
ar
X

iv
:a

st
ro

-p
h/

06
11

39
2v

1 
 1

3 
N

ov
 2

00
6

(SUBMITTED TO APJ)

Preprint typeset using LATEX style emulateapj v. 11/12/01

MAXIPOL: DATA ANALYSIS AND RESULTS

J. H. P. WU1, J. ZUNTZ2, M. E. ABROE3, P. A. R. ADE4, J. BOCK5, J. BORRILL6,7, J. COLLINS8,
S. HANANY 3, A. H. JAFFE2, B. R. JOHNSON9, T. JONES3, A. T. LEE8,10,7, T. MATSUMURA3,

B. RABII 8, T. RENBARGER3, P. L. RICHARDS8, G. F. SMOOT8,10,7, R. STOMPOR11,6, H. T. TRAN8,7,
C. D. WINANT 8

(Submitted to ApJ)

ABSTRACT

We present results from and the analysis of data from MAXIPOL, a balloon-borne experiment designed to
measure the polarization in the Cosmic Microwave Background (CMB). MAXIPOL is the first CMB experiment
to obtain results using a rotating half-wave plate as a rapidpolarization modulator. We report results from ob-
servations of a sky area of 8 deg2 with 10-arcmin resolution, providing information up toℓ ∼ 700. We use a
maximum-likelihood method to estimate maps of theQ andU Stokes parameters from the demodulated time
streams, and then both Bayesian and frequentist approachesto compute theEE, EB, andBB power spectra. De-
tailed formalisms of the analyses are given. We give resultsfor the amplitude of the power spectra assuming
different shape functions within theℓ bins, with and without a priorCEB

ℓ =CBB
ℓ = 0, and with and without inclusion

of calibration uncertainty. We show results from systematic tests including differencing of maps, analyzing sky
areas of different sizes, assessing the influence of leakagefrom temperature to polarization, and quantifying the
Gaussianity of the maps. We find no evidence for systematic errors. The Bayesian analysis gives weak evidence
for anEE signal. TheEE power is 55+51

−45 µK2 at the 68% confidence level forℓ = 151–693. Its likelihood function
is asymmetric and skewed positive such that with a uniform prior the probability of a positiveEE power is 96%.
The powers ofEB andBB signals at the 68% confidence level are 18+27

−34 µK2 and−31+31
−19 µK2 respectively and

thus consistent with zero. The upper limit of theBB-mode at the 95% confidence level is 9.5 µK. Results from
the frequentist approach are in agreement within statistical errors. These results are consistent with the current
concordanceΛCDM model.
Subject headings:cosmic microwave background — cosmology: observations — methods: data analysis —

polarization

1. INTRODUCTION

Observations of the Cosmic Microwave Background (CMB)
have dramatically enhanced our understanding of the uni-
verse. The recent focus has been on the detection of polariza-
tion in the CMB because it provides information complemen-
tary to what can be learned from the temperature anisotropy.
The discovery and characterization of the polarization not
only confirms the cosmological interpretation of the origin
of the temperature anisotropy and large-scale structures,but
also improves the accuracy with which we measure parame-
ters in our cosmological model, such as the epoch of reion-
ization. So far detection of CMB polarization has been re-
ported by DASI (Leitchet al. 2005), CBI (Readheadet al.
2004; Sieverset al. 2005), CAPMAP (Barkatset al. 2004),
BOOMERANG (Montroyet al.2005), and WMAP (Pageet al.
2006). Here we report results from MAXIPOL with particular
emphasis on the data analysis procedure and cosmological re-
sults. A companion paper (Johnsonet al.2006) emphasizes the
polarimetric instrumentation and observations.

MAXIPOL flew from the NASA Columbia Scientific Bal-
looning Facility in Ft. Sumner, New Mexico in May 2003. A re-
gion of about 8 square degrees, with Galactic coordinatesl be-
tween 110.69◦ and 114.98◦ andb between 38.75◦ and 42.49◦,
was scanned during a 7.6 hour night scan. This region was
located near the star Beta Ursae Minoris (β-UMi). The beam
size was 10 arcminutes. We present data collected with 12 po-
larimeters that have a center frequency of 140 GHz. Polarime-
try was implemented by rotating a half-wave plate (HWP) at a
frequency of 1.86 Hz and analyzing the modulating polariza-
tion with a stationary grid. We refer the reader to the compan-
ion paper (Johnsonet al. 2006) and to other publications for a
more thorough review of MAXIPOL and its predecessor MAX-
IMA (Hananyet al.2000; Leeet al.2001; Stomporet al.2001;
Jaffeet al.2001; Wuet al.2001a; Abroeet al.2004).

The characteristics of CMB radiation can be described using
the four Stokes parameters: the intensityI , the linear polariza-
tion Q andU , and the circular polarizationV. The anisotropy
in I (also called the temperatureT) has been well measured.
The circular componentV can only arise from parity violating
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physics and is believed to be absent from the CMB (though this
has not been experimentally verified). TheQ andU parame-
ters arise during the last-scattering process and have beenthe
focus of recent experimental and theoretical work. Their pres-
ence is evidence for the standard scenario of the last scattering
process and their characteristics carry information complemen-
tary to the temperature anisotropy. Alternative to the parame-
tersQ andU , one may express the polarization in terms ofE
andB, which are curl and divergence free polarization tensors
respectively. For noise-free all-sky dataQ andU can be con-
verted to and fromE andB exactly. Otherwise one can only
make a statistical conversion between the two. Models of cos-
mological evolution usually predict the CMB in the form of
power spectra: the auto-correlationsTT, EE, andBB, and the
cross-correlationsTE, TB, andEB. In this paper we report on
measurements of theQ andU Stokes parameters, and the cor-
respondingEE, EBandBBpolarization power spectra.

We used two alternative statistical approaches to extract
quantities of interest from the data, the Bayesian and frequentist
approaches. Both have been used successfully in the analysis
of cosmological data. For a given set of data, the Bayesian
approach gives the smallest error interval for the estimated
quantities, but its application is sometimes computationally in-
tractable.

