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ABSTRACT

We present results from and the analysis of data from MAXIP®balloon-borne experiment designed to
measure the polarization in the Cosmic Microwave Backgddi@MB). MAXIPOL is the first CMB experiment
to obtain results using a rotating half-wave plate as a rppldrization modulator. We report results from ob-
servations of a sky area of 8 degith 10-arcmin resolution, providing information up to~ 700. We use a
maximume-likelihood method to estimate maps of feandU Stokes parameters from the demodulated time
streams, and then both Bayesian and frequentist approtchempute thé&E, EB, andBB power spectra. De-
tailed formalisms of the analyses are given. We give redaltshe amplitude of the power spectra assuming
different shape functions within thebins, with and without a prio€5® = CE8 = 0, and with and without inclusion
of calibration uncertainty. We show results from systemtgsts including differencing of maps, analyzing sky
areas of different sizes, assessing the influence of ledkagetemperature to polarization, and quantifying the
Gaussianity of the maps. We find no evidence for systematic®erThe Bayesian analysis gives weak evidence
for anEE signal. TheEE power is 5351 uK? at the 68% confidence level fé= 151-693. Its likelihood function
is asymmetric and skewed positive such that with a uniforiorphe probability of a positivé& E power is 96%.
The powers o B andBB signals at the 68% confidence level areﬁ%ﬂ&Kz and-31'3} 1K? respectively and
thus consistent with zero. The upper limit of tBB-mode at the 95% confidence level i$9K. Results from
the frequentist approach are in agreement within stagiséirors. These results are consistent with the current
concordancé CDM model.
Subject headingscosmic microwave background — cosmology: observations -thaus: data analysis —

polarization

1. INTRODUCTION MAXIPOL flew from the NASA Columbia Scientific Bal-
looning Facility in Ft. Sumner, New Mexico in May 2003. Are-
gion of about 8 square degrees, with Galactic coordinabes
tween 11069° and 11498° andb between 3&5° and 4249°,

was scanned during a 7.6 hour night scan. This region was
located near the star Beta Ursae MinorisWMi). The beam
size was 10 arcminutes. We present data collected with 12 po-
larimeters that have a center frequency of 140 GHz. Polarime
try was implemented by rotating a half-wave plate (HWP) at a
frequency of 1.86 Hz and analyzing the modulating polariza-

Observations of the Cosmic Microwave Background (CMB)
have dramatically enhanced our understanding of the uni-
verse. The recent focus has been on the detection of polariza
tion in the CMB because it provides information complemen-
tary to what can be learned from the temperature anisotropy.
The discovery and characterization of the polarization not
only confirms the cosmological interpretation of the origin
of the temperature anisotropy and large-scale structimes,

also improves the accuracy with which we measure parame- : ; X
ters in our cosmological model, such as the epoch of reion- fion with a stationary grid. We refer the reader to the compan

At : . _ ion paper|(Johnsoet all|2006) and to other publications for a
ggrttlgg ' b)? ODEgld?E(ae?'[té?é]t gj Célé)/lg;)polgglza(tll_\? en ag ?:al;e:ln re more thorough review of MAXIPOL and its predecessor MAX-
2004; [Sieverst all 2005), C'APMAF’> (Barkatst all 2004)', IMA (Hananyet al.2000; Leeet al.l2001; Stompoet al.l2001;

BOOMERANG [Montroyet all2005), and WMAP/(Paget al. Jafoﬁetar:-zootl? V‘i‘ﬂet a}!-é&oBlaf Qb[.o‘ft a|.2boog). ed usi
2006). Here we report results from MAXIPOL with particular € characteristics o radiation can be descrived using

emphasis on the data analysis procedure and cosmological rethe four Stokes parameters: the intensityhe linear polariza-

sults. A companion paper (Johnseiral.l2006) emphasizes the E}O? gggd;l'llggciﬁget;r']zcﬂgtﬁ%aﬂggtfgénTVlef‘ngggfg d
polarimetric instrumentation and observations. P '

The circular componenit can only arise from parity violating
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physics and is believed to be absent from the CMB (though this factor converting from the measured voltage to temperdtase

has not been experimentally verified). TQeandU parame-
ters arise during the last-scattering process and havetheen
focus of recent experimental and theoretical work. Thedspr
ence is evidence for the standard scenario of the last soagtte
process and their characteristics carry information cemjin-
tary to the temperature anisotropy. Alternative to the pera
tersQ andU, one may express the polarization in termseof
andB, which are curl and divergence free polarization tensors
respectively. For noise-free all-sky dafaandU can be con-
verted to and fronE andB exactly. Otherwise one can only
make a statistical conversion between the two. Models of cos
mological evolution usually predict the CMB in the form of
power spectra: the auto-correlation$, EE, andBB, and the
cross-correlation$ E, TB, andEB. In this paper we report on
measurements of th@ andU Stokes parameters, and the cor-
respondind= E, EB andBB polarization power spectra.

already been included. We present our results in the WMAP
convention with the Stokes parametér€, andU, taking the
North Galactic Pole as the direction of reference for thapol
ization (Hinshawet all2003). The angle; = a(X;) is the rota-
tion angle of a vector pointing along a great circle to thethen
measured relative to the polarization reference vectorhen t
sky. The transmission axis of the polarization analyzeris o
ented at 90 degrees to the zenith direction. The afigte5(x;)
is the rotation angle of the HWP relative to the transmission
axis of the polarization analyzer. During the observatiens
changed at a rate of 15 degrees per hour giving a frequency of
f, ~ 1.16 x 10°° Hz while 3 varied atf; = 1.86 Hz. Thus
fg ~ 4fg = 7.44 Hz. The temporal dat are sampled at inter-
vals of At = 4.8 x 1073 seconds.

