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Gravitational wave stochastic background from cosmic (super)strings
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We consider the stochastic background of gravitational waves produced by a network of cosmic
strings and assess their accessibility to current and planned gravitational wave detectors, as well
as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing
constraints. We find that current data from interferometric gravitational wave detectors, such as
LIGO, are sensitive to areas of parameter space of cosmic string models complementary to those
accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers
such as Advanced LIGO and LISA will be able to explore substantial parts of the parameter space.

PACS numbers: 11.27.+d, 98.80.Cq, 11.25.-w

I. Introduction. – Cosmic strings can be formed in phase
transitions in the early universe [1], and are viable can-
didates for generating a host of interesting astrophysical
phenomena [2]. Cosmic superstrings are produced in cer-
tain string-theory inspired inflation scenarios [3]. Since
fundamental strings interact probabilistically, and due to
the higher dimensionality of string theories [3], cosmic
superstrings re-connect with a probability p that can be
smaller than unity (p = 1 for field theoretic strings). Val-
ues of p are expected to lie in the range 10−3

− 1 [4]. In
stringy scenarios it is also possible to form more than
one kind of string. Here we assume that only one kind of
string forms, and a network density proportional to p−1.

Cosmic (super)strings can produce strong bursts of
gravitational radiation. This possibility was first consid-
ered by Berezinsky, Hnatyk and Vilenkin [5], and later
explored in detail by Damour and Vilenkin [6, 7]. The
strongest bursts are produced at cosmic string cusps (re-
gions of string that acquire large Lorentz boosts) and
could be detected even by Initial LIGO [6, 7, 8]. The
gravitational waveforms of cusps are simple and robust
to classical perturbations [9] as well as quantum effects
[10].

Cosmic (super)strings also produce a stochastic back-
ground of gravitational waves (GWs) [2, 6, 7, 11], whose
spectrum is usually defined as Ωgw(f) = (f/ρc) dρgw/df .
Here, dρgw is the energy density of GWs in the frequency
range f to f + df and ρc is the critical energy density of
the Universe. We examine the GW background produced
by the incoherent superposition of cusp bursts from a
network of cosmic strings. We build on the results of
Damour and Vilenkin [6, 7] generalising them in two
ways: 1) we consider a generic cosmological model, that
allows us to include the effects of late time acceleration
(see [8]), and 2) we generalise the analysis to include ar-
bitrary loop distributions. The former generalisation re-

sults in a stochastic background within an order of mag-
nitude of, but smaller than, the estimates of [6, 7] (see
Fig. 1). The latter generalisation allows us to compute
the background when string loops are large when they are
formed and thus long-lived, a possibility suggested by re-
cent numerical simulations [12, 13]. Recently, Hogan [14]
has made analytic estimates for the case when the size of
loops at formation is about a tenth of the horizon.

We investigate the detectability of the background by
a wide range of experiments. We consider the LIGO
bound from the fourth science run S4 (Bayesian 90% up-
per limit Ωgw < 6.5 × 10−5 in 51-150 Hz band [16]),
the bound based on pulsar timing experiments (95% de-
tection rate upper bound Ωgw < 3.9 × 10−8 at frequen-
cies 1/(20yr) − 1/yr [17]), as well as the expected fu-
ture reaches of LIGO, Advanced LIGO, LISA [18], and
pulsar timing experiments [17]. We also consider the
indirect bound due to big-bang nucleosynthesis (BBN)
[19]:

∫
Ωgw(f)d(ln f) < 1.5 × 10−5, assuming 4.4 as

the 95% upper limit on the effective number of neu-
trino species at the time of BBN [20]. This bound ap-
plies to the signal produced before the time of BBN,
i.e. to redshifts z > 5.5 × 109, and to frequencies
above ∼ 10−10 Hz (corresponding to the comoving hori-
zon size at the time of BBN). Similarly, we consider the
bound obtained using the CMB and matter spectra [21]∫

Ωgw(f)d(ln f) < 7.5 × 10−5 (95% confidence limit, as-
suming adiabatic initial conditions). This bound applies
to signals produced before photon decoupling, i.e. for
z > 1100, and to frequencies above ∼ 10−15 Hz (cor-
responding to the comoving horizon size at the time of
photon decoupling). Finally, we consider the projected
sensitivity of the LIGO burst search, optimized to search
for individual cusp bursts at relatively low redshifts [8].
For the above limits on Ωgw, as well as in the remainder
of the paper, we assume a value of the Hubble parame-
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ter H0 = 73 km/s/Mpc [22]. The 5% uncertainty in the
value of the Hubble parameter does not alter our conclu-
sions. Figure 1 shows the different experimental bounds
in relation to examples of the cosmic string spectrum. We
will show that these experiments explore a large fraction
of the cosmic string parameter space, making burst and
stochastic GW searches rare and powerful probes of early
universe physics and string theory motivated cosmology.
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FIG. 1: Different experimental bounds and future experimen-
tal sensitivities are shown in relation to the cosmic string spec-
tra computed for p = 5 × 10−3, Gµ = 10−7. The dot-dashed
curve was computed for ε = 1 using Eqs. (4.1-4.7) of Damour
& Vilenkin [7]. The solid and dotted curves were computed
using the method described in this paper and ε = 10−7 and 1
respectively. Note that the model depicted by the solid curve
is not accessible to the pulsar or BBN bounds, but may be
accessible to Initial LIGO [15]. The BBN and CMB bounds
apply to the integral of the spectrum over the frequency range
indicated by the corresponding lines. See text for more detail.

