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Optimal filters on the sphere
Jason D. McEwen, Michael P. Hobson, and Anthony N. Lasenby

Abstract— We derive optimal filters on the sphere in the
context of detecting compact objects embedded in a stochastic
background process. The matched filter and the scale adaptive
filter are derived on the sphere in the most general setting,
allowing for directional template profiles and filters. The perfor-
mance and relative merits of the two optimal filters are discussed.
The application of optimal filter theory on the sphere to the
detection of compact objects is demonstrated on simulated data.
A naive detection strategy is adopted, with an initial aim of
illustrating the application of the new filter theory derived on
the sphere. Nevertheless, this simple object detection strategy is
demonstrated to perform well, even at low signal-to-noise ratio.

Index Terms— Filtering, spheres, convolution.

I. I NTRODUCTION

T HE detection of compact objects embedded in a stochas-
tic background is a problem experienced in many

branches of physics and signal processing, and as such it has
received considerable attention. Many of these applications are
restricted to flat Euclidean space, such as the one-dimensional
line or the two-dimensional plane. However, data are often
measured or defined on other manifolds, such as the two-
sphere. For example, applications where data are defined on
the sphere are found in planetary science, geophysics, com-
puter vision, quantum chemistry and astrophysics. Astrophys-
ical applications include observations made on the celestial
sphere of the cosmic microwave background (CMB) (e.g.[1]),
a relic radiation of the Big Bang. CMB observations may be
contaminated by localised foreground emission due to point
sources or Sunyaev-Zel’dovich (SZ) effects induced by the
hot intergalactic gas bound to clusters of galaxies [2]. These
foreground emissions must be separated from CMB observa-
tions in order to provide cleaned CMB data for cosmological
analysis or simply so that they may be studied in their own
right. Furthermore, other primordial physical phenomena may
imprint localised signatures in the CMB that are of interest
(e.g.cosmic strings [3]). The extension of optimal filter theory
to the sphere would allow compact objects embedded in full-
sky CMB data to be detected in an analogous manner to that
performed in the plane currently,i.e. by filtering the observed
field to enhance the contribution of embedded objects relative
to the stochastic background, before attempts are made to
recover the embedded objects from the filtered field using
various classification schemes.

When adopting the filtering approach to object detection a
number of criteria may be imposed so that the filter kernels are
in some sense optimal. The optimal matched filter (MF) has
been used extensively in many branches of physics and signal
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processing, and in the context of detecting point sources and
SZ emission in CMB observations made on small patches of
the sky, which are assumed to be approximately flat, by [4] and
[5] respectively. Other optimal filters in Euclidean space,such
as the scale adaptive filter (SAF), have been derived by [6], [7].
It is shown by [6] that the Mexican hat wavelet on the plane
is in fact the optimal SAF for the special case of detecting a
Gaussian source embedded in a white noise background. The
Mexican hat wavelet has been used to detect objects embedded
in CMB data on small patches of the sky [8]. Furthermore,
both the MF and SAF (including the Mexican hat wavelet)
have been applied to simulated time ordered CMB data to
detect point sources [9]. Some debate exists, however, over
the advantage of the SAF relative to the usual MF [10].

All of the works discussed previously are limited to Eu-
clidean space. To analyse full-sky CMB observations the tech-
niques described previously must be extended to a spherical
manifold. As a consequence of a full-sky analysis, it shouldbe
noted that the statistical properties of the background process
are assumed to be stationary over the sphere. The Mexican hat
wavelet analysis has been extended to the sphere and applied
to point source detection in the CMB by [11]. The extension
of optimal filter theory to the sphere has been derived recently
by [12] and applied to simulated data to detect the SZ effect
[13]. However, the optimal filter theory derived by [12] is
restricted to azimuthally symmetric source profiles and filters
on the sphere. In this paper we re-derive optimal filter theory
on the sphere, making the extension to the more general class
of non-azimuthally symmetric source profiles and filters. In
addition, we generalise toLp-norm preserving dilations in
order to highlight some minor amendments to previous works.

The remainder of this paper is organised as follows. In
Section II some mathematical preliminaries are presented be-
fore the object detection problem is formalised in Section III.
Derivations of the MF and SAF on the sphere are presented
in Section IV. In Section V the new optimal filter theory is
applied to detect objects embedded in simulated data, in the
MF case. Concluding remarks are made in Section VI.

II. M ATHEMATICAL PRELIMINARIES

It is necessary to outline some mathematical preliminaries
before attempting to derive optimal filters on the sphere.
Firstly, harmonic analysis on the two-sphereS

2 and on the
rotation groupSO(3) is reviewed. By making all assumptions
and definitions explicit we hope to avoid any confusion over
the conventions adopted. A dilation operator is then definedon
the sphere, before we review filtering on the sphere. Dilation
and filtering are described in both real and harmonic space.

http://lanl.arXiv.org/abs/astro-ph/0612688v2
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A. Harmonic representations

We consider the space of square integrable func-
tions L2(S2, dΩ(ω)) on the unit two-sphereS2, where
dΩ(ω) = sin θ dθ dφ is the usual rotation invariant mea-
sure on the sphere andω = (θ, φ) ∈ S

2 de-
notes spherical coordinates with colatitudeθ and longi-
tude φ. A square integrable function on the spheref ∈
L2(S2, dΩ(ω)) may be represented by the spherical har-
monic expansionf(ω) =

∑∞

ℓ=0

∑ℓ
m=−ℓ fℓmYℓm(ω), where

the spherical harmonic coefficients are given by the usual
projection on to the spherical harmonic basis functions:
fℓm =

∫

S2 f(ω) Y ∗
ℓm(ω) dΩ(ω). The∗ denotes complex con-

jugation. We adopt the Condon-Shortley phase convention
where the normalised spherical harmonics are defined by [14]

Yℓm(ω) = (−1)m

√

2ℓ + 1

4π

(ℓ − m)!