The telescope tracked the guide statMi while scanning
in azimuth by 2 degrees peak to peak at a constant frequency

We used two alternative statistical approaches to extract f, ~ 0.06 Hz for the majority of the data. Here the subscrjipt

quantities of interest from the data, the Bayesian and &atjst

denotes the scan angle. Figlife 1 shows typical measurements

approaches. Both have been used successfully in the aalysiof 5 andr from a subset of the data.
of cosmological data. For a given set of data, the Bayesian To obtain the Time-Ordered Polarization Data (TOPD) we

approach gives the smallest error interval for the estithate
quantities, but its application is sometimes computatigria:
tractable.

demodulated the TOD to produce independent data streams for
Q andU. Because of the combination of the HWP rotation
and the sky scan, the CMB signal is in side-bands of the fourth

In our analysis we demodulated the timestreams and sub-harmonic of. Multiplication of the appropriate sinusoid and
sequently used a Bayesian maximum-likelihood approach toapplying a band-pass filter gives the TOPD from the TOD

make best-fit maps of the Stokes parameters. We then estimate

theEE, BB andEB polarization power spectra of the CMB us-
ing both Bayesian and frequentist approaches. In both eases
accounted for known instrumental effects and conducted tes
for systematic errors.

This paper is organized as follows. In Secf{idn 2 we describe

our analysis formalism and procedures for estimatihgnd

dl = <%dt cos¢t> , (2a)
d’ = <27dtsin¢t>. (2b)

The brackets denote a band-pass top-hat filter between @.05 H

§] maps from the time-ordered data (TOD)’ and power Spectraand 1.5 Hz. This filter selects the frequenCies where Si@als

from these maps. In Sectibh 3, we present our results, imgjud
the maps, the power spectra, and systematic tests. Ourneoncl
sions are given in Sectidn 4.

2. FORMALISM FOR DATA PROCESSING

2.1. Time-domain processing

expected and removes residuals of the HWP synchronous sig-
nal, if they exist. FigurEl2 shows a power spectrum of a sectio
of the datad; before demodulation. The residual peaks (marked
by arrows) indicate residuals of subtraction of the HWP syn-
chronous signal. The residuals are at harmoniciofFigure

6 in the companion paper Johnsetral. (2006) shows a sim-

ilar power spectrum for a different section of the data where

The time-ordered data (TOD) were flagged for the presencethe subtraction is more complete.) Figlite 3 shows the power

of transient signals and calibrated using laboratory diadizod-
servations of Jupiter. They were cut into segments sephrate

spectrum of the daté multiplied by-2 cosg /¢, but before the
band-pass filtering; that is, the quantity inside the brescké

by gaps longer than 30 seconds, depending on both the flagequation[(Za). The gray area indicates the signal bandtedlec

ging of transient signals and the stationarity of noise.ioles
tests were performed to ensure the Gaussianity and stetiona

by the band-pass filter. The low side of the band-pass is de-
termined by the scan speed and the high side by~the Hz

of the noise within each segment (Collins 2006). From each cut-off due to the beam. The power spectrum within the band
segment we estimated and removed an instrumental sigrtal thais consistent with white noise and residuals of the HWP syn-

was synchronous with the rotation of the HWP, which we call

chronous signal are out of band. Simulations with different

HWP synchronous signal (Johnson 2004), and deconvolved theplausible power spectra for the underlying signal show et

instrumental filters. See Johnsenall (2006) for more details
about these data processing steps.
The TOD of each of the polarimeters can be modelled as

=9 +e [_SIQ cospy +g’ Sinaﬂ +1, (1a)
where
¢t = 46t =20, (1b)

d = d(t), t is time, s = T(x), ° = Q(x), & = U(x), ny is

the instrumental noise at tinte x; = x(t) is the sky position
of the pointing at time, ande is the modulation efficiency of
the polarimeter. The units af are uK and thus a calibration

band-pass filtering reduced the RMS of @eandU maps by
4% regardless of the details of the spectra. This loss ofsign
was compensated for by a Monte-Carlo approach, which we
describe later.

Several effects can bias our estimation of the TOPD when
using equation${2). The beam convolution inevitably reesov
signal on angular scales smaller thari0 arcminutes. We rec-
tified this by a deconvolution procedure during CMB power
spectrum estimation using recipes given in @l (2001b).
These recipes also cope with the asymmetry in the beams. This
deconvolution is discussed in section]2.3. A second effect i
that an imperfect implementation of the demodulation may in
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Fic. 1.—HWP rotation angles (upper panel) and scan angj€lower panel) from a typical subset of the data.
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Fic. 2.— Power spectrum for a subset of the T@D after removal of the HWP synchronous signal (and after nlemation of instrumental
filters). The solid line is the raw spectrum, and the dasheli§i its smoothed estimate. The arrows indicate multidiéseorotation frequency of
the HWPfz showing residuals of the HWP synchronous signal. We give reroomplete discussion of this synchronous signal in Jahasal.
(2006).
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Fic. 3.—Power spectrum of the demodulat@bf the data in FigurEl2 before the band-pass filtering; thikésquantity within the brackets of
equation[(Zh). The solid line is the raw spectrum, the dabheds its smoothed estimate, and the shaded area inditeemss band of the filter.
The spectrum is consistent with white noise within this pdzessd.
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troduce a bias in the estimation of the CMB signal. For exam- Note that we use the subscriptto denote pixels in the origi-
ple, the band-pass filtering is equivalent to a convolutiotihie nal maps and the subscrigto denote pixels in the simplified
time domain so that it induces correlations in the scan ioec ~ notation. Similarly we write

while giving rise to some loss of signal. A third effect isthize NQ 0
deglitching of the data for the transients creates smals gap Noq = ( 8” NU ) 9)
the TOD, and thus may have influenced the demodulation pro- PP

cess. The second and third effects were estimated and tatrec  Here the off-diagonal blocks are zero in theory becauseef th

by a Monte-Carlo approach, as described in se€tigh 2.3. orthogonality between2 andn’.
After the maps are formed we apply a filtering to them
2.2. Map making my =W My, (10)