In our analysis we demodulated the timestreams and sub-
sequently used a Bayesian maximum-likelihood approach to
make best-fit maps of the Stokes parameters. We then estimated
theEE, BB andEB polarization power spectra of the CMB us-
ing both Bayesian and frequentist approaches. In both caseswe
accounted for known instrumental effects and conducted tests
for systematic errors.

This paper is organized as follows. In Section 2 we describe
our analysis formalism and procedures for estimatingQ and
U maps from the time-ordered data (TOD), and power spectra
from these maps. In Section 3, we present our results, including
the maps, the power spectra, and systematic tests. Our conclu-
sions are given in Section 4.

2. FORMALISM FOR DATA PROCESSING

2.1. Time-domain processing

The time-ordered data (TOD) were flagged for the presence
of transient signals and calibrated using laboratory data and ob-
servations of Jupiter. They were cut into segments separated
by gaps longer than 30 seconds, depending on both the flag-
ging of transient signals and the stationarity of noise. Various
tests were performed to ensure the Gaussianity and stationarity
of the noise within each segment (Collins 2006). From each
segment we estimated and removed an instrumental signal that
was synchronous with the rotation of the HWP, which we call
HWP synchronous signal (Johnson 2004), and deconvolved the
instrumental filters. See Johnsonet al. (2006) for more details
about these data processing steps.

The TOD of each of the polarimeters can be modelled as

dt = sT
t + ǫ

[
−sQ

t cosφt + sU
t sinφt

]
+ nt, (1a)

where
φt = 4βt − 2αt, (1b)

dt ≡ d(t), t is time, sT
t ≡ T(xt), sQ

t ≡ Q(xt), sU
t ≡ U(xt), nt is

the instrumental noise at timet, xt ≡ x(t) is the sky position
of the pointing at timet, andǫ is the modulation efficiency of
the polarimeter. The units ofdt areµK and thus a calibration

factor converting from the measured voltage to temperaturehas
already been included. We present our results in the WMAP
convention with the Stokes parametersI , Q, andU , taking the
North Galactic Pole as the direction of reference for the polar-
ization (Hinshawet al.2003). The angleαt ≡ α(xt) is the rota-
tion angle of a vector pointing along a great circle to the zenith,
measured relative to the polarization reference vector on the
sky. The transmission axis of the polarization analyzer is ori-
ented at 90 degrees to the zenith direction. The angleβt ≡ β(xt)
is the rotation angle of the HWP relative to the transmission
axis of the polarization analyzer. During the observations, αt
changed at a rate of 15 degrees per hour giving a frequency of
fα ≈ 1.16× 10−5 Hz while βt varied at fβ = 1.86 Hz. Thus
fφ ≈ 4 fβ = 7.44 Hz. The temporal datadt are sampled at inter-
vals of∆t = 4.8×10−3 seconds.

The telescope tracked the guide starβ-UMi while scanning
in azimuth by 2 degrees peak to peak at a constant frequency
fη ≃ 0.06 Hz for the majority of the data. Here the subscriptη
denotes the scan angle. Figure 1 shows typical measurements
of β andη from a subset of the data.

To obtain the Time-Ordered Polarization Data (TOPD) we
demodulated the TOD to produce independent data streams for
Q andU . Because of the combination of the HWP rotation
and the sky scan, the CMB signal is in side-bands of the fourth
harmonic ofβt . Multiplication of the appropriate sinusoid and
applying a band-pass filter gives the TOPD from the TOD

dQ
t =

〈
−2dt

ǫ
cosφt

〉
, (2a)

dU
t =

〈
2dt

ǫ
sinφt

〉
. (2b)

The brackets denote a band-pass top-hat filter between 0.05 Hz
and 1.5 Hz. This filter selects the frequencies where signalsare
expected and removes residuals of the HWP synchronous sig-
nal, if they exist. Figure 2 shows a power spectrum of a section
of the datadt before demodulation. The residual peaks (marked
by arrows) indicate residuals of subtraction of the HWP syn-
chronous signal. The residuals are at harmonics offβ . (Figure
6 in the companion paper Johnsonet al. (2006) shows a sim-
ilar power spectrum for a different section of the data where
the subtraction is more complete.) Figure 3 shows the power
spectrum of the datadt multiplied by−2cosφt/ǫ, but before the
band-pass filtering; that is, the quantity inside the brackets of
equation (2a). The gray area indicates the signal band selected
by the band-pass filter. The low side of the band-pass is de-
termined by the scan speed and the high side by the∼1.3 Hz
cut-off due to the beam. The power spectrum within the band
is consistent with white noise and residuals of the HWP syn-
chronous signal are out of band. Simulations with different
plausible power spectra for the underlying signal show thatthe
band-pass filtering reduced the RMS of theQ andU maps by
4% regardless of the details of the spectra. This loss of signal
was compensated for by a Monte-Carlo approach, which we
describe later.

Several effects can bias our estimation of the TOPD when
using equations (2). The beam convolution inevitably removes
signal on angular scales smaller than∼ 10 arcminutes. We rec-
tified this by a deconvolution procedure during CMB power
spectrum estimation using recipes given in Wuet al. (2001b).
These recipes also cope with the asymmetry in the beams. This
deconvolution is discussed in section 2.3. A second effect is
that an imperfect implementation of the demodulation may in-
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FIG. 1.—HWP rotation angleβ (upper panel) and scan angleη (lower panel) from a typical subset of the data.
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FIG. 2.— Power spectrum for a subset of the TODdt , after removal of the HWP synchronous signal (and after deconvolution of instrumental
filters). The solid line is the raw spectrum, and the dashed line is its smoothed estimate. The arrows indicate multiples of the rotation frequency of
the HWP fβ showing residuals of the HWP synchronous signal. We give a more complete discussion of this synchronous signal in Johnson et al.
(2006).
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FIG. 3.— Power spectrum of the demodulatedQ of the data in Figure 2 before the band-pass filtering; this isthe quantity within the brackets of
equation (2a). The solid line is the raw spectrum, the dashedline is its smoothed estimate, and the shaded area indicatesthe pass band of the filter.
The spectrum is consistent with white noise within this passband.
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troduce a bias in the estimation of the CMB signal. For exam-
ple, the band-pass filtering is equivalent to a convolution in the
time domain so that it induces correlations in the scan direction
while giving rise to some loss of signal. A third effect is that the
deglitching of the data for the transients creates small gaps in
the TOD, and thus may have influenced the demodulation pro-
cess. The second and third effects were estimated and corrected
by a Monte-Carlo approach, as described in section 2.3.