II. The stochastic background. – We have used the results
of Allen and Romano [23], to compute the GW spectrum
by evaluating the strain at a point in space [24],

Ωgw(f) =
4π2

3H2
0

f3

∫
dz

∫
dl h2(f, z, l)

dR

dzdl
. (1)

In the following, we describe the quantities that enter this
expression. The strain produced by a cusp at a redshift
z, from a loop of length l, can be read off Eq. (46) of [8]:

h(f, z, l) = g1

Gµl2/3H0

f4/3(1 + z)1/3ϕr(z)
. (2)

Here g1 absorbs the uncertainty on the amount of length
l involved in the production of the cusp [8], G is Newton’s
constant, and µ is the mass per unit length of strings. We
expect the ignorance constant g1 to be of O(1) provided
loops are smooth. The dimensionless function ϕr(z) re-
lates the proper distance to the redshift (see Appendix

A of [8]). The burst rate entering Eq. (1) is given by
Eq. (58) of [8]:

dR

dzdl
= H−3

0 ϕV (z)(1 + z)−1ν(l, z)∆(f, z, l). (3)

Here ϕV (z) is a dimensionless function that relates the
volume element to the redshift (see Appendix A of [8])
and the factor (1 + z)−1 comes from the relation be-
tween the observed burst rate and the cosmic time.
The number of cusps per unit space-time volume from
loops with lengths in the interval dl at a redshift z is
ν(l, z)dl = (2c/l) n(l, z)dl (see [8]). Here, c is the num-
ber of cusps per loop oscillation (assumed to be 1 in the
analysis below), and n(l, z) is the loop distribution which
we vary in the analysis below. The fraction of bursts we
can observe is ∆(f, z, l) ≈ θ2

m(z, f, l)Θ(1− θm(z, f, l))/4,
with θm(z, f, l) = [g2(1 + z)fl]−1/3. The ignorance con-
stant g2 absorbs factors of O(1), as well as the fraction
of the loop length l that contributes to the cusp [8]. We
expect g2 to be of O(1) if loops are smooth. The angle
θm is the maximum angle that the line of sight and the
direction of a cusp can subtend and still be observed at
a frequency f . Thus θ2

m/4 is the beaming fraction cor-
responding to the angle θm, and the Θ function cuts off
events that don’t have the form of Eq. (2).

If loop sizes at formation are determined by gravita-
tional back-reaction, then to a good approximation all
loops have the same length at formation and are short
lived. We can take the loop distribution to be n(l, t) =
(pΓGµ)−1δ(l − αt) [6], where Γ ∼ 50 is a constant re-
lated to the power emitted by loops into GWs, and the
cosmic time is a function of the redshift, t = t(z). We
parametrise the loop length using ε [7], taking α = εΓGµ.
In this case, the integral over lengths in Eq. (1) can be
replaced with Eq. (59) of [8], enhancing the string density
in the radiation era by a factor of 10 [6].

However, recent simulations [12, 13], suggest that loop
sizes at formation are related to network dynamics. In
this case loops may be large and long-lived, the loop dis-
tribution n(l, t) is more complicated (see Eqs. (68-70) of
[8]), and the integral over lengths must be computed ex-
plicitly.

Damour and Vilenkin [6] made the crucial observation
that the stochastic ensemble of GWs generated by a net-
work of cosmic strings includes large infrequent bursts,
and that the computation of Ωgw(f) should not be bi-
ased by including these large rare events. When loops
are small, all loops at a certain redshift are the same size
and produce the same amplitude events. Hence, a cut-
off can be placed in the integral over redshifts to remove
large events for which the rate is smaller than the rele-
vant time-scale of the experiment (see Eq. (6.17) of [6]).
When loops are large the situation is more complicated
because at any given redshift there are loops of many dif-
ferent sizes. To deal with this problem, we use Eqs. (2)
and (3) and evaluate dR/dzdh, the rate from cusps in
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FIG. 2: Top-left: Accessible regions in the ε − Gµ plane for p = 10−3 when loop sizes are determined by gravitational
back-reaction. From darkest to lightest, they are: LIGO S4 limit, LIGO H1L1 projected sensitivity (cross-correlating the
data from the 4-km LIGO interferometers at Hanford, WA (H1) and Livingston, LA (L1)), LIGO H1H2 projected sensitivity
(cross-correlating the data from the two LIGO interferometers at Hanford, WA (H1 and H2)), and AdvLIGO H1H2 projected
sensitivity. All projections assume 1 year of exposure and either LIGO design sensitivity or Advanced LIGO sensitivity tuned
for binary neutron star inspiral search. The solid black curve corresponds to the BBN bound, the dot-dashed curve to the
pulsar bound, the +s to the projected pulsar sensitivity, the empty circles to the bound based on the CMB and matter spectra,
the ×s to the projected sensitivity of the LIGO burst search, and the filled circles to the LISA projected sensitivity (accessible
regions are to the right of the corresponding curves). Top-right: Same as above for p = 10−2. Bottom-left: Same as above for
p = 10−1. Bottom-right: Accessible regions in the p−Gµ plane for the large long-lived loop models. The accessible regions are
to the right of the corresponding curves. All models are within reach of LISA, and most are within the projected pulsar bound.