We employed a standard maximum-likelihood method to ob- whereWyy is a filtering m_atrix. The choice _of the filter de_pends
tain maps ofQ andU from the TOPD. In the time domain the ~ON the subsequent step in the data analysis. For Bayesiaar pow

TOPD can be modelled as spectrum estimation the maps are left un-filtered (or, emuiv
X X lently, we apply an identity filter). For the frequentist apach
4 =8 +nf, (3) we apply a noise-weighting filter to cope with the anisotcopi
whereX = Q or U, s¢ is the CMB signal anah is the instru- noise in the pixel domain. Because the hit count per pixel de-

mental noise. We note thaf andn¥ are independent and thus creases towards the edge of the sky patch, as can be seen in

uncorrelated because the demodulation processes to mﬁain Figureld, the S/N ratio is higher at the center, To prevent the
U P resulting power spectra from being dominated by the low-S/N
anddy’ employ orthogonal kernels (see E@$. (2)). We model the ixels. we use
CMB signal as P ' a
= Apst, 4) WN=(UTNU) "UTNT, (11)
whereU is a column-vector with all entries equal to unity. For

and use the Einstein summation convention when appropnatemap display purposes we use a Wiener filter

Here A is the pointing matrix giving the weight of pixglin ~
observatiort, andsy is the CMB signal in the pixel. We took WV\{F = S(S_+ N) 1’_ _ (12)_
the pointing operatof,, to be unity when observing pix@l at whereS= Sy = (55 ') is the signal-signal correlation matrix.
timet and zero otherwise. That is, we assumed the sighti
be constant within pixep. This model of pixelization induces
an extra convolution effect in addition to that from the beam  TheQ andU can be expanded into spin-2 spherical harmon-
To deal with these convolution effects we followed the resip  ics in the conventional way:

inWu et all (2001b). These provide a way to transfer all these ; - E 4B

convolution effects into a singlB, in multipole space, which QEIU)m) %1: (a‘milagm) +2Yim(), (13)

,([:ri%tg?n be deconvolved when estimating the CMB power Spe‘C_Whereafm andaZ are the coefficients for thE- andB-mode

With this modeling, we can estimate the pixelized mﬂfés polarization, respectively, amdis a unit vector directed in the
from the temporal da;tdtx In the pixel domain we can also direction of observation. The polarization power specta c

X X . then be defined as
modelmﬁ as a linear sum of the signal and the noise compo- vy 1 v Ly
nents: G = 2£+1ZaZmalm*a (14)
m, =S5+, (5) m
_ o _ _ whereY andY’ are eithelE or B.
wherens is the noise in the pixel domain. Under the assump-  Because the sky coverage of our observation is finite, we do
tions that the noise in the temporal domain is Gaussian atd th ot probe independef™’ for each multipole/. Instead, we
all CMB maps are a-priori equally likely, the map% can be bin the’s and determine a band power within eathin. In
estimated by maximizing the likelihood of the signal giveet  aqdition, to increase the signal to noise ratio we use thiree b

2.3. Power-Spectrum Estimation

data. This gives ¢ =2-150, 151693, ang 694 such that only the middle bin
m>r§ - N;)(yAp’t(’\l[)t(/)_ldt)’(v (6) Z?ecz):ld have signal given the combination of beam size and sky
whereAy = AtTp" X = <nt><nt>§T> is the time-time noise corre- When estimating the band power and presenting the results

we must specify a model for the shape of the power spectrum
within each? bin. We model the binned power spectra as

-1 CYY =Dy Weneh ", (15a)
Now = [Ap(NG) ™ Avp] () - i Yy’ 4
P t where the subscrigt labels an¢ bin, bothC; " andc)* are
We apply equationd16) anfl(7) @ andd’ to give the treated as column vectorB,, is a square diagonal matrix with
mapsm andm, respectively, as well as the noise correla- diagonal elements equal to

lation matrix andNX, = (n}fnﬁﬂ is the estimated pixel-pixel
noise correlation matrix given by

tion matricesN®, andNY_ . The numerical implementation of _ ] i Dy =Dy, (15b)
these equations follows the method described in Storapak: andWjp is a matrix defined as

(2001). We use square pixels that are 3 arcminutes on a side. Wi = 1, whenfeb, (15c)
To simplify notation we construct a column vector b 0, when{¢h.

Herech/ is defined as the ‘band power’, aiy is called the

Q
my = ( ,T]B ) - (8) ‘shape function’
) :
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Fic. 4.—The sky coverage of MAXIPOL, presented as the number of 48&ts per 3-arcminute pixel. The squares are regions ofl171and
2.3 degrees across, which we use to estimate the power @p@ixels with zero hit count but within the square regiongehzero weighting in
the process of power-spectrum estimation.

The model for the shape is encodedin We investigate the A commonly used Bayesian approach for power spectrum es-
following four cases: timation is the Newton-Raphson algorithm (Boetchl![1998).
a 1 We attempted to use this method to find the MAXIPOL power
Dy = o +1)i (16a)  spectra, but it failed in a variety of ways that we believe aver
@ due to the low signal-to-noise ratio of our maps. The region
2. Dy =Cyacomy; (16b) of parameter space we are exploring is close to the boundary
e 1 . whereC, = 0, and the allowed solutions include negative power
3.D;7 = 2W+1’ (16¢) values. This region has a non-smooth likelihood that makes
4 Dﬁ“) -1 (16d) the Newton-Raphson method unreliable. We note that future