2.2. Map making

We employed a standard maximum-likelihood method to ob-
tain maps ofQ andU from the TOPD. In the time domain the
TOPD can be modelled as

dX
t = sX

t + nX
t , (3)

whereX = Q or U , sX
t is the CMB signal andnX

t is the instru-
mental noise. We note thatnQ

t andnU
t are independent and thus

uncorrelated because the demodulation processes to obtaindQ
t

anddU
t employ orthogonal kernels (see Eqs. (2)). We model the

CMB signal as
sX
t = At psX

p , (4)

and use the Einstein summation convention when appropriate.
HereAt p is the pointing matrix giving the weight of pixelp in
observationt, andsX

p is the CMB signal in the pixel. We took
the pointing operatorAt p to be unity when observing pixelp at
time t and zero otherwise. That is, we assumed the signalsX

t to
be constant within pixelp. This model of pixelization induces
an extra convolution effect in addition to that from the beam.
To deal with these convolution effects we followed the recipes
in Wu et al. (2001b). These provide a way to transfer all these
convolution effects into a singleBℓ in multipole space, which
can then be deconvolved when estimating the CMB power spec-
trumCℓ.

With this modeling, we can estimate the pixelized mapsmX
p

from the temporal datadX
t . In the pixel domain we can also

modelmX
p as a linear sum of the signal and the noise compo-

nents:
mX

p = sX
p + nX

p, (5)

wherenX
p is the noise in the pixel domain. Under the assump-

tions that the noise in the temporal domain is Gaussian and that
all CMB maps are a-priori equally likely, the mapsmX

p can be
estimated by maximizing the likelihood of the signal given the
data. This gives

mX
p = NX

pp′Ap′t(NX
tt′)

−1dX
t′ , (6)

whereAp′t = AT
t p′ , NX

tt′ = 〈nX
t nX

t′
T
〉 is the time-time noise corre-

lation matrix andNX
pp′ = 〈nX

pnX
p′

T
〉 is the estimated pixel-pixel

noise correlation matrix given by

NX
pp′ =

[
Apt(NX

tt′)
−1At′p′

]−1
. (7)

We apply equations (6) and (7) todQ
t and dU

t to give the
mapsmQ

p and mU
p , respectively, as well as the noise correla-

tion matricesNQ
pp′ andNU

pp′ . The numerical implementation of
these equations follows the method described in Stomporet al.
(2001). We use square pixels that are 3 arcminutes on a side.
To simplify notation we construct a column vector

mq =

(
mQ

p

mU
p

)
. (8)

Note that we use the subscriptp to denote pixels in the origi-
nal maps and the subscriptq to denote pixels in the simplified
notation. Similarly we write

Nqq′ =

(
NQ

pp′ 0
0 NU

pp′

)
. (9)

Here the off-diagonal blocks are zero in theory because of the
orthogonality betweennQ

t andnU
t .

After the maps are formed we apply a filtering to them
mW

q = Wqq′mq′ , (10)
whereWqq′ is a filtering matrix. The choice of the filter depends
on the subsequent step in the data analysis. For Bayesian power
spectrum estimation the maps are left un-filtered (or, equiva-
lently, we apply an identity filter). For the frequentist approach
we apply a noise-weighting filter to cope with the anisotropic
noise in the pixel domain. Because the hit count per pixel de-
creases towards the edge of the sky patch, as can be seen in
Figure 4, the S/N ratio is higher at the center. To prevent the
resulting power spectra from being dominated by the low-S/N
pixels, we use

WN =
(
UTN−1U

)−1
UTN−1, (11)

whereU is a column-vector with all entries equal to unity. For
map display purposes we use a Wiener filter

WWF = S(S+ N)−1 , (12)
whereS≡Sqq′ = 〈sqsq′

T〉 is the signal-signal correlation matrix.

2.3. Power-Spectrum Estimation

TheQ andU can be expanded into spin-2 spherical harmon-
ics in the conventional way:

(Q± iU )(n) =
∑

ℓm

(
aE

ℓm± iaB
ℓm

)
±2Yℓm(n), (13)

whereaE
ℓm andaB

ℓm are the coefficients for theE- andB-mode
polarization, respectively, andn is a unit vector directed in the
direction of observation. The polarization power spectra can
then be defined as

CYY′

ℓ =
1

2ℓ + 1

∑

m

aY
ℓmaY′∗

ℓm , (14)

whereY andY′ are eitherE or B.
Because the sky coverage of our observation is finite, we do

not probe independentCYY′

ℓ for each multipoleℓ. Instead, we
bin theℓ’s and determine a band power within eachℓ bin. In
addition, to increase the signal to noise ratio we use three bins
ℓ = 2–150, 151–693, and≥ 694 such that only the middle bin
should have signal given the combination of beam size and sky
area.

When estimating the band power and presenting the results
we must specify a model for the shape of the power spectrum
within eachℓ bin. We model the binned power spectra as

CYY′

ℓ = Dℓℓ′Wℓ′bcYY′

b , (15a)

where the subscriptb labels anℓ bin, bothCYY′

ℓ andcYY′

b are
treated as column vectors,Dℓℓ′ is a square diagonal matrix with
diagonal elements equal to

Dℓℓ = Dℓ, (15b)
andWℓb is a matrix defined as

Wℓb =

{
1, whenℓ ∈ b,
0, whenℓ /∈ b. (15c)

HerecYY′

b is defined as the ‘band power’, andDℓ is called the
‘shape function’.
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FIG. 4.—The sky coverage of MAXIPOL, presented as the number of 4.8-ms hits per 3-arcminute pixel. The squares are regions of 1.1,1.7, and
2.3 degrees across, which we use to estimate the power spectra. Pixels with zero hit count but within the square regions have zero weighting in
the process of power-spectrum estimation.