(ℓ + m)!
Pm

ℓ (cos θ) eimφ ,

where Pm
ℓ (x) are the associated Legendre functions. Using

this normalisation the orthogonality of the spherical harmonic
functions is given by

∫

S2

Yℓm(ω) Y ∗

ℓ′m′(ω) dΩ(ω) = δℓℓ′δmm′ , (1)

whereδij is the Kronecker delta function.
To perform filtering on the sphere one must define trans-

lations on the sphere, which may be naturally represented by
rotations. Rotations on the sphereR are characterised by the
elements of the rotation groupSO(3), which we parameterise
in terms of the three Euler anglesρ = (α, β, γ) ∈ SO(3),
where α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π).1 The
rotation of f is defined by[R(ρ)f ](ω) ≡ f(R−1

ρ ω), where
Rρ is the rotation matrix corresponding toR(ρ). It is also
useful to characterise the rotation of a function on the sphere
in harmonic space. The harmonic coefficients of a rotated
function are related to the coefficients of the original function
by

[R(ρ)f ]ℓm =

ℓ
∑

m′=−ℓ

Dℓ
mm′(ρ) fℓm′ . (2)

The Wigner functions may be decomposed as [14]

Dℓ
mm′(α, β, γ) = e−imα dℓ

mm′(β) e−im′γ , (3)

where the real polard-matrix is defined by [14]

dℓ
mm′(β) =

√

(ℓ + m′)!(ℓ − m′)!

(ℓ + m)!(ℓ − m)!

(

sin
β

2

)m′
−m

×

(

cos
β

2

)m′+m

P
(m′

−m,m′+m)
ℓ−m′ (cosβ) , (4)

whereP
(a,b)
ℓ (·) are the Jacobi polynomials. The Wigner func-

tions satisfy the orthogonality condition
∫

SO(3)

Dℓ
mn(ρ)Dℓ′∗

m′n′(ρ) d̺(ρ) =
8π2

2ℓ + 1
δℓℓ′δmm′δnn′ , (5)

1We adopt thezyz Euler convention corresponding to the rotation of a
physical body in afixed co-ordinate system about thez, y and z axes byγ,
β andα respectively.

where d̺(ρ) = sinβ dα dβ dγ. Recursion formulae are avail-
able to compute rapidly the Wignerd-matrices (seee.g.[15]).

B. Dilation on the sphere

To perform filtering on the sphere at various scales a
spherical dilation operator must be defined. We adopt the
spherical dilation operator first defined by [16] to derive a
continuous wavelet transform on the sphere. In this case, the
stereographic projection is used to project the sphere on tothe
plane (see Figure 1). It is shown by [17] that the stereographic
projection operator is the unique unitary, radial and conformal
diffeomorphism between the sphere and the plane. Dilations
on the sphere are defined by: (a) first lifting the sphere to the
plane using the stereographic projection; (b) performing the
usual Euclidean dilation in the plane; (c) reprojecting back on
to the sphere using the inverse stereographic projection. The
spherical dilation operator derived by [16], [17] preserves the
L2-norm of functions. We generalise toLp-norm preserving
dilations in order to highlight the impact of this choice
on the final optimal filter equations derived in Section IV.
Although the choice ofp is not of considerable practical
interest, different works have implicitly assumed different p
values, hence the explicit dependence given here should allow
a direct comparison with previous works. Definitions of the
dilation and inverse dilation (contraction) operators follow,
accompanied by short proofs to show that these operators do
indeed preserve theLp-norm.

Definition 1: The Lp-norm preserving spherical dilation is
defined by

fR,p(θ, φ) ≡ [Dp(R)f ](θ, φ) ≡ [λ(R, θ)]1/p f(θ1/R, φ) , (6)

where scaleR ∈ R
+
∗ , Lp-norm p ∈ Z

+
∗ , tan(θR/2) =

R tan(θ/2) and theλ(R, θ) cocycle term introduced to pre-
serve the appropriate norm is defined by

λ(R, θ) =
4 R2

[(R2 − 1) cos θ + (R2 + 1)]2
. (7)

Proof: See Appendix I.
A contraction, or inverse spherical dilation, may be similarly
defined and follows trivially from Definition 1.

Definition 2: TheLp-norm preserving inverse spherical di-
lation is defined by

[D−1
p (R)f ](θ, φ) ≡ [λ(R, θR)]−1/p f(θR, φ) . (8)

The spherical dilation and contraction operations are per-
formed about the north pole. A dilation about any other point
on the sphere may be performed by rotating that point to the
north pole, dilating, then rotating back to the original position.

When constructing optimal filters on the sphere it is neces-
sary to consider the spherical harmonic coefficients of dilated
functions. We derive an intermediate result here to express
the harmonic coefficients of the dilated function in terms of
the original undilated function and dilated spherical harmonic
functions.

Lemma 1:The harmonic coefficients of a dilated function
may be given either by projecting the dilated function on
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Fig. 1. Stereographic projection of the sphere on to the plane.

to each spherical harmonic, or equivalently by projecting
the original undilated function on to contracted spherical
harmonics, scaled by the appropriate cocycle factor:

[Dp(R)f ]ℓm =

∫

S2

f(θ, φ)
Y ∗

ℓm(θR, φ)

[λ(R, θR)]1−1/p
dΩ(θ, φ) . (9)

Indeed, for the 2-norm case (p = 2) one finds1 − 1/p = 1/p
and the spherical harmonics are contracted in accordance with
the definition of the inverse dilation:

[D2(R)f ]ℓm =

∫

S2

f(θ, φ) [D−1
2 (R)Y ∗

ℓm](θ, φ) dΩ(θ, φ) .

Proof: Consider the spherical harmonic coefficients of a
dilated function

[Dp(R)f ]ℓm =

∫

S2

[λ(R, θ)]1/pf(θ1/R, φ)Y ∗

ℓm(θ, φ) dΩ(θ, φ).