] . B-mode experiments with a low signal to noise ratio in their
Here theCyacowm) is the power spectrum predicted by the con- B-mode detection are likely to face the same problem. See
cordance model of the WMAP+ACBAR+BOOMERanG result  also[Abroeet all (2004) for high signal-to-noise cases where
in iSpergekt all (2006). It is a flatACDM cosmology with  the Newton-Raphson method is also prone to failure. Thus we
Qph*=0.022,0,:h* =0.13,h=0.74,7 =0.088,ns=0.95, and  adopted a Markov Chain Monte-Carlo (MCMC) approach.
og = 0.74. Consequently our measured power spectra can be The MCMC method explores the likelihood space of the
presented as ) ) map,P(C,/map). It generates lists of samples from a parameter
Cly = Dg;),wg/bcg(ﬁ), (17) space whose distribution is asymptotically the same asdke p
, . terior distribution of the parameters. This approach hasm-n
wheren=1,2,3, or 4, andcy) is the band power to be esti-  per of advantages: it fully explores the parameter spackinga
mated. o no assumptions about the shape of the likelihood surfaak, an
Prior to the estimation of the CMB power spectra, we also can be used in any signal-to-noise regime. The MCMC method
need to determine the effects of the beam convolution and ofjs y4jid in cases where the shape of the posteriors cannat-be a
the map pixelization, so that these effects can be decoeslolv  symed to take simple forms, such as a Gaussian shape. It also
during the estimation process. We follow the recipes deedri  has the important disadvantage of high computational cost.
inWu et all (2001b). The two convolution effects are combined  \we used Metropolis-Hastings (MH) sampling, which is
into a single transfer functioB, in the multipole space: one of the simplest forms of MCMC. It has been widely
BZ = B%(beam)B%(pxl)v (18) used in cosmological parameter estimation (Speztial.l2006;

2 2 Lo MacTavishet al. 2005;| Lewis and Bridle 2002). This method
whereBje,m) andBj,, are the effective; of the beam and 5 150 briefly mentioned ih Kovaet all (2002). In our case
the pixelization, respectively. The resultiBg for MAXIPOL the parameters are binn@J. Our MCMC code was derived
are presented in Figufé 5. The individ&g},.,,, of the MAX- from the spectrum solver MADspec, which is part of MAD-
IPOL polarimeters are somewhat smaller than those of MAX- CAP (Borrill et all2006).

IMA and thus produce a wider noise-weighted combination. To generate sufficient samples for estimating the parame-
The figure also shows that with a pixel size of 3 arc-minutes ters we used two chains, each of approximately 50,000 sam-
less than 2% of signal power fér< 700 is attenuated by the ples. The calculation required 24 hours on 128 processors on
pixelization. the Seaborg supercomputer, which belongs to the National En
ergy Research Scientific Computing Center at Lawrence Berke
2.3.1. Bayesian Approach ley National Laboratory. We are in the process of optimizing
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Fic. 5.— The BZ function of each of the 12 MAXIPOL polarimeters (dotted) tisé noise-weighted combination (solid), of the noise-\utsg
combination for MAXIMA2 (dashed) (Abroet alll2004), and of the map pixelization (dot-dashed).

the method and believe sufficient computational savings canputation. We use a Discrete Fourier Transform (DFT) to ap-
be made to make the algorithm scalable to somewhat largerproximate the multipole expansion. With this approximatio

datasets. equation[(IB) can be reduced and reorganized as
_ The IikeIihlooq ofla parameter set was calculated gxactly us- aE \ _ [ -cosdy -—sin, o}
ing logL = -3(mM"C™*m+Tr logC), whereC = S(C;) +N is the a )7\ sinw -cosz O ) (19)

sum of the signal and noise contributions to the pixel cevari ) : -
ances. The computation of the inverse matrix was the Iargesﬂ"’here a tilde denotes the Fourier coefficient of the corredpo

computational step and was done with a Cholesky decomposi-Ing quantity,k is a Fourier mode, ané is the_phase angle of
tion. k. The multipole number can thus be approximated as the wave

Posterior likelihoods for binne@, can easily be calculated NUMber/~ k= |k|. As a consequence, equatigni(14) reduces
with the MH algorithm, since the likelihood of a parameter ) o1 2
value is proportional to its multiplicity in the chain. Tope Y =QlY == <’a}fak * > , (20)
form these calculations we used the program GetDist, a part A |k|=k
of the CosmoMC package (Lewis and Bridle 2002), which also where A is the area of the map used in the DFT in steradians,
performs some convergence tests based on derived secondamnd the brackets denote an average over all the wave vectors
chains. Additional convergence tests based on power spectr with |k| = k.
of parameter values in the chain, proposed. in Dunkiesl. To increase the S/N ratio pérbin in our results, we com-
(2005), were also performed. In partlculaor, the variancthef  pine the/’s into only three bins and estimate their band powers
\Taerg:wg;;hfirt\?f/woe(:h;gﬁ gi?sliisinttgar‘gs%()m of the mean of the'rcg(ﬁ), instead of theCY¥', with a specified shape function (see

p ' Egs. (I16) and{17)). This requires a modification of equation

The choice of a good proposal density is critical to optimize @20) as
the convergence rate of an MCMC chain. We followed the rec-

2

ommendations in_Lewis (2006): We first re-parameterized the vy 1 ‘a\(a\(*
space by the eigenvectors of the parameter covariancedtatri Cogn) ~ A\ pm ) (21)
mitigate the effect of highly correlated parameters. New- pr k |k|€b

posed jumps were generated along orthonormal basis Vemor%vhereD(k”) is the shape functioDﬁ”) convolved by the multi-
of this new parameter set which were randomly rotated every pole transform of the sky-coverage window. Note that prior t

Npin proposals. The length of the jump was a Gaussian random g -
variable with mean zero and the variance of the appropyiatel tthpDSFT’ we apply the filtering of equatios{10) and (11) ® th

rotate_d elgenvatllge mult|pllted btyda S.‘iﬁ“ng tf}ac';or 04.2Tthe_ d Due to the finite sky coverage, the flat-sky approximation,
covarlance matrix was estimated with & short Non-optimized 4 the filtering of maps, equatidn{21) is a biased estinwtor