The model for the shape is encoded inDℓ. We investigate the
following four cases:

1. D(1)
ℓ =

1
ℓ(ℓ + 1)

; (16a)

2. D(2)
ℓ = Cℓ(ΛCDM); (16b)

3. D(3)
ℓ =

1
2ℓ + 1

; (16c)

4. D(4)
ℓ = 1. (16d)

Here theCℓ(ΛCDM) is the power spectrum predicted by the con-
cordance model of the WMAP+ACBAR+BOOMERanG result
in Spergelet al. (2006). It is a flatΛCDM cosmology with
Ωbh2 = 0.022,Ωmh2 = 0.13,h = 0.74,τ = 0.088,ns = 0.95, and
σ8 = 0.74. Consequently our measured power spectra can be
presented as

CYY′

ℓ(n) = D(n)
ℓℓ′Wℓ′bcYY′

b(n), (17)

wheren = 1,2,3, or 4, andcYY′

b(n) is the band power to be esti-
mated.

Prior to the estimation of the CMB power spectra, we also
need to determine the effects of the beam convolution and of
the map pixelization, so that these effects can be deconvolved
during the estimation process. We follow the recipes described
in Wu et al.(2001b). The two convolution effects are combined
into a single transfer functionBℓ in the multipole space:

B2
ℓ = B2

ℓ(beam)B
2
ℓ(pxl), (18)

whereB2
ℓ(beam) andB2

ℓ(pxl) are the effectiveB2
ℓ of the beam and

the pixelization, respectively. The resultingB2
ℓ for MAXIPOL

are presented in Figure 5. The individualB2
ℓ(beam)of the MAX-

IPOL polarimeters are somewhat smaller than those of MAX-
IMA and thus produce a wider noise-weighted combination.
The figure also shows that with a pixel size of 3 arc-minutes
less than 2% of signal power forℓ ≤ 700 is attenuated by the
pixelization.

2.3.1. Bayesian Approach

A commonly used Bayesian approach for power spectrum es-
timation is the Newton-Raphson algorithm (Bondet al. 1998).
We attempted to use this method to find the MAXIPOL power
spectra, but it failed in a variety of ways that we believe were
due to the low signal-to-noise ratio of our maps. The region
of parameter space we are exploring is close to the boundary
whereCℓ = 0, and the allowed solutions include negative power
values. This region has a non-smooth likelihood that makes
the Newton-Raphson method unreliable. We note that future
B-mode experiments with a low signal to noise ratio in their
B-mode detection are likely to face the same problem. See
also Abroeet al. (2004) for high signal-to-noise cases where
the Newton-Raphson method is also prone to failure. Thus we
adopted a Markov Chain Monte-Carlo (MCMC) approach.

The MCMC method explores the likelihood space of the
map,P(Cℓ|map). It generates lists of samples from a parameter
space whose distribution is asymptotically the same as the pos-
terior distribution of the parameters. This approach has a num-
ber of advantages: it fully explores the parameter space, making
no assumptions about the shape of the likelihood surface, and
can be used in any signal-to-noise regime. The MCMC method
is valid in cases where the shape of the posteriors cannot be as-
sumed to take simple forms, such as a Gaussian shape. It also
has the important disadvantage of high computational cost.

We used Metropolis-Hastings (MH) sampling, which is
one of the simplest forms of MCMC. It has been widely
used in cosmological parameter estimation (Spergelet al.2006;
MacTavishet al. 2005; Lewis and Bridle 2002). This method
is also briefly mentioned in Kovacet al. (2002). In our case
the parameters are binnedCℓ. Our MCMC code was derived
from the spectrum solver MADspec, which is part of MAD-
CAP (Borrill et al.2006).

To generate sufficient samples for estimating the parame-
ters we used two chains, each of approximately 50,000 sam-
ples. The calculation required 24 hours on 128 processors on
the Seaborg supercomputer, which belongs to the National En-
ergy Research Scientific Computing Center at Lawrence Berke-
ley National Laboratory. We are in the process of optimizing
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the method and believe sufficient computational savings can
be made to make the algorithm scalable to somewhat larger
datasets.

The likelihood of a parameter set was calculated exactly us-
ing logL = − 1

2(mTC−1m+ Tr logC), whereC = S(Cℓ) + N is the
sum of the signal and noise contributions to the pixel covari-
ances. The computation of the inverse matrix was the largest
computational step and was done with a Cholesky decomposi-
tion.

Posterior likelihoods for binnedCℓ can easily be calculated
with the MH algorithm, since the likelihood of a parameter
value is proportional to its multiplicity in the chain. To per-
form these calculations we used the program GetDist, a part
of the CosmoMC package (Lewis and Bridle 2002), which also
performs some convergence tests based on derived secondary
chains. Additional convergence tests based on power spectra
of parameter values in the chain, proposed in Dunkleyet al.
(2005), were also performed. In particular, the variance ofthe
mean of the two chains was less than 10% of the mean of their
variances for the parameters of interest.

The choice of a good proposal density is critical to optimize
the convergence rate of an MCMC chain. We followed the rec-
ommendations in Lewis (2006): We first re-parameterized the
space by the eigenvectors of the parameter covariance matrix to
mitigate the effect of highly correlated parameters. New pro-
posed jumps were generated along orthonormal basis vectors
of this new parameter set which were randomly rotated every
nbin proposals. The length of the jump was a Gaussian random
variable with mean zero and the variance of the appropriately
rotated eigenvalue multiplied by a scaling factor of 2.4. The
covariance matrix was estimated with a short non-optimized
MCMC.

2.3.2. Frequentist Approach

We also used a frequentist approach to estimateCYY′

ℓ . Fre-
quentist approach was used in the past in analyses of other data
sets (Hivonet al. 2002; Montroyet al. 2005; Pageet al. 2006;
Bondet al.2003). The following sections describe the steps in
our analysis and Figure 6 shows a flowchart of the pipeline.

