sky analysis and with Kp2 mask applied with identical findings.

In a pure fastica analysis, one might be tempted to try an explanation in terms of a difference in the overall foreground

spectral indices in the two hemispheres, since the fastica assumes an uniform frequency scaling across the whole sky; but

the fact that other authors obtained the same result with totally independent procedures, and most importantly the test

outlined below make this explanation unlikely. Indeed, we performed the component separation on the northern and southern

hemisphere separately and derived the ICA CMB power spectrum separately for each of them. The spectra are reported in

Fig. 7 (right panel). Also in this case the northern spectrum is systematically lower than the southern one. This result strongly

disfavors an explanation based on foregrounds for the asymmetry found in the ICA CMB maps. In addition, we point out the

remarkable agreement between our results and those of Hansen et al. (2006) (see their Fig. 8), obtained with a completely

independent technique.

On the fastica side, this confirms the reliability of the algorithm when exploited to reconstruct the finest structure in

the CMB pattern out of a given dataset, as this work and the previous ones on BEAST (Donzelli et al. 2006) and COBE-

DMR (Maino et al. 2003) demonstrate; on a purely scientific side, we confirm the existence of a marked asymmetry in the CMB

anisotropy power between the considered northern and southern hemispheres, which in this present case escapes explanations

in terms of difference in the foreground properties on the corresponding two hemispheres.

5 CRITICAL DISCUSSION AND CONCLUSION

In this work we applied the fast Independent Component Analysis (fastica) component separation technique to the 3 years

data of the Wilkinson Microwave Anisotropy Probe (WMAP ). The algorithm retrieves the different components superposed

in a multi-frequency observation as linear combinations of the input data at different frequencies, which maximize the mu-

tual statistical independence. We first evaluate the expected performance by means of Monte Carlo chains on simulated

WMAP data varying the noise and CMB realization, and exploiting the existing foreground models. Among the recovered

components, we identify one which is compatible with the CMB emission by checking the recovered frequency scaling. On



CMB signal in WMAP 3yr data with fastica 11

simulations, the precision of the recovery on the frequency scaling is of the order of percent. We then apply the technique

to the real data, again identifying the CMB component by means of the reconstructed frequency scaling. Different combi-

nations of the WMAP channels give consistent results; in terms of the reconstruction of the CMB frequency scaling, the

best WMAP configuration includes the three high frequency channels (Q, V and W, respectively at 41, 61, 94 GHz), plus

the lowest one (K at 23 GHz). This indicates that the algorithm benefits from having a good tracer of the low frequency

foregrounds in the WMAP data in order to achieve a proper CMB cleaning. The recovered CMB power spectrum is in close

agreement with the WMAP one on all accessible scales. The CMB fluctuation asymmetry in the northern and southern

hemisphere claimed by several authors exploiting different data analysis techniques is confirmed in this work, with the same

amplitude.

The agreement of the present results on CMB with the WMAP ones and those from other authors is remarkable and

strengthens the confidence we have on the CMB pattern reconstructed from the existing data as a whole. At the same time,

from the point of view of the development of component separation techniques based on the Independent Component Analysis

(ICA) this work represents the achievement of a most important milestone in view of the application to the Planck and other

experiments; it means that the algorithm proved itself to be stable against the WMAP instrumental systematics, and realistic

foregrounds.

On the other hand, we are aware of the limitations of the present analysis. First of all, WMAP is not an ideal experiment

for performing a map based component separation, since the different channels have markedly different resolutions, and one

has to do a pre-processing step decreasing the angular resolution of the data to a common one, which is about 1 degree in

the present case. Second, the precision of the separation is evaluated by means of Monte Carlo chains on simulated data,

which rely on ingredients, e.g. foregrounds and systematics, which may be far from reality, and also incomplete in the case

of WMAP , as the dust foreground is visible only in the W band at 94 GHz, and does not have a multi-frequency coverage

required by most component separation algorithms.

Despite of all these oddities, the CMB pattern recovered by the fastica is consistent with the results in earlier literature,

and confirms effects like the asymmetric distribution of the CMB anisotropy power across the sky. This performance is likely

to be due to the high level of statistical independence between background and foregrounds in the data, which is able to drive

the solution close to the right one even for data affected by instrument systematics and realistic foregrounds. Thus we believe

the present technique might be proving itself useful for future CMB probes, either accessing the CMB statistics beyond the

power spectrum, and to control the foreground emission in polarization, which is going to be less known than in total intensity,

and substantially higher compared with the CMB.
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