MCMC. the band powers. This bias is corrected using the MontesCarl
2.3.2. Frequentist Approach approach.
We also used a frequentist approach to estirﬁgﬁé. Fre- The pseudo-band powers

Sets [Hivoret al| 2005 Moniroyet al 20051 PagetallZ006; e apply the DET of Equation[19) ar@121) to each of the

Bondet alll2003). The following sections describe the steps in square regions selected from the original mer[}sshown in

our analysis and Figufé 6 shows a flowchart of the pipeline.  Figure[4 to obtain the estimated band powe &N) where
Because the sky patch of our observation is only about 4 de-a hat denotes an estimator. We refer to these as the ‘pseudo’-

grees across we approximate it as flat to speed up our com-band powers, because they are biased and contain noise Thes
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Fic. 6.—Flowchart of the frequentist approach for estimating theBOpdwer spectra and their associated errors. The numbersdkeis are
the equation numbers associated with the operation. Theddsoxes indicate the operations included in the MontdeGamulation.

pseudo-band powers can be modelled as

EE(SHN)
CB(B%SﬁN) :H(?))b bb'} ( Bén)
Con) {bb}{ Cor ()

) , (22a)

EB(S+N) _
Coy (+
(22b)

where
|: (n) |: (n)

-< ,:(n) <n))
Gg/gBéng/

(GwBﬁwm ) ’

LH = LGy B Wy (22d)

Here the subscriptbb} denotes the index df that runs twice,
and similarly for{¢¢}. Thec&ﬂ) are the underlying CMB sig-

H{bh) (o)

(22¢)

nals of the field, and theb(n)(N) are the noise components of the

pseudo-band powers. TBe, Gy, and.. Fb(?,) will be explained
as follows.

We callB, the ‘beam transfer function’, which has been dis-
cussed earlier. It accounts for the convolution effectaftbe
beam pattern of each of the polarimeters and from the pixeliz
tion during the map-making process.

We call theG, in equations[(22) the ‘time-domain transfer
matrix’. Itis induced by the time-domain processing, irtithg
the effects from the demodulation and the deglitching of the

data. Here we use the sar@g, for all the EE, EB, andBB
modes because a signal-only Monte-Carlo simulation of@.,00
realizations indicate that it is the same to an accuracy af 2%
This is essentially because the form@&#- is dominated by the
band-pass filter in the demodulation process and thus behave
simply as a convolution effect of the sky signal.

We call .F{) in equations[(22) the ‘DFT transfer matrix'.
It accounts for the biasing effect from the DFT approach
(Egs. [T0),[(I1),[{19), andR1)). The) and-F) are dom-
inated by the self-coupling and the geometric mixing of E and
B polarization respectively (Chaet alll2004).

With the formalism[(2R) established, our task becomes to ob-
tain an unbiased estimator OEY . This requires a inversion
of equauons[(ﬂa) an@_(2kb). As will be shown, the forms of
Gy and iFM, do not need to be estimated individually. In-

stead, we estimate the overall transfer matrld%} (b} and

(+Hé’t‘3 —_Hé’t‘ﬂ) given a specified shape functi@{” and the
measured,, and then compute their inverses.

Estimation of the noise component

Following the frequentist approach, we estimate the naise-c
ponentcg(ﬁ)(’\‘) in equations[{22) by using the previously esti-
mated pixel-pixel noise correlation matr¥,y to carry out a
Monte-Carlo simulation for the noise-only maps. A Cholesky
decomposition gives

Ngg =LLT, (23)
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wherelL is a lower triangular matrix. Then one realization of
the simulated noise map is obtained by taking

g ) =Lg, (24)

= P
whereg is a vector of Gaussian random numbers with mean
zero and variance one. Finally, applying the DFT approach

(Egs. (10), [(Ih),[(T9), and(R1)) to all these noise mapggiel

an estimatedg:(’\‘). We use 10,000 realizations for the Monte-
Carlo to obtain our results.

Unbiased estimator

We now construct an unbiased estimator ¢gf). Taking the
inverse operation of equatidn (22a) gives

o ) = (1 =
(AB@ = (A wey) =

Con)

GEE(SHN) _ cEE(N)
Ragz)sm) _ Agé?&) ) (259)
Sm T Com
and similarly
N N -1
&6 = (+HP--HD)
AEB(S+N) _ sEB(N

The inversion operation fOH?E))b}{b’b’} and (HSQ} —_Ht(,rt’})
here is feasible only if the underlying matrices are squaee,
only if the numbers ob’'s andb”’s are the same. We thus use the
same binning strategy fdrandb’ with only three wide bands
in obtaining our results.

To estimatd-lg?))b}{b,b/}, we employ the following end-to-end
Monte-Carlo simulation. We inject a unit power mﬁkﬁ) for
one/ bin b at a time. After multiplying the resultin@}(}g ob-

tained from equatiod (17) witﬁﬁ(beam) we use equation (13) to
obtain the signal-only high-resolution maps@anduU, which

Wu et al.

3. RESULTS
3.1. Maps and power spectra

FigurdY shows the mamﬁfp< for theQ andU Stokes parame-
ters, the maps convolved with a 10-arcmin Gaussian beam, and
the Wiener-filtered maps (see Eds.](10) dnd (12)). None of the
maps show visible evidence for systematic errors. Notettieat
three sets have different color ranges.