Because the sky patch of our observation is only about 4 de-
grees across we approximate it as flat to speed up our com-

putation. We use a Discrete Fourier Transform (DFT) to ap-
proximate the multipole expansion. With this approximation
equation (13) can be reduced and reorganized as(

aE
k

aB
k

)
=

(
−cos2θk −sin2θk
sin2θk −cos2θk

)(
Q̃k

Ũk

)
, (19)

where a tilde denotes the Fourier coefficient of the correspond-
ing quantity,k is a Fourier mode, andθk is the phase angle of
k. The multipole number can thus be approximated as the wave
number,ℓ ≈ k ≡ |k|. As a consequence, equation (14) reduces
to

CYY′

ℓ ≈CYY′

k =
1
A

〈∣∣∣aY
kaY′∗

k

∣∣∣
2
〉

|k|=k

, (20)

whereA is the area of the map used in the DFT in steradians,
and the brackets denote an average over all the wave vectors
with |k| = k.

To increase the S/N ratio perℓ bin in our results, we com-
bine theℓ’s into only three bins and estimate their band powers
cYY′

b(n), instead of theCYY′

ℓ , with a specified shape function (see
Eqs. (16) and (17)). This requires a modification of equation
(20) as

cYY′

b(n) ≈
1
A

〈∣∣∣aY
kaY′∗

k

∣∣∣
2

D(n)
k

〉

|k|∈b

, (21)

whereD(n)
k is the shape functionD(n)

ℓ convolved by the multi-
pole transform of the sky-coverage window. Note that prior to
the DFT, we apply the filtering of equations (10) and (11) to the
maps.

Due to the finite sky coverage, the flat-sky approximation,
and the filtering of maps, equation (21) is a biased estimatorof
the band powers. This bias is corrected using the Monte-Carlo
approach.

The pseudo-band powers

We apply the DFT of Equations (19) and (21) to each of the
square regions selected from the original mapsmX

p shown in

Figure 4 to obtain the estimated band powersĉYY′(S+N)
b(n) , where

a hat denotes an estimator. We refer to these as the ‘pseudo’-
band powers, because they are biased and contain noise. These
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FIG. 6.— Flowchart of the frequentist approach for estimating the CMB power spectra and their associated errors. The numbers in brackets are
the equation numbers associated with the operation. The dashed boxes indicate the operations included in the Monte-Carlo simulation.

pseudo-band powers can be modelled as(
cEE(S+N)

b(n)

cBB(S+N)
b(n)

)
= H (n)

{bb}{b′b′}

(
cEE

b′(n)
cBB

b′(n)

)

+

(
cEE(N)

b(n)

cBB(N)
b(n)

)
, (22a)

cEB(S+N)
b(n) =

(
+H (n)

bb′ − −H (n)
bb′

)
cEB

b′(n)

+cEB(N)
b(n) , (22b)

where

H (n)
{bb}{b′b′} =

(
+F (n)

bℓ′ −F (n)
bℓ′

−F (n)
bℓ′ +F (n)

bℓ′

)
×

(
Gℓ′ℓB2

ℓWℓb′

Gℓ′ℓB2
ℓWℓb′

)
, (22c)

±H (n)
bb′ = ±F (n)

bℓ′ Gℓ′ℓB
2
ℓWℓb′ . (22d)

Here the subscript{bb} denotes the index ofb that runs twice,
and similarly for{ℓℓ}. ThecYY′

b(n) are the underlying CMB sig-

nals of the field, and thecYY′(N)
b(n) are the noise components of the

pseudo-band powers. TheBℓ, Gℓ′ℓ, and±F (n)
bℓ′ will be explained

as follows.
We callBℓ the ‘beam transfer function’, which has been dis-

cussed earlier. It accounts for the convolution effects from the
beam pattern of each of the polarimeters and from the pixeliza-
tion during the map-making process.

We call theGℓℓ′ in equations (22) the ‘time-domain transfer
matrix’. It is induced by the time-domain processing, including
the effects from the demodulation and the deglitching of the

data. Here we use the sameGℓℓ′ for all the EE, EB, andBB
modes because a signal-only Monte-Carlo simulation of 1,000
realizations indicate that it is the same to an accuracy of 2%.
This is essentially because the form ofGℓℓ′ is dominated by the
band-pass filter in the demodulation process and thus behaves
simply as a convolution effect of the sky signal.

We call ±F (n)
bℓ′ in equations (22) the ‘DFT transfer matrix’.

It accounts for the biasing effect from the DFT approach
(Eqs. (10), (11), (19), and (21)). The+F (n)

bℓ′ and−F (n)
bℓ′ are dom-

inated by the self-coupling and the geometric mixing of E and
B polarization respectively (Chonet al.2004).

With the formalism (22) established, our task becomes to ob-
tain an unbiased estimator ofcYY′

b(n). This requires a inversion
of equations (22a) and (22b). As will be shown, the forms of
Gℓℓ′ and±F (n)

bℓ′ do not need to be estimated individually. In-
stead, we estimate the overall transfer matricesH (n)

{bb}{b′b′} and(
+H (n)

bb′ − −H (n)
bb′

)
given a specified shape functionD(n)

ℓ and the

measuredBℓ, and then compute their inverses.

Estimation of the noise component

Following the frequentist approach, we estimate the noise com-
ponentcYY′(N)

b(n) in equations (22) by using the previously esti-
mated pixel-pixel noise correlation matrixNqq′ to carry out a
Monte-Carlo simulation for the noise-only maps. A Cholesky
decomposition gives

Nqq′ = LLT, (23)
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whereL is a lower triangular matrix. Then one realization of
the simulated noise map is obtained by taking

nq =

(
nQ

p

nU
p

)
= Lg, (24)

whereg is a vector of Gaussian random numbers with mean
zero and variance one. Finally, applying the DFT approach
(Eqs. (10), (11), (19), and (21)) to all these noise maps yields
an estimated̂cYY′(N)

b(n) . We use 10,000 realizations for the Monte-
Carlo to obtain our results.