By performing a change of variables this may be represented
by

[Dp(R)f ]ℓm =

∫

S2

f(θ, φ)
Y ∗

ℓm(θR, φ)

[λ(R, θR)]−1/p
dΩ(θR, φ) ,

from which (9) follows by noting dΩ(θR, φ) =
[λ(R, θR)]−1 dΩ(θ, φ).

C. Filtering on the sphere

Filtering on the sphere is performed analogously to filtering
on the plane; it is thesphericalconvolution of the filter kernel
with the analysed signal. The analogue of translations on the
sphere are rotations, thus the filtered field is given by the
directional spherical convolution

F (ρ, R, p) =

∫

S2

f(ω) [R(ρ)ΨR,p]
∗(ω) dΩ(ω) , (10)

whereΨ ∈ L2(S2, dΩ(ω)) is the filter kernel. All orientations
in the rotation groupSO(3) are considered, thus directional
structure is naturally incorporated. The filter equation (10) is
identical to the analysis formula of the continuous wavelet
transforms derived on the sphere by [16], [17], hence our
fast algorithm to evaluate this equation [18] may be applied

to compute the filtered field rapidly. For an example of the
directional spherical filtering operation applied to Earthdata
see [18].

When deriving optimal filters on the sphere it is often
convenient to represent the filtering operation in harmonic
space. Representing the analysed function and the rotated filter
kernel in harmonic space, one may rewrite (10) as

F (ρ, R, p) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

ℓ
∑

m′=−ℓ

fℓmDℓ∗
mm′(ρ) (ΨR,p)

∗

ℓm′
. (11)

For a filter centred on the north pole the harmonic represen-
tation of the filtering operation reduces to

F (0, R, p) =
∑

ℓm

fℓm (ΨR,p)
∗

ℓm , (12)

where here and subsequently we use the shorthand notation
∑∞

ℓ=0

∑ℓ
m=−ℓ ≡

∑

ℓm. Furthermore, for the special case
of a filter kernel that is azimuthally symmetric, the filter is
dependent onθ only (and notφ) and, consequently, the filtered
field is independent of the value ofγ. In this case, the spherical
harmonic coefficients of the filtered field for a particular scale
are simply given by

[F (R, p)]ℓm =

√

4π

2ℓ + 1
fℓm (ΨR,p)

∗

ℓ0 . (13)

III. PROBLEM FORMALISATION

In this section we formalise the problem of detecting
compact objects embedded in a stochastic background noise
process, and propose optimal filtering to enhance the detection
of such objects. The formulation given here is similar to that
of [12] but is considered in the most general sense, allowing
asymmetric templates of various amplitude, position and orien-
tation. Removing the assumption of an azimuthally symmetric
template, the case considered in previous works [12], [13],
introduces a number of complications as the spherical filtering
operation may no longer be represented in harmonic space
simply as a product of spherical harmonic coefficients.

A. Formulation

Consider an observed field on the skyf(ω) consisting of a
number of sourcessi(ω) embedded in a stochastic background
processn(ω). Observations are likely to be made in the pres-
ence of additional instrument noiser(ω) also. The observed
field is obtained by measuring (convolving) the actual field
with some beamb(ω). The beam response and instrumental
noise may be absorbed into the template and the statistical
properties of the background, therefore these components may
be included trivially when required. Without loss of generality,
the observed field may therefore be represented by

f(ω) =
∑

i

si(ω) + n(ω) . (14)

Each source may be represented in terms of its ampli-
tude Ai and source profilesi(ω) = Ai τi(ω), where
τi(ω) is a dilated and rotated version of the source pro-
file τ(ω) of default dilation centred on the north pole,
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i.e. τi(ω) = R(ρi)D(Ri, p) τ(ω). One wishes to recover the
parameters{Ai, Ri, ρi} that describe each source ampli-
tude, scale and position/orientation respectively. The stochas-
tic background process is assumed to be a zero-mean
E [n(ω)] = 0, homogeneous and isotropic Gaussian random
field, fully characterised by the spectrum

E [nℓmn∗

ℓ′m′ ] = δℓℓ′δmm′ Cℓ , (15)

whereE [·] denotes the expectation operator. To facilitate the
detection of compact sources, the observed field is filtered
using (10) to enhance the source contribution relative to the
background noise process. The choice of filter kernels that are
in some sense optimal is addressed next.

B. Filter constraints

Various optimal filters may be defined by imposing different
constraints on the filtered field. Without loss of generality,
we derive optimal filters for the detection of a single source
located at the north pole (hence we drop thei subscript that
denotes source index). Sources located at other positions and
orientations are found by rotating the optimal filter,i.e. by
considering filtered field coefficients overSO(3).

The following filter characteristics may be imposed when
constructing optimal filters:

(i) Unbiased: The filtered field is an unbiased estimator
of the source amplitude at the source position,i.e.
E [F (0, R, p)] = A.

(ii) Minimum variance: The filtered field has minimum
variance at the source position.

(iii) Local extremum in scale: The expected value of the
filtered field has an extremum with respect to scale,i.e.
∂

∂RE [F (0, R, p)] = 0 at R = R0.
Imposing criteria (i) and (ii) only one obtains the usual
MF. Imposing the additional constraint (iii) one obtains the
SAF, first introduced on the plane by [6]. This additional
constraint imposes an extremum at the unknown scaleR0. In
the derivation of the SAF this unknown scale drops out and the
final filter expressions are independent ofR0. The additional
constraint imposed when constructing the SAF provides a
means to estimate unknown source scales by checking for a
maximum in scale but at a cost of reduced gain. This issue is
discussed in more detail in Section IV-D.