For determining the amplitude of the power spectra we used
a square region of 2.3 degrees across centerdd=at13,

b =40.25° (see Fig[¥) and threébins: ¢ = 2-150, 151-693,
and> 694. Therefore there are in total niAdins under con-
sideration, three for each of theE, EB, andBB modes. We
report results only for the central bin, unless otherwisgest.
This is the only bin likely to contain signal, given the beam
size and area of the maps. All the Bayesian results are egport
after marginalization of the joint posterior likelihoodewun-
interesting bins. Because there is no tractable Bayesidinane
to account for the loss of power due to the band-pass filtering
during demodulation of the time streams, we rescaled estilt
C, for the central bin by a factor of 1.06, calculated from an
appropriate frequentist approach. Bayesian results avedu
as the mode of the likelihood function with 68% intervals of
maximum likelihood. Frequentist results are quoted as the m
dian of the probability distribution function with 68% imtels
about the median. We used a shape fundﬂ@’w 1/[6(¢+1)]
unless otherwise noted.

Table1 gives the amplitude of the polarization power sgectr
using both analysis methods and for different shape funstio
Dﬁ”). For ease of direct comparison we present all results in
£(¢+1)Cy/(2) at the bin centef = 422. The table also gives
the results after marginalizing over a calibration undatja
that is assumed Gaussian with, = 13%. The Bayesian and
frequentist approaches give consistent results. Reseiitgelen
different shape functions are also consistent within stiatil
uncertainties.

are then scanned and processed to produce mock TOPD. Maps Figurel8 gives the Bayesian posterior likelihoods of B
computed from equatioft(6) using the noise matrices medsure EB, and BB modes. Two of the likelihoodsEE and BB)

from the real data are processed through equations (10), (11

exhibit a sharp cut-off at the negative end of the parameter

(@9), and[(21) to yield the resulting band powers. These bandaxis. The cut-off arises when we marginalize the smoothimult

powers give one column of the transfer maﬂHg_")b}{b,b,} that
corresponds to the choséiin for input. A Monte-Carlo sim-
ulation with 1,000 realizations is used to obtain each ofsilke

columns inHET))b}{W}.

Finally an inversion oﬂﬂg'gb}{w} and the previously esti-

dimensional likelihood over the eight other parametersgpbi
Because there are correlations between the cut-offs ardifit
parameters, integrating ovemparameters can lead to a cut-off
that scales a€}*. Therefore the sharpness reflects the high
dimensionality of the marginalized space. It does not bias o
analysis. The posterior likelihood f&E is skewed positive.

mated noise components are used in equations (25) to yield un By integrating the likelihood with a uniform prior over both

biased estimates of the band powe:fég and thus the power
spectraCy;.

Estimation of error bars

positive and negative values we found a 96% probability that
EE power is positive. This probability value is unchangedrafte
inclusion of a 13% calibration uncertainty.

The posterior likelihoods foE B andBB are consistent with
no signal. The 95% confidence intervals for the two modes

To estimate the error bars of the power spectra, we again em&re =53 uK? < £(¢+1)CFB/(2m) < 81 uK? and -55 uK? <

ploy a Monte-Carlo simulation. First, we simulate maps that
contain both signal and noise using equatiéns (23)[add k24),
with theNgyy replaced by

Caq = Syq *+ Nog- (26)

Here Sy is the signal-signal correlation matrix based on the

cg(ﬁ; The use of the DFT approach and equatién$ (25) yields

£(¢+1)CPB/(27) < 57 uK?, respectively. To obtain an upper
limit for the BB-mode we removed the negative region of its
likelihood (see Fid.18) and renormalized the rest. We folnad t
at the 95% confidence level(f + 1)CB8/(2x)]Y/? < 10.6 and
9.5 uK with and without the inclusion of calibration uncertainty
respectively.

the band powers. We compute 10,000 realizations of such band

powers, obtain the probability distribution for the poweaitue
within each? bin b, and calculate the 68% confidence intervals.
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Fic. 7.—The maps of MAXIPOL polarization data (top), the maps comedlwith a 10-arcmin Gaussian beam (middle), and the Wighered

maps (bottom).
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TaBLE 1
AMPLITUDE OF POWER SPECTRA

shapd? | EE EB BB

1/e(¢+1) | 555  18'% -31%3%
ACDM | 109332 2337 -48'%2
1/(20+1) | 8318 247 -513

1 1178 32133 -41:3)

Bayesian approach (in6¢s)
1/0(¢+1) | 5331 143 -303%
ACDM | 113138 2738 -41'3
1/(2¢+1) | 883 2932 -413

1 10889 3453 4738
Frequentist approach
1/0(e+1) | 6235 3P 26

ACDM 684 531 213

1@e+1) | 7355 235 38

1 7272 8hS 218

Note. — Amplitude of power spectt@(€+1)CZY//(27r) in uK? for a wide band = 151-693 assuming different shape functi . Errors are 68% confidence
intervals. The middle block with ‘(incocy)’ gives results including calibration uncertaingyy = 13%. The first row (bold) is the result for which we show the

likelihoods in Figure§18 arid 9, and is the result that is shiowFigure[10.

\

\

N
~

1 N R
x " v/ N e EB
£ P ---BB
< o5 ! - 1
| ] : \
]
1
1
1

-y,
i T

0 0 100 200
| (1+1) C /2 (uK?)

Fic. 8.— One-dimensional marginalized posterior likelihoods/(f+ 1)CZY’/(27r). The sharp cut-offs at the negative end reflect the high
dimensionality of the marginalized space, and do not biaattalysis (see text).
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Fic. 9.—Two-dimensional marginalized posterior likelihoods/¢f+ 1)CY

100 200
(LK?)

Y//(27r). The inner (thinner) and outer (thicker) contours indéciie

confidence regions of 68% and 95% respectively. The crosadstime locations of maximum likelihood.

Figure[® shows Bayesian two-dimensional joint posteriors.

Joint distributions that include tHeE mode are skewed posi-
tive in EE. There are sharp cut-offs of the joint likelihood sur-
face for the same reason that they occur in the one-dimeaision
likelihoods. This results in straight edges for some of t6&9
confidence contours.