Unbiased estimator

We now construct an unbiased estimator forcYY′

b(n). Taking the
inverse operation of equation (22a) gives(

ĉEE
b(n)

ĉBB
b(n)

)
=
(

Ĥ (n)
{bb}{b′b′}

)−1
×

(
ĉEE(S+N)

b′(n) − ĉEE(N)
b′(n)

ĉBB(S+N)
b′(n) − ĉBB(N)

b′(n)

)
, (25a)

and similarly

ĉEB
b(n) =

(
+Ĥ (n)

bb′ − −Ĥ (n)
bb′

)−1
×

(
ĉEB(S+N)

b′(n) − ĉEB(N)
b′(n)

)
. (25b)

The inversion operation for̂H (n)
{bb}{b′b′} and

(
+Ĥ (n)

bb′ − −Ĥ (n)
bb′

)

here is feasible only if the underlying matrices are square,i.e.,
only if the numbers ofb’s andb′’s are the same. We thus use the
same binning strategy forb andb′ with only three wide bands
in obtaining our results.

To estimateH (n)
{bb}{b′b′}, we employ the following end-to-end

Monte-Carlo simulation. We inject a unit power intocYY′

b(n) for

oneℓ bin b at a time. After multiplying the resultingCYY′

ℓ(n) ob-
tained from equation (17) withB2

ℓ(beam), we use equation (13) to
obtain the signal-only high-resolution maps ofQ andU , which
are then scanned and processed to produce mock TOPD. Maps
computed from equation (6) using the noise matrices measured
from the real data are processed through equations (10), (11),
(19), and (21) to yield the resulting band powers. These band
powers give one column of the transfer matrixH (n)

{bb}{b′b′} that
corresponds to the chosenℓ bin for input. A Monte-Carlo sim-
ulation with 1,000 realizations is used to obtain each of thesix
columns inH (n)

{bb}{bb′}.

Finally an inversion ofH (n)
{bb}{bb′} and the previously esti-

mated noise components are used in equations (25) to yield un-
biased estimates of the band powerscYY′

b(n) and thus the power

spectraCYY′

ℓ(n) .

Estimation of error bars

To estimate the error bars of the power spectra, we again em-
ploy a Monte-Carlo simulation. First, we simulate maps that
contain both signal and noise using equations (23) and (24),but
with theNqq′ replaced by

Cqq′ = Sqq′ + Nqq′ . (26)
HereSqq′ is the signal-signal correlation matrix based on the
ĉYY′

b(n). The use of the DFT approach and equations (25) yields
the band powers. We compute 10,000 realizations of such band
powers, obtain the probability distribution for the power value
within eachℓ bin b, and calculate the 68% confidence intervals.

3. RESULTS

3.1. Maps and power spectra

Figure 7 shows the mapsmX
p for theQ andU Stokes parame-

ters, the maps convolved with a 10-arcmin Gaussian beam, and
the Wiener-filtered maps (see Eqs. (10) and (12)). None of the
maps show visible evidence for systematic errors. Note thatthe
three sets have different color ranges.

For determining the amplitude of the power spectra we used
a square region of 2.3 degrees across centered atl = 113◦,
b = 40.25◦ (see Fig. 4) and threeℓ bins: ℓ = 2–150, 151–693,
and≥ 694. Therefore there are in total nineℓ bins under con-
sideration, three for each of theEE, EB, andBB modes. We
report results only for the central bin, unless otherwise stated.
This is the only bin likely to contain signal, given the beam
size and area of the maps. All the Bayesian results are reported
after marginalization of the joint posterior likelihood over un-
interesting bins. Because there is no tractable Bayesian method
to account for the loss of power due to the band-pass filtering
during demodulation of the time streams, we rescaled results of
Cℓ for the centralℓ bin by a factor of 1.06, calculated from an
appropriate frequentist approach. Bayesian results are quoted
as the mode of the likelihood function with 68% intervals of
maximum likelihood. Frequentist results are quoted as the me-
dian of the probability distribution function with 68% intervals
about the median. We used a shape functionD(1)

ℓ = 1/[ℓ(ℓ + 1)]
unless otherwise noted.

Table 1 gives the amplitude of the polarization power spectra
using both analysis methods and for different shape functions
D(n)

ℓ . For ease of direct comparison we present all results in
ℓ(ℓ + 1)Cℓ/(2π) at the bin centerℓ = 422. The table also gives
the results after marginalizing over a calibration uncertainty
that is assumed Gaussian withσcal = 13%. The Bayesian and
frequentist approaches give consistent results. Results between
different shape functions are also consistent within statistical
uncertainties.

Figure 8 gives the Bayesian posterior likelihoods of theEE,
EB, and BB modes. Two of the likelihoods (EE and BB)
exhibit a sharp cut-off at the negative end of the parameter
axis. The cut-off arises when we marginalize the smooth multi-
dimensional likelihood over the eight other parameters (bins).
Because there are correlations between the cut-offs of different
parameters, integrating overn parameters can lead to a cut-off
that scales asCn−1

ℓ . Therefore the sharpness reflects the high
dimensionality of the marginalized space. It does not bias our
analysis. The posterior likelihood forEE is skewed positive.
By integrating the likelihood with a uniform prior over both
positive and negative values we found a 96% probability that
EE power is positive. This probability value is unchanged after
inclusion of a 13% calibration uncertainty.

The posterior likelihoods forEB andBB are consistent with
no signal. The 95% confidence intervals for the two modes
are −53 µK2 ≤ ℓ(ℓ + 1)CEB

ℓ /(2π) ≤ 81 µK2 and −55 µK2 ≤

ℓ(ℓ + 1)CBB
ℓ /(2π) ≤ 57 µK2, respectively. To obtain an upper

limit for the BB-mode we removed the negative region of its
likelihood (see Fig. 8) and renormalized the rest. We found that
at the 95% confidence level [ℓ(ℓ + 1)CBB

ℓ /(2π)]1/2 ≤ 10.6 and
9.5µK with and without the inclusion of calibration uncertainty
respectively.
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maps (bottom).
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TABLE 1

AMPLITUDE OF POWER SPECTRA

ShapeD(n)
ℓ EE EB BB

1/ℓ(ℓ + 1) 55+51
−45 18+27

−34 −31+31
−19

ΛCDM 109+130
−101 23+37

−37 −48+40
−25

1/(2ℓ + 1) 83+68
−50 24+40

−38 −51+37
−20

1 117+61
−77 32+52

−40 −41+34
−33

Bayesian approach (inc.σcal)