C. Filtered field statistics

In order to derive optimal filters on the sphere it is necessary
to determine first expressions for the mean and variance of the
filtered field at the source position. The filtered field mean at
the source position is given by

E [F (0, R, p)] = A
∑

ℓm

τℓm (ΨR,p)
∗

ℓm . (16)

The filtered field variance at the source position is given by

σ2
F (0, R, p) = E

[

|F (0, R, p)|2
]

− |E [F (0, R, p)] |2 . (17)

The first term becomes

E
[

|F (0, R, p)|2
]

= |E [F (0, R, p)] |2 +
∑

ℓm

Cℓ

∣

∣(ΨR,p)ℓm

∣

∣

2
,

where we have relied on the fact that the stochastic noise
process has zero mean and is homogeneous and isotropic. The
variance is therefore given by

σ2
F (0, R, p) =

∑

ℓm

Cℓ

∣

∣(ΨR,p)ℓm

∣

∣

2
. (18)

The filtered field variance at the source position is also used
to determine the error on amplitude estimates.

IV. OPTIMAL FILTERS

In this section we derive the MF and SAF on the sphere
for an arbitrary template profile. The extension of optimal
filter theory to the sphere has been derived already by [12]
for the special case of azimuthally symmetric source profiles.
We re-derive optimal filter theory on the sphere here, making
the extension to the more general class of non-azimuthally
symmetric source profiles and filters. In addition, we gen-
eralise toLp-norm preserving dilations in order to highlight
some minor amendments to previous works. We show that the
resultant optimal filters reduce to the expected definitionsfor
azimuthally symmetric template profiles and also that, in the
flat, continuous limit, these forms reduce to the optimal filter
definitions derived on the plane. To conclude this section we
compare the performance of the MF and SAF on the sphere
and discuss the relative merits of each filter.

A. Matched filter

Theorem 1:The optimal MF defined on the sphere is ob-
tained by imposing criteria (i) and (ii) defined in Section III-B,
i.e. by solving the constrained optimisation problem:

min
w.r.t. (ΨR,p)

ℓm

σ2
F (0, R, p)

such that
E [F (0, R, p)] = A . (19)

The spherical harmonic coefficients of the resultant MF are
given by

(ΨR,p)ℓm =
τℓm

a Cℓ
, (20)

where
a =

∑

ℓm

C−1
ℓ |τℓm|2 . (21)

Proof: See Appendix II.
A measure of the capability of an optimal filter to detect

an embedded source is given by themaximum detection level,
defined by

Γ ≡
E [F (0, R, p)]

σF,min(0, R, p)
. (22)

The minimum variance of the filtered field is found by
substituting the expression for the MF given by (20) into (18).
One finds that the MF filtered field minimum variance is given
by σ2

F,min(0, R, p) = a−1, thus the maximum detection level
for the MF is

ΓMF = a1/2 A . (23)
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B. Scale adaptive filter

To construct the optimal SAF defined on the sphere we first
recast criterion (iii) in a form expressed in terms of the filter
spherical harmonic coefficients andnot the coefficients of the
differentiated filter. A suitable form is given by the following
lemma.

Lemma 2:Optimal filter criterion (iii), imposing a local
extremum in scale, may be recast in the following more
applicable form:

∑

ℓm

(ΨR0,p)
∗

ℓm(Aℓpτℓm − Bℓmτℓ−1,m) = 0 , (24)

whereAℓp ≡ ℓ + 2/p− 1 andBℓm ≡ (ℓ2 − m2)1/2.
The proof of this lemma may be found in [19] (the proof is
not repeated here since it requires multiple pages). It is now
possible to derive the following theorem, the definition of the
optimal SAF defined on the sphere.

Theorem 2:The optimal SAF defined on the sphere is
obtained by imposing criteria (i), (ii) and (iii) defined in
Section III-B, i.e. by solving the constrained optimisation
problem:

min
w.r.t. (ΨR0,p)

ℓm

σ2
F (0, R, p)

such that

E [F (0, R, p)] = A (25)

and
∂

∂R
E [F (0, R, p)]

∣

∣

∣

∣

R=R0

= 0 . (26)

The spherical harmonic coefficients of the resultant SAF are
given by

(ΨR0,p)ℓm =
cτℓm − b(Aℓpτℓm − Bℓmτℓ−1,m)

∆Cℓ
, (27)

where

b =
∑

ℓm

C−1
ℓ τℓm(Aℓpτ

∗

ℓm − Bℓmτ∗

ℓ−1,m) , (28)

c =
∑

ℓm

C−1
ℓ

∣

∣Aℓpτℓm − Bℓmτℓ−1,m

∣

∣

2
, (29)

∆ = ac − |b|2 (30)

anda is defined by (21).
Proof: See Appendix III.

The minimum variance of the filtered field is found by
substituting the expression for the SAF given by (27) into (18).
One finds that the SAF filtered field minimum variance is given
by σ2

F,min(R0, p,0) = c∆−1, thus the maximum detection
level for the SAF is

ΓSAF = c−1/2∆1/2A . (31)

C. Azimuthally symmetric case

In this subsection we show that the expressions derived
above for arbitrary template profiles reduce to the forms
expected for azimuthally symmetric templates (the case con-
sidered by [12]). The spherical harmonic coefficients of az-
imuthally symmetric functions on the sphere are non-zero for
m = 0 only, hence the general filter expressions that we derive
for a directional template should reduce to the symmetric result
when settingm = 0. The definition of the filter variables used
herein differ slightly to those defined by [12] (which we denote
by a′, b′, c′ and∆′). The relationships between these sets of
variables are stated in [19]. For now we simply note that all
filter variables are identical forp = 2, however the casep = 1
is adopted by [12]. Simplifying the formula for the MF given
by (20) to the azimuthally symmetric setting, one finds that
the resulting expression is identical to that derived by [12].
Simplifying the formula for the SAF given by (27) in a similar
manner, one obtains the following expression for the SAF of
a symmetric template:

(ΨR,p)ℓ0 = (∆′Cℓ)
−1τℓ0

[

A0pb
′∗+c′− (A0pa

′+b′)
dlnτℓ0

dlnℓ

]

.