We compare the amplitude of tleE power spectrum with
results from other experiments in Figlird 10. The right pamel
the figure is the same posterior likelihood as shown in Figlire
Our result is consistent with the prediction of the concamta
model, which has a mean value &f + 1)CF&/(2r) = 14 uK?
for our ¢ bin. This value falls at the 65% confidence boundary
of our likelihood function around the mode. The lighter shéd
region in the right panel of the figure indicates the 68% con-
fidence region of the posterior likelihood. The darker sklade
region shows the area under the likelihood whgEeis nega-
tive, containing 4% of the total area under the curve.

3.2. Significance of the measured power
According to standard cosmological mod€§® and CE8

the area below the appropriate likelihood function on theipo
tive side. Because the posterior likelihoods are all skepeed

itive most of the confidence levels for a positiBg® are above
90%. These numbers do not depend on the magnitude of the
calibration uncertainty because the calibration uncetyéas a
multiplicative factor, which does not change the fractibam@a
under the likelihood for valueSEE > 0.

3.3. Systematic error tests
3.3.1. Difference maps

We divided the TOD into two halves in the time domain and
processed them separately to yield the CMB maf{$) and

h2) Separate noise correlation matrices were computed. The

difference maps
(h1) _ (h2)

" = mg - mg?, 27)
were constructed and the resulting noise matrices computed
We then estimated the polarization power spectra based on
theseQ andU maps, using both Bayesian and frequentist ap-
proaches. The rows labeled ‘time’ in Table 4 show the results

are predicted to be about one order of magnitude smaller thanwith and without calibration uncertainty. All these resudtre

the CEE and thus undetected by MAXIPOL. We computed the
Bayesian posterior likelihoods fé¢¢ +1)CEE /(27) with a prior
CEB=CPBB=0. The results with and without calibration uncer-
tainty are summarized in Tallé 2. A comparison with Table 1
shows that including the priors gives somewhat smaller mode
and error bars.

Tabld3 summarizes the confidence level at which the hypoth-

esisCEE = 0 is rejected for different shape functions, and with
and without a priolCE® = CBB = 0. The procedure for the cal-
culation is identical to the one already discussed in Seid.
We assume a uniform prior for all values BE and integrate

consistent with zero.

In a similar manner, we combined half of the 12 polarimeters
to make one set of maps, and the other half for another set, and
computed difference maps and the associated noise matrices
The row labeled ‘polar’ in Tablgl4 shows the results.

Within statistical uncertainties neither the time-domdifa
ferencing nor the polarimeter differencing test gives ewice
for systematic errors. We note that the sizes of the 68% confi-
dence intervals in Tablé 4 are on average larger than thabke of
EB andBB modes in Tabl€l1l because the differencing process
inevitably increases the noise level per pixel.
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® MAXIPOL
o CAPMAP

__150f & DASI(05) 1 1
N, x  CBI (05)
= BO3 |
~ 100} WMAP ] T ]
IS —— ACDM
5_ o

i [ ] ]
a9 50 A
sy ¢ \JACDM

0 £ Lo /

800 1000 0 05 1
I L/L

ax

Fic. 10.—The /(¢ +1)CEE/(2r) at£ < 1000 from all experiments which reported CMB polarizati@ur result is taken from the first row of
Tabled (numbers in bold type). The other results are from KIAP (Barkatset al.l2004), DASI (Leitchet alll2005), BO3|(Montroet al.2005),
CBI (Sieverset al.2005), and WMAP|(Paget al.|2006). The right panel is the posterior likelihood of ourules The solid curve in the left
panel is a flan\CDM model from the WMAP+ACBAR+BOOMERanG resultlin Spergehll (2006) (see text for details). It has a mean value
of £(¢+1)CEE/(2r) = 14 K2 for our bin atf = 151-693 (shown as an arrow in the right panel). The shadgdn®in the right panel indicate
the 68% confidence region of the posterior likelihood andréggon with negativeE E power, which is 4% of the total area below the likelihood
curve.

TABLE 2
EE POWER SPECTRUM WITHCEE=CBB =0

ShapeD!"
BayesiarCFB=CBB=0

ree+n] | 12 3R 18

1/(20+1) | 41 153 0

BayesiarCEB =CPB = 0 (inc. oca)

Mode 68% 95%

Note. — Amplitude of power spectrurﬁ(£+1)CeEE/(27r) in K2, and 68% and 95% confidence intervals assuming differerp&hmctionsD(l”) with a prior

EB — ~BB —
cEB=cBB=0.

1/[6(¢+1)]
1/(20+1)

12
49

+41
-22

+56
-48

+94
-38

+144
-80
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TABLE 3
PROBABILITY FORCEE >0

ShapeD{" No Prior | CEB=CBB=0
/166 +1)] 96% 83%
ACDM 94% -
1/(20+1) 98% 92%
1 98% -

Note. — Proportion of likelihood with positiveEE for different shape function@&“) with no prior, and with a priocE8 = CBB = 0 (not all shape functions were
considered in this case).

TABLE 4
POWER SPECTRA OF DIFFERENCE MAPS
Test Appr. EE EB BB
time B | -19'3% 553 83
time B (oca) | —10735 -55733 843
time F 2118 8 -25'%
polar F -5%2 35 30143

Note. — Amplitude of power spectrié( + 1)CZY/ /(2m) estimated from difference maps that were constructed aifterent divisions of the data (column ‘Test’).
Division was done either in time or by polarimeter (labeléché’ or ‘polar’ respectively, see text). Results are gilmih for the Bayesian (B) and frequentist (F)

approaches. Error values indicate 68% confidence intervals
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3.3.2. Regions of different sizes We discussed the analysis of CMB data that were taken with
a HWP polarimeter. Demodulation of the time-domain data