1/ℓ(ℓ + 1) 53+57
−45 14+33

−31 −30+34
−21

ΛCDM 113+136
−109 27+36

−42 −41+39
−34

1/(2ℓ + 1) 88+70
−58 29+39

−45 −41+34
−31

1 108+80
−72 34+53

−46 −47+46
−29

Frequentist approach

1/ℓ(ℓ + 1) 62+52
−45 3+33

−32 26+45
−50

ΛCDM 68+46
−45 5+34

−31 21+47
−38

1/(2ℓ + 1) 73+69
−43 23+31

−48 38+42
−50

1 72+75
−46 8+46

−42 21+66
−58

Note. — Amplitude of power spectraℓ(ℓ + 1)CYY′
ℓ

/(2π) in µK2 for a wide bandℓ = 151–693 assuming different shape functionsD(n)
ℓ

. Errors are 68% confidence
intervals. The middle block with ‘(inc.σcal)’ gives results including calibration uncertaintyσcal = 13%. The first row (bold) is the result for which we show the
likelihoods in Figures 8 and 9, and is the result that is shownin Figure 10.
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FIG. 8.— One-dimensional marginalized posterior likelihoods ofℓ(ℓ + 1)CYY′
ℓ /(2π). The sharp cut-offs at the negative end reflect the high

dimensionality of the marginalized space, and do not bias the analysis (see text).
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Figure 9 shows Bayesian two-dimensional joint posteriors.
Joint distributions that include theEE mode are skewed posi-
tive in EE. There are sharp cut-offs of the joint likelihood sur-
face for the same reason that they occur in the one-dimensional
likelihoods. This results in straight edges for some of the 95%
confidence contours.

We compare the amplitude of theEE power spectrum with
results from other experiments in Figure 10. The right panelin
the figure is the same posterior likelihood as shown in Figure8.
Our result is consistent with the prediction of the concordance
model, which has a mean value ofℓ(ℓ + 1)CEE

ℓ /(2π) = 14 µK2

for our ℓ bin. This value falls at the 65% confidence boundary
of our likelihood function around the mode. The lighter shaded
region in the right panel of the figure indicates the 68% con-
fidence region of the posterior likelihood. The darker shaded
region shows the area under the likelihood whereEE is nega-
tive, containing 4% of the total area under the curve.

3.2. Significance of the measured power

According to standard cosmological modelsCEB
ℓ and CBB

ℓ

are predicted to be about one order of magnitude smaller than
theCEE

ℓ and thus undetected by MAXIPOL. We computed the
Bayesian posterior likelihoods forℓ(ℓ+1)CEE

ℓ /(2π) with a prior
CEB

ℓ = CBB
ℓ = 0. The results with and without calibration uncer-

tainty are summarized in Table 2. A comparison with Table 1
shows that including the priors gives somewhat smaller modes
and error bars.

Table 3 summarizes the confidence level at which the hypoth-
esisCEE

ℓ = 0 is rejected for different shape functions, and with
and without a priorCEB

ℓ = CBB
ℓ = 0. The procedure for the cal-

culation is identical to the one already discussed in Section 3.1.
We assume a uniform prior for all values ofEE and integrate

the area below the appropriate likelihood function on the posi-
tive side. Because the posterior likelihoods are all skewedpos-
itive most of the confidence levels for a positiveCEE

ℓ are above
90%. These numbers do not depend on the magnitude of the
calibration uncertainty because the calibration uncertainty is a
multiplicative factor, which does not change the fraction of area
under the likelihood for valuesCEE

ℓ > 0.

3.3. Systematic error tests

3.3.1. Difference maps

We divided the TOD into two halves in the time domain and
processed them separately to yield the CMB mapsm(h1)

q and
m(h2)

q . Separate noise correlation matrices were computed. The
difference maps

m(dif)
q = m(h1)

q − m(h2)
q , (27)

were constructed and the resulting noise matrices computed.
We then estimated the polarization power spectra based on
theseQ andU maps, using both Bayesian and frequentist ap-
proaches. The rows labeled ‘time’ in Table 4 show the results
with and without calibration uncertainty. All these results are
consistent with zero.

In a similar manner, we combined half of the 12 polarimeters
to make one set of maps, and the other half for another set, and
computed difference maps and the associated noise matrices.
The row labeled ‘polar’ in Table 4 shows the results.

Within statistical uncertainties neither the time-domaindif-
ferencing nor the polarimeter differencing test gives evidence
for systematic errors. We note that the sizes of the 68% confi-
dence intervals in Table 4 are on average larger than those ofthe
EB andBB modes in Table 1 because the differencing process
inevitably increases the noise level per pixel.
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FIG. 10.—Theℓ(ℓ + 1)CEE
ℓ /(2π) at ℓ ≤ 1000 from all experiments which reported CMB polarization.Our result is taken from the first row of

Table 1 (numbers in bold type). The other results are from CAPMAP (Barkatset al.2004), DASI (Leitchet al.2005), B03 (Montroyet al.2005),
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ℓ /(2π) = 14 µK2 for our bin atℓ = 151–693 (shown as an arrow in the right panel). The shaded regions in the right panel indicate
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TABLE 2

EE POWER SPECTRUM WITHCEB
ℓ = CBB

ℓ = 0

ShapeD(n)
ℓ Mode 68% 95%

BayesianCEB
ℓ = CBB

ℓ = 0

1/[ℓ(ℓ + 1)] 12 +40
−21

+83
−38

1/(2ℓ + 1) 41 +59
−38

+130
−71

BayesianCEB
ℓ = CBB

ℓ = 0 (inc.σcal)

1/[ℓ(ℓ + 1)] 12 +41
−22

+94
−38

1/(2ℓ + 1) 49 +56
−48

+144
−80

Note. — Amplitude of power spectrumℓ(ℓ + 1)CEE
ℓ

/(2π) in µK2, and 68% and 95% confidence intervals assuming different shape functionsD(n)
ℓ

with a prior
CEB

ℓ
= CBB

ℓ
= 0.
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TABLE 3

PROBABILITY FOR CEE
ℓ > 0

ShapeD(n)
ℓ No Prior CEB

ℓ = CBB
ℓ = 0

1/[ℓ(ℓ + 1)] 96% 83%
ΛCDM 94% -

1/(2ℓ + 1) 98% 92%
1 98% -

Note. — Proportion of likelihood with positiveCEE
ℓ

for different shape functionsD(n)
ℓ

with no prior, and with a priorCEB
ℓ

= CBB
ℓ

= 0 (not all shape functions were
considered in this case).