It is apparent that theA0p coefficient of the firstb′ and of
a′ are in general dependent on the choice of theLp-norm
preserved by the dilation. Forp = 1, the case considered by
[12], one findsA01 = 1, not two as given in [12]. When we
repeat the derivation of the SAF for the azimuthally symmetric
case given by [12] explicitly, we also get a unity term rather
than a factor of two for these coefficients, and hence correct
an algebraic error in [12]. The forms derived herein for the
MF and SAF on the sphere of a directional template therefore
reduce to the correct forms derived directly for an azimuthally
symmetric template. Moreover, in the flat, continuous limit,
the azimuthally symmetric optimal filters derived on the sphere
reduce to the forms derived previously on the plane (to make a
comparison see, respectively,e.g.eqn. (21) of [5] and eqn. (10)
of [6]).

D. Comparison

The relative merits of the MF and SAF are compared in this
subsection. Recently, the advantages of the SAF (on the plane)
have been questioned [10], although these concerns have been
refuted by the original proponents of the SAF [6], [7]. We
hope to clarify this debate by suggesting that in the ideal case
the SAF may not provide a theoretical advantage, however in
practice the SAF may indeed prove advantageous.

The SAF filter imposes an extremum in scale in the filtered
field and thus must satisfy an additional constraint to the MF.
Consequently, the gain of the SAF must be lower than that
of the MF. One may show this analytically by comparing the
ratio of the detection levels derived in the preceding sections
for each optimal filter:

ΓSAF

ΓMF
=

√

1 −
|b|2

ac
. (32)

Filter variablesa andc are real and are strictly positive always,
consequently (32) is less than one always.
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As the gain of the SAF is lower than the gain of the MF
one would hope that the SAF provides some other advantage.
This is indeed the case when the scale of the source template
is unknown. When the source size is unknown the observed
field may be filtered at a range of candidate scales. It is then
possible, at the source position, to trace the value of the filtered
field over scales. The SAF imposes a peak (with respect to
scale) in the filtered field that may then be related, either
analytically or numerically, to the unknown size of the source
template. The drop in gain provided by the SAF is therefore
offset by the ability to determine the unknown size of the
source.

It has been argued that it is also possible to estimate an
unknown template size using the MF [10], in which case the
SAF would not provide any advantage. For the MF, it may be
possible to relate the filtered field curve (with respect to scale)
to the unknown scale of the template. By fitting the entire
curve one could therefore directly estimate the source scale,
although this curve is unlikely to have a local peak. In practice
it is much easier to determine a peak in the filtered field (the
SAF approach to estimating source size), than try to fit a curve
to the field (the MF approach to estimating source size). The
amplitude of the source is unknown also, hence it is only the
curvature of the curve that one may fit and curvature changes
much more rapidly about an extremum. It is therefore clear
that the SAF does indeed provide some practical advantages
to the MF when the scale of the source profile is unknown.

V. SIMULATIONS

We apply the optimal filter theory derived in the preceding
section to the detection of compact objects from simulated
data. A very simple detection strategy is adopted. The devel-
opment of more sophisticated detection strategies, a rigorous
quantification of the performance of the resulting object de-
tection and the application to real data is the subject of future
work. The motivation here is to demonstrate the theory with
a very simple example only.

A. Optimal filters

We construct examples of optimal filters defined on the
sphere using the filter expressions derived in Section IV. Our
ultimate aim is to apply filters to detect compact objects
embedded in CMB data, such as the recent observations
made by the NASA Wilkinson Microwave Anisotropy Probe
(WMAP) [1]. Optimal filters are therefore constructed here
in an analogous simulated setting. The CMB power spectrum
that best fits the WMAP data is used to model the stochastic
background process, with a Gaussian beam of full-width-half-
maximum (FWHM) of13′ applied. Isotropic white noise of
constant variance0.05(mK)2 is added to reflect the noise
in WMAP observations. We consider the construction in
this setting of the MF and SAF for the directional butterfly
template illustrated in Figure 2 (a) (the butterfly templateis
defined by the partial derivative in one direction only of a two-
dimensional Gaussian on the sphere; see [18] for a definition).2

2The step of the butterfly template may be used to model the line-like
discontinuity of Kaiser-Stebbins type cosmic string signatures [3].

The resultant MF and SAF are illustrated in Figure 2 (b)
and (c) respectively. Optimal filters are constructed here in
the context ofL2-norm preserving dilations,i.e. for p = 2.
Furthermore, in practice the template profiles are assumed to
be band-limited atℓmax, in which case all expressions and
summations involvingℓ are computed up toℓmax only. In these
experiments we chooseℓmax = 256 since this is a more than
adequate band-limit to ensure that all structure of the butterfly
profile is considered.

A Fortran 90 package calledS2FIL3 (S2 FILtering) has
been implemented to compute the equations describing the MF
and SAF defined by Theorem 1 and Theorem 2 respectively.
This package makes use of ourFastCSWT3 package [18]
to perform fast filtering on the sphere. Additional numerical
considerations must be taken into account when implementing
the filter equations since they often involve dividing the
template spherical harmonics by the power spectrum of the
background process, which becomes problematic when taking
the ratio of two very small numbers. These considerations are
discussed in detail in [19].

B. Object detection

To demonstrate optimal filter theory applied to object de-
tection a simple example is considered. Although the optimal
filters we have derived may be used to detect objects of
unknown size, in this simple demonstration we consider only
a butterfly template of a fixed, known size. Since the template
size is known only the MF on the sphere is applied. The MF is
applied to simulations of the CMB with artificially embedded
butterfly sources, in order to recover the positions, orientations
and amplitudes of the sources. Firstly, the simulation pipeline
used to construct this data is described. The object detection
procedure is then described briefly, before the results obtained
from applying this procedure to simulated data are presented.