We also investigated the dependence of the frequentidtsesu npased on the rotational position of the HWP gaveGhendU

on the size of the square patch chosen for the power spectru Lot Th data sh d a whit ) ' tf .
estimation. The square regions of different size that wed ase ata. 1nese data showed a whité-noise Spectrum at fre@senci

indicated by the boxes in Figu® 4. The square region of width Well below 50 mHz for the majority of the data at a level consis
1.7° is centered at= 11323°, b = 40.2°. The square region of tent with detector noise. Most of the data were also Gaussian

width 1.1° is centered ak = 11313°, b =40.25°. The results and stationary. We mad@ andU maps using a maximum-

are summarized in Tablg 5 and are consistent with the earlier“!‘mIhOOd technique. The maps were also shown to be Gaus-

results. There is no significant increase in the error baenwh sian and there was no visible evidence for systematic errors

: ; We calculatecEE, EB, and BB power spectra using both
using a smaller region of the maps because the edges of th . . . .
square regions are noisier than the central portion (sedig eBayesu’;ln and frequentist techniques. The Bayesian remves

and pixels near the edges have negligible statistical waigh ~ Weak evidence foEE power that is consistent withCDM
the power spectrum estimation. cosmology and with previous results. There was no deteztabl

signal for theEB and BB spectra. Results from the frequen-
3.3.3. Gaussianity test for the maps tist analysis were consistent with the Bayesian ones. We cal
culated results for different shape functions and withedéht
priors and found that the significance of detectiofE& power
was between 83% and 98% with most of the results giving a
probability larger than 90%. We gave results with and with-
out marginalization over calibration uncertainty. Indétusof

the calibration uncertainty does not change the signifiearic
detection ofE E power.

" We presented results from tests for systematic errors in-
cluding differencing maps, processing sky regions of défife
sizes, assessing Gaussianity, investigating beam asymamet

Gaussianity in the pixel-domain signal is an essential as-
sumption for the methods of power spectrum estimation that
we used. To test odp andU maps we applied the Kolmogorov
test to the eigenvalue-normalized Karhunen-Loeve coefftsj
as performed in_Wet all (2001a). If the signal is Gaussian,
then the K-L coefficients should be normally distributedtra
process, we found that some of the eigenvalues of the noise
whitened signal matrix were negative owing to the high noise
and imperfectly estimated signal in those modes. We thus ex-

clu<(jjed tf_ll_?]se mod?rs_, frortn the te(sjt, btl;t mciluded aII_tht(; Ot'?elrsearching for polarization leakage. None of the tests sHowe
modes. These coefficients passed with a clear margin the Kok-¢yidence for systematic errors,

mogorov test for Gaussianity at 95% confidence. MAXIPOL is the first experiment to produce CMB data us-
3.3.4. Beam asvmmetrv and polarization leakage ing a modulating HWP. The technique_s we _developed to ana-
y y P ¢ lyze such data should have broad applicability for futureECM

In certain circumstances an asymmetry in the beam may in-experiments that are planning to use similar modulatioh-tec
duce spurious polarization signals. For example, if an asym piques.

metric beam rotates simultaneously with the HWP, the result

ing EE or BB spectrum will contain power leakage from the
TT mode. ACKNOWLEDGMENTS

Scans of Jupiter were used to quantify leakage ffloto Q We thank Danny Ball and the other staff members at the
andU. Jupiter has an inherent polarization of less than 0.2% at NASA National Scientific Ballooning Facility in Ft. Sumner,
140 GHz (Clemenst ali1990), which is small comparedto the  New Mexico for their outstanding support of the MAXIPOL
noise orQandU during beam mapping. Out of 12 polarimeters program. MAXIPOL is supported by NASA Grants NAG5-
only two showed an instrumental polarization signal at &llev 12718 and NAG5-3941: National Science Council, National
of 4% and 5%. No other polarimeter showed leakage from tem- center for Theoretical Science, and Center for TheoreSical
perature toQ or U at a level larger than about 1%, which was ences, National Taiwan University for J.H.P. Wu; PPARC for
the typical noise level for this measurement. A. H. Jaffe and J. Zuntz; a NASA GSRP Fellowship, an NSF

To quantify this effect on the power spectrum we performed |RFP and a PPARC Postdoctoral Fellowship for B.R. Johnson;
an end-to-end simulation. Taking teCDM as the underly-  the Miller Institute at the University of California, Berey for
ing model forT we conservatively assumed 3% leakage into H. Tran.
each ofQ andU, which is equivalent to 4.2% instrumental po-  \we are grateful for computing support from the Minnesota
larization, for all 12 polarimeters. The TOD were consteact  Sypercomputing Institute at the University of Minnesotanf
using the beam patterns as measured in flight. We processe¢he National Energy Research Scientific Computing Cen-
this signal-only TOD to obtain maps and power spectra. A ter (NERSC) at the Lawrence Berkeley National Laboratory,
Monte-Carlo simulation showed that out of 1,000 realizatio which is Supported by the Office of Science of the U.S. De-
thelargestcontribution of this leakage into the finBIE or BB partment of Energy under Contract No. DE-AC03-76SF00098,
spectrum was %K? for our main bin¢ = 151-693; the mean  and from the National Center for High-Performance Comput-
leakage was smaller. This test dempnsf[rates that the final reing, Taiwan. We are grateful for discussions with P. Feareir
sults were not affected by asymmetries in the measured beamyng members of his research team. We gratefully acknowledge
profiles and by the polarization leakage. contributions to the MAXIMA payload by A. Boscaleri, P. de
Bernardis, V. Hristov, A.E. Lange, P. Mauskopf, B. Nettddje

4. CONCLUSIONS and E. Pascale, which were useful for MAXIPOL.



MAXIPOL: Data Analysis and Results

TABLE 5
POWER SPECTRA OF DIFFERENT SKY SIZES

Region Size
(x° x x°)

EE

EB BB

x=17 6944
x=11 6325

12737 22137

+50 +51
82 144

Note. — Amplitude of power spectm“l)CZY,/(zn) estimated from square regions of different size (sedfiglde error numbers indicate the 68% confidence

intervals.
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