TABLE 4

POWER SPECTRA OF DIFFERENCE MAPS

Test Appr. EE EB BB

time B −19+54
−29 −55+33

−38 8+45
−48

time B (σcal) −10+48
−39 −55+35

−42 8+49
−49

time F 21+48
−51 8+43

−42 −25+45
−47

polar F −5+42
−41 35+41

−42 30+43
−48

Note. — Amplitude of power spectraℓ(ℓ + 1)CYY′
ℓ

/(2π) estimated from difference maps that were constructed withdifferent divisions of the data (column ‘Test’).
Division was done either in time or by polarimeter (labeled ‘time’ or ‘polar’ respectively, see text). Results are givenboth for the Bayesian (B) and frequentist (F)
approaches. Error values indicate 68% confidence intervals.
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3.3.2. Regions of different sizes

We also investigated the dependence of the frequentist results
on the size of the square patch chosen for the power spectrum
estimation. The square regions of different size that we used are
indicated by the boxes in Figure 4. The square region of width
1.7◦ is centered atl = 113.23◦, b = 40.2◦. The square region of
width 1.1◦ is centered atl = 113.13◦, b = 40.25◦. The results
are summarized in Table 5 and are consistent with the earlier
results. There is no significant increase in the error bars when
using a smaller region of the maps because the edges of the
square regions are noisier than the central portion (see Fig. 4)
and pixels near the edges have negligible statistical weight in
the power spectrum estimation.

3.3.3. Gaussianity test for the maps

Gaussianity in the pixel-domain signal is an essential as-
sumption for the methods of power spectrum estimation that
we used. To test ourQ andU maps we applied the Kolmogorov
test to the eigenvalue-normalized Karhunen-Loeve coefficients,
as performed in Wuet al. (2001a). If the signal is Gaussian,
then the K-L coefficients should be normally distributed. Inthe
process, we found that some of the eigenvalues of the noise-
whitened signal matrix were negative owing to the high noise
and imperfectly estimated signal in those modes. We thus ex-
cluded these modes from the test, but included all the other
modes. These coefficients passed with a clear margin the Kol-
mogorov test for Gaussianity at 95% confidence.

3.3.4. Beam asymmetry and polarization leakage

In certain circumstances an asymmetry in the beam may in-
duce spurious polarization signals. For example, if an asym-
metric beam rotates simultaneously with the HWP, the result-
ing EE or BB spectrum will contain power leakage from the
TT mode.

Scans of Jupiter were used to quantify leakage fromT to Q
andU . Jupiter has an inherent polarization of less than 0.2% at
140 GHz (Clemenset al.1990), which is small compared to the
noise onQandU during beam mapping. Out of 12 polarimeters
only two showed an instrumental polarization signal at a level
of 4% and 5%. No other polarimeter showed leakage from tem-
perature toQ or U at a level larger than about 1%, which was
the typical noise level for this measurement.

To quantify this effect on the power spectrum we performed
an end-to-end simulation. Taking theΛCDM as the underly-
ing model forT we conservatively assumed 3% leakage into
each ofQ andU , which is equivalent to 4.2% instrumental po-
larization, for all 12 polarimeters. The TOD were constructed
using the beam patterns as measured in flight. We processed
this signal-only TOD to obtain maps and power spectra. A
Monte-Carlo simulation showed that out of 1,000 realizations
the largestcontribution of this leakage into the finalEE or BB
spectrum was 3µK2 for our main binℓ = 151–693; the mean
leakage was smaller. This test demonstrates that the final re-
sults were not affected by asymmetries in the measured beam
profiles and by the polarization leakage.

4. CONCLUSIONS

We discussed the analysis of CMB data that were taken with
a HWP polarimeter. Demodulation of the time-domain data
based on the rotational position of the HWP gave theQ andU
data. These data showed a white-noise spectrum at frequencies
well below 50 mHz for the majority of the data at a level consis-
tent with detector noise. Most of the data were also Gaussian
and stationary. We madeQ andU maps using a maximum-
likelihood technique. The maps were also shown to be Gaus-
sian and there was no visible evidence for systematic errors.

We calculatedEE, EB, and BB power spectra using both
Bayesian and frequentist techniques. The Bayesian resultsgave
weak evidence forEE power that is consistent withΛCDM
cosmology and with previous results. There was no detectable
signal for theEB andBB spectra. Results from the frequen-
tist analysis were consistent with the Bayesian ones. We cal-
culated results for different shape functions and with different
priors and found that the significance of detection ofEE power
was between 83% and 98% with most of the results giving a
probability larger than 90%. We gave results with and with-
out marginalization over calibration uncertainty. Inclusion of
the calibration uncertainty does not change the significance of
detection ofEE power.

We presented results from tests for systematic errors in-
cluding differencing maps, processing sky regions of different
sizes, assessing Gaussianity, investigating beam asymmetry and
searching for polarization leakage. None of the tests showed
evidence for systematic errors.

MAXIPOL is the first experiment to produce CMB data us-
ing a modulating HWP. The techniques we developed to ana-
lyze such data should have broad applicability for future CMB
experiments that are planning to use similar modulation tech-
niques.
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TABLE 5

POWER SPECTRA OF DIFFERENT SKY SIZES

Region Size
(x◦×x◦) EE EB BB

x = 1.7 69+47
−48 12+52

−47 22+50
−47

x = 1.1 63+48
−44 8+50

−42 14+51
−44

Note. — Amplitude of power spectraℓ(ℓ+1)CYY′
ℓ

/(2π) estimated from square regions of different size (see Fig. 4). The error numbers indicate the 68% confidence
intervals.
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