1) Simulation pipeline:To test the application of optimal
filters on the sphere to object detection, simulated data where
the ground truth is known is analysed. We have implemented
a Fortran 90 package calledCOMB3 (COmpact eMBedded
object simulations) to facilitate such simulations.COMB allows
the user to embed compact functions on the sphere within
a stochastic background process. The parameters of the em-
bedded objects are uniformly sampled from some prescribed
interval, whereas the background process is specified by its
power spectrum. Functionality is also included to incorporate
noise and beams.

An example of maps simulated usingCOMB is shown in the
first four panels of Figure 3. In this example the background
process is described by the best-fit WMAP CMB power
spectrum, a beam of13′ FWHM is applied and isotropic
white noise of variance 0.05(mK)2 is added (the same setting
in which the optimal filters discussed in Section V-A were
constructed). A map of simulated butterfly sources is shown
in Figure 3 (c) and is embedded in the resultant simulated

3The S2FIL, FastCSWT and COMB packages are available for down-
load from http://www.mrao.cam.ac.uk/∼jdm57/. These packages
require theHEALPix (http://healpix.jpl.nasa.gov/) [20] and
FFTW (http://www.fftw.org/) libraries.

http://www.mrao.cam.ac.uk/~jdm57/
http://healpix.jpl.nasa.gov/
http://www.fftw.org/
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(a) Butterfly template (b) MF (c) SAF

Fig. 2. Optimal filters for the butterfly template constructed on the sphere in the setting consistent with WMAP observations (see text). (Functions/data
defined on the sphere are illustrated here and subsequently using the Mollweide projection.)

map shown in Figure 3 (d). In this situation the signal-to-
noise ratio (SNR) of an embedded object is defined by the
ratio of the peak amplitude of the template relative to the
root-mean-squared (RMS) value of the CMB background. For
the butterfly templates it can be shown thatSNR ≈ 0.4A,
whereA is the amplitude of the object (note that the butterfly
template definition is normalised, with a peak amplitude of
0.13mK forA = 1.0). In the example illustrated in Figure 3 all
objects have a constant amplitude ofA = 1.0, corresponding
to SNR = 0.40. Moreover, in this simulation all embedded
objects have the same orientation (γ = 0◦); that is, the
orientation of the objects are aligned to point to the north
pole. This is a useful test case since it reduces the complexity
of the subsequent object detection to that of a symmetric
template profile, while still adopting the more general optimal
filter definitions. In the following object detection we also
consider simulations where the orientations of the objects
vary, however object orientations are only allowed to lie on
a discrete, uniformly sampled grid withNγ = 5 samples. By
restricting the allowable orientations to a grid it is necessary
only to compute the filtered field for a small number of
orientations. Obviously in practice object orientations will not
lie on a grid, however in this case one may simply compute
the filtered field for a higher orientation resolution (or onemay
use steerable filters4 to extract the orientation corresponding to
the most dominant feature, thereby effectively considering all
continuous orientations; this is the topic of future work).An
orientational resolution ofNγ = 5 is sufficient for the simple
demonstration presented here.

2) Detection procedure:For the purpose of this demon-
stration we perform only a naive detection strategy based on
thresholding the filtered field. Firstly the initial map is filtered
using the MF to enhance the contribution due to the embedded
sources relative to the background. The local maxima of the
filtered field that lie above a certain threshold are used to define
detected objects. The filtered field is thresholded at a level
determined by a constant (Nσ) times the standard deviation of
the map. Typically anNσ of 2.5 or 3.0 is used. The magnitude
and position of each local maximum that remains in the
thresholded field is used to compute the parameters of detected
sources. This object detection procedure is implemented inthe
S2FIL package.

This detection algorithm is applied to the simulated data

4Steerable template functions yield steerable optimal filters on the sphere
since the filter equations do not mixm structure. See [17] for a discussion
of steerable filters on the sphere.

TABLE I

OBJECT DETECTION PERFORMANCE FORγ = 0◦

SNR Nσ Detections Number of sources
Correct False

0.40 3.0 10 0 10
0.40 2.5 10 1 10
0.25 3.0 6 0 10
0.25 2.5 8 2 10
0.20 3.0 5 0 10
0.20 2.5 7 6 10

illustrated in Figure 3. The filtered field is displayed in
Figure 3 (e) and the objects recovered from the local maxima
of the filtered field are shown in Figure 3 (f). Notice that
for this simulation atSNR = 0.40 all embedded objects are
recovered accurately and no false detections are made. We
now consider more difficult object detection problems.

3) Results: The example illustrated in Figure 3 demon-
strates object detection on the sphere for a relatively easycase.
By considering more difficult detection situations we examine
the limits of the simple detection algorithm described above.
Firstly, only a single fixed orientation is considered, before the
orientation of embedded objects is allowed to vary.

For objects of known orientation we examine the effect of
reducing the SNR of the embedded sources on the number
of successful and false detections. We also experiment with
thresholding levelsNσ = 3.0 and Nσ = 2.5. The results of
these tests are given in Table I. To ensure minimal false
detections are made one should threshold atNσ = 3.0,
however to improve the completeness of positive detections
one may useNσ = 2.5, at the expense of a small number of
false detections.