redshift interval dz and with strain in the interval dh.
We then find the strain h∗ for which

R(> h∗) =

∫
∞

h∗

dh
dR

dh
= f. (4)

Then, rather than Eq. (1) we evaluate

Ωgw(f) =
4π2

3H2
0

f3

∫ h∗

0

dh h2

∫
dz

dR

dzdh
. (5)

This procedure removes large amplitude events (those
with strain h > h∗) that occur at a rate smaller than f .
III. Results and discussion. – Our results take the form
of sections of cosmic string model parameter space either
constrained or allowed by past and future experiments
(see Fig. 2). For simplicity we set g1 = g2 = 1.

When loop sizes are given by gravitational back-
reaction, we scan the parameter space of re-connection
probability (10−3 < p < 1), dimensionless string ten-
sion (10−12 < Gµ < 10−6), and the size of the small
loops (10−13 < ε < 1). For each point in this parameter
space, we calculate Ωgw(f). Since the most recent LIGO
result [16] was optimized for the frequency independent
spectrum, we first appropriately scale the observed LIGO
spectrum and variance, in order to optimize the search for
the calculated Ωgw(f) [24]. We perform similar optimiza-
tions for the future projected sensitivities of LIGO and of
Advanced LIGO. For pulsar experiments (and the LISA
sensitivity), we exclude a model if it predicts a larger am-
plitude than the limit (or projected sensitivity) at any
frequency. To compare a model with the BBN bound,
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we perform the redshift integral in Eq. (1) over redshifts
z & 5.5×109. Similarly, for the bound based on the CMB
and matter spectra, we integrate over z & 1100. Figure 2
shows the accessible regions corresponding to the differ-
ent experiments and bounds. Several conclusions can be
inferred. First, cosmic superstrings (with small values of
p) are more accessible because the spectrum amplitude is
inversely proportional to p through its dependence on the
loop density. Second, there is much complementarity be-
tween different experiments. The LIGO stochastic search
is constraining models with large Gµ and small ε. Since
the pulsar limit applies at low frequencies (f ≈ 10−8 Hz),
and due to the Heaviside function on θm in the rate, the
pulsar limit is more constraining to models with larger
loop lengths, i.e. large values of ε and Gµ. A similar
argument applies to the LISA projection, which is most
sensitive around 1 mHz. The LIGO burst search is most
sensitive to small z and large strain cusps, which also im-
plies large ε and large Gµ. The BBN and CMB bounds
are not very sensitive to ε, because in the large-z limit
Ωgw ∼ Gµ/p, i.e. independent of ε. Third, the most
recent LIGO stochastic bound has already surpassed the
BBN bound in an (admittedly small) part of the param-
eter space. This is because for some models a significant
part of the signal is produced after BBN. Existing exper-
iments and indirect bounds already exclude a substantial
part of the cosmic string parameter space. Future LIGO
and LISA measurements will continue to explore this pa-
rameter space. Finally, although the LIGO stochastic
and LIGO burst searches are complementary, they also
overlap for large Gµ. Hence, in the case of detection, the
two LIGO searches could potentially confirm each other.

To analyse the case when cosmic string loops are large
at formation, we take the loop distribution given by
Eqs. (68-70) of [8] with the size of loops at formation
given by α = 0.1 [12], and enhance number density of
loops by a factor of 1/p. We scan the parameter space
given by 10−4 < p < 1 and 10−12 < Gµ < 10−6. Our
estimate of the GW background in these models is signif-
icantly larger than that of the small loop models. Hence,
the current and future proposed experiments explore a
correspondingly larger part of the parameter space, as
shown in the bottom right panel of Fig. 2. In partic-
ular, values of p > 0.1 become more accessible. Our
results for current pulsar timing experiments are sub-
stantially less constraining than the estimates of Hogan
[14], which relied on a less conservative pulsar timing
bound [25], and did not include effects of late-time ac-
celeration. Currently, the pulsar limit is the most con-
straining, but Advanced LIGO, LISA, and future pulsar
timing experiments are expected to explore all of this pa-
rameter space. The BBN and CMB bounds are consis-
tent with, but somewhat weaker than, the pulsar bound.
For these models the constraints on superstrings from
pulsar timing experiments are particularly interesting.
Notice the bound rules out cosmic superstring models

with Gµ & 10−12 when the reconnection probability is
p ∼ 10−3. Even for p ∼ 10−1 superstring tensions with
Gµ & 10−10 are ruled out. Field theoretic strings and
superstrings with p ∼ 1 are ruled out for Gµ & 10−8.
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