We now consider objects with an unknown orientation
laying on a uniform grid of resolutionNγ = 5. Allowing
orientations to vary introduces an extra degree-of-freedom and
thus makes the object detection problem more difficult. At
SNR = 0.40, for thresholding levelsNσ = 3.0 andNσ = 2.5,
of ten embedded objects we recover six and eight objects
correctly and make zero and one false detection respectively.
At SNR = 0.25 we recover five objects correctly and make
one false detection forNσ = 3.0 (Nσ = 2.5 is not appropriate
for this low SNR). Finally, we demonstrate in this setting
the recovery of objects at a range of different amplitudes.
The actual and recovered object parameters are described in
Table II and may be observed in Figure 4. One sigma errors
on the amplitude estimates are calculated from the variance
of the filtered field at the source position (as discussed in
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(a) CMB (b) White noise (c) Embedded objects

(d) Simulated sky with objects embedded (e) Filtered field (f) Recovered objects

Fig. 3. Embedded object simulation and recovered objects. The CMB background shown in panel (a) is simulated in accordance with the CMB power
spectrum consistent with current observations, noise of variance 0.05(mK)2 (panel (b)) is added and a beam of13′ FWHM is applied. The simulated butterfly
templates (SNR = 0.40) shown in panel (c) are embedded in the the resultant simulated map shown in panel (d). The MF filtered field of the simulatedsky
is shown in panel (e). The local maxima in the filtered field aredetected by thresholding atNσ = 3.0 to recover the compact objects depicted in panel (f).
In this example all embedded objects are detected and no false detections are made. (All maps shown here and subsequentlyare displayed in units of mK.)

Section III-C).
It is important to note that the detection strategies demon-

strated here are extremely naive and are presented merely to
demonstrate the new filter framework derived on the sphere.
A more rigorous approach is to perform more sophisticated
detection classification schemes, such as the Neyman-Pearson
test. Moreover, for certain classes of template functions which
are steerable, one may use steerable filters to extract a single
orientation over the domain of all continuous orientations. This
is expected to improve considerably the performance of object
detection in cases of varying source orientation, to the extent
that one would expect the performance to match that of cases
where the source orientation is known. These extensions are
the focus of future work.

VI. CONCLUDING REMARKS

We have extended the concept of optimal filtering to a
spherical manifold. Expressions for the spherical MF and SAF
have been derived for general non-azimuthally symmetric tem-
plate objects. For the special case of an azimuthally symmetric
template we have shown that the general results derived herein
reduce to the forms derived directly in this setting. Moreover,
we have also shown that in the flat approximation the optimal
filters derived on the sphere reduce to the corresponding
optimal filter definitions defined on the plane.

The focus of this paper is to derive optimal filter theory
on the sphere, nevertheless we have also demonstrated the
application of optimal filters to simple object detection. We
have generated simulations on the sphere of objects embedded
in a stochastic background process. Using this simulated data
we have tested a simple object detection algorithm based
on thresholding the optimal filtered field. This simple object
detection strategy has been demonstrated to perform well, even
at low SNR.

TABLE II

ACTUAL AND RECOVERED OBJECT PARAMETERS

Source Object parameters
Amplitude Euler angles

1 A = 1.48 (α, β, γ) = (15.0◦, 108.3◦, 72.0◦)

Â = 1.66 ± 0.20 (α̂, β̂, γ̂) = (14.7◦, 107.9◦, 72.0◦)
2 A = 1.06 (α, β, γ) = (29.2◦, 75.4◦, 0.0◦)

Â = 1.26 ± 0.20 (α̂, β̂, γ̂) = (30.9◦, 75.6◦, 0.0◦)
3 A = 1.43 (α, β, γ) = (78.4◦, 0.7◦, 288.0◦)

Not recovered
4 A = 1.19 (α, β, γ) = (94.4◦, 109.1◦, 216.0◦)

Â = 1.34 ± 0.20 (α̂, β̂, γ̂) = (92.6◦, 109.3◦, 216.0◦)
5 A = 0.81 (α, β, γ) = (107.8◦, 99.6◦, 144.0◦)

Not recovered
6 A = 1.13 (α, β, γ) = (136.0◦, 133.9◦, 144.0◦)

Not recovered
7 A = 0.93 (α, β, γ) = (172.3◦, 82.7◦, 144.0◦)

Â = 1.25 ± 0.20 (α̂, β̂, γ̂) = (171.9◦, 81.2◦, 144.0◦)
8 A = 0.95 (α, β, γ) = (241.2◦, 137.2◦, 72.0◦)

Â = 1.02 ± 0.20 (α̂, β̂, γ̂) = (242.8◦, 138.0◦, 72.0◦)
9 A = 1.00 (α, β, γ) = (317.7◦, 172.3◦, 72.0◦)

Â = 1.76 ± 0.20 (α̂, β̂, γ̂) = (287.0◦, 180.0◦, 72.0◦)
10 A = 1.16 (α, β, γ) = (321.7◦, 50.7◦, 144.0◦)

Â = 1.08 ± 0.20 (α̂, β̂, γ̂) = (321.4◦, 52.5◦, 144.0◦)
11 Not present

Â = 0.96 ± 0.20 (α̂, β̂, γ̂) = (47.0◦, 67.9◦, 72.0◦)

In the future we intend to develop more sophisticated
detection classification schemes using the optimal filtered
field. Moreover, for steerable template profiles the use of
steerable optimal filters is expected to improve considerably
the performance of object detection in cases of varying source
orientation. We intend to then apply the resulting object detec-
tion algorithms to real CMB data to search for cosmic string
signatures, a theoretically postulated but as yet unobserved
phenomenon [3].
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(a) Simulated sky with objects embedded (b) Actual objects (c) Recovered objects

Fig. 4. Embedded object simulation and recovered objects for a range of SNRs,Nγ = 5 andNσ = 2.5. See Table II for the actual and recovered parameters
of the embedded sources.

APPENDIX I
PROOF OFDILATION DEFINITION (DEFINITION 1)

We prove that the definition of anLp-norm preserving
spherical dilation does indeed preserve theLp-norm. The
result for the casep = 2 is given by [16] and an explicit
proof is given by [17]. For all practical purposes only the
casesp = {1, 2,∞} are considered, nevertheless we prove
the result for all positive integerp, taking a different ap-
proach to that of [17]. First consider the case of positive
integer p < ∞. One requires‖Dp(R)f‖p = ‖f‖p, or
equivalently I1 = I2, where I1 =

∫

S2 |f(θ, φ)|
p

dΩ(θ, φ)

and I2 =
∫

S2 | [λ(R, θ)]1/p f(θ1/R, φ)|p dΩ(θ, φ). By making
a change of variablesI2 may be rewritten as

I2 =

∫

S2

|f(θ, φ)|p|λ(R, θR)| sin θR R
cos2(θR/2)

cos2(θ/2)
dθ dφ .

Thus, for I1 = I2 it is apparent, after a little algebra, that
the cocycle required to preserve theLp-norm (for positive
integerp < ∞) is of the form given by (7). Now consider the
L∞-norm case, corresponding to the case where no cocycle
term is applied. When no cocycle is applied the function is
dilated only and is not scaled, hence the maximum absolute
value of the function over its domain remains unaltered.
Consequently, the infinity norm is also preserved.

APPENDIX II
PROOF OFMF THEOREM (THEOREM 1)

We solve the MF optimisation problem by minimising the
Lagrangian

L =
∑

ℓm

Cℓ

∣

∣(ΨR,p)ℓm

∣

∣

2
+ µ1 Re

[

∑

ℓm

τℓm (ΨR,p)
∗

ℓm − 1

]

+ µ2 Im

[

∑

ℓm

τℓm (ΨR,p)
∗

ℓm

]

,

whereµ1 andµ2 are Lagrange multipliers. Notice that the real
and imaginary parts of the constraint are made explicit. To
solve this problem the filter and template spherical harmonic
coefficients are represented in terms of their real and imaginary
parts: let(ΨR,p)ℓm = aℓm + ibℓm andτℓm = cℓm + idℓm. To
minimise the Lagrangian one requires

∂L

∂aℓm
= 2Cℓ aℓm + µ1cℓm + µ2dℓm = 0

and
∂L

∂bℓm
= 2Cℓ bℓm + µ1dℓm − µ2cℓm = 0 ,

plus the original constraints specified by (19) (one for the
real and one for the imaginary component). Solving these
equations simultaneously, one findsµ1 = −2a−1 andµ2 = 0
for the Lagrange multipliers andaℓm = a−1C−1

ℓ cℓm and
bℓm = a−1C−1

ℓ dℓm for the real and imaginary parts of the
filter spherical harmonic coefficients, wherea is defined by
(21). Thus, the spherical harmonic coefficients of the optimal
MF on the sphere are given by(ΨR,p)ℓm = a−1C−1

ℓ τℓm.
The extremum found is checked to ensure it is a minimum.

The second derivatives of the Lagrangian areLaa = 2Cℓ,
Lbb = 2Cℓ and Lab = 0, where the subscript notation for
partial derivatives is used. NowL2

ab < LaaLbb and both
Laa > 0 and Lbb > 0, hence a minimum has indeed been
found.

APPENDIX III
PROOF OFSAF THEOREM (THEOREM 2)

We solve the SAF optimisation problem by minimising the
Lagrangian

L =
∑

ℓm

Cℓ

∣

∣(ΨR0,p)ℓm

∣

∣

2
+ µ1 Re

[

∑

ℓm

τℓm (ΨR0,p)
∗

ℓm − 1

]

+ µ2 Im

[

∑

ℓm

τℓm (ΨR0,p)
∗

ℓm

]

+ µ3 Re

[

∑

ℓm

(ΨR0,p)
∗

ℓm(Aℓpτℓm − Bℓmτℓ−1,m)

]

+ µ4 Im

[

∑

ℓm

(ΨR0,p)
∗

ℓm(Aℓpτℓm − Bℓmτℓ−1,m)

]

,

where µ1, µ2, µ3 and µ4 are Lagrange multipliers. No-
tice that the real and imaginary parts of each constraint
are again made explicit. To solve this problem the fil-
ter and template spherical harmonic coefficients are rep-
resented in terms of their real and imaginary parts: let
(ΨR0,p)ℓm = aℓm + ibℓm andτℓm = cℓm + idℓm. To minimise
the Lagrangian one requires

∂L

∂aℓm
= 2Cℓaℓm + µ1cℓm + µ2dℓm

+ µ3(Aℓpcℓm − Bℓmcℓ−1,m)

+ µ4(Aℓpdℓm − Bℓmdℓ−1,m) = 0 (33)
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and

∂L

∂bℓm
=2Cℓbℓm + µ1dℓm − µ2cℓm

+ µ3(Aℓpdℓm − Bℓmdℓ−1,m)

− µ4(Aℓpcℓm − Bℓmcℓ−1,m) = 0 , (34)

plus the original constraints specified by (25) and (26). Using
(33) and (34) it is possible to eliminateaℓm andbℓm from the
original constraints, yielding a system of linear equations for
the Lagrange multipliers that depend on the template spherical
harmonic coefficients only. Solving this system one finds
[µ1, µ2, µ3, µ4] = 2

∆ [−c, 0, Re(b),−Im(b)] for the Lagrange
multipliers. Substituting the Lagrange multipliers into (33) and
(34) one obtains the following expressions for the real and
imaginary parts of the filter spherical harmonic coefficients:

aℓm = (∆Cℓ)
−1

[

c cℓm − Re(b)(Aℓpcℓm − Bℓmcℓ−1,m)

+ Im(b)(Aℓpdℓm − Bℓmdℓ−1,m)
]

and

bℓm = (∆Cℓ)
−1

[

c dℓm − Re(b)(Aℓpdℓm − Bℓmdℓ−1,m)

− Im(b)(Aℓpcℓm − Bℓmcℓ−1,m)
]

.

Thus, combining the real and imaginary parts, the spherical
harmonic coefficients of the optimal SAF are given by (27).

The extremum found is checked to ensure it is a minimum.
The second derivatives of the Lagrangian areLaa = 2Cℓ,
Lbb = 2Cℓ and Lab = 0, where the subscript notation for
partial derivatives is used. NowL2

ab < LaaLbb and both
Laa > 0 and Lbb > 0, hence a minimum has indeed been
found.
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