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ABSTRACT: Inflation creates both scalar (density) and tensor (gravity

wave) metric perturbations. We find that the tensor mode contribution to

the CMB anisotropy on large-angular scales can only exceed that of the scalar

mode in models where the spectrum of perturbations deviates significantly

from scale invariance (e.g., extended and power-law inflation models and

extreme versions of chaotic inflation). If the tensor mode dominates at large-

angular scales, then the value of ∆T/T predicted on 1◦ is less than if the

scalar mode dominates, and, for cold dark matter models, b > 1 can be made

consistent with the COBE DMR results.
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The recent COBE DMR [1] measurements of large-angular-scale anisotropy

in the cosmic microwave background (CMB) provide important experimental

support for the hot big bang model. Perhaps the most striking conclusion

to be drawn from the COBE DMR data is that it is consistent with a scale-

invariant spectrum of primordial density (scalar) perturbations extending

well outside the horizon at the epoch of last scattering.

A scale-invariant spectrum is consistent with inflation, which predicts

perturbations generated by quantum fluctuations [2], and also with models

that generate perturbations by classical effects, such as theories with cosmic

strings, textures, global monopoles, and non-topological excitations. Infla-

tion also produces a spectrum of gravity waves (tensor metric fluctuations)

with wavelengths extending beyond the horizon, providing a possible means

for distinguishing it from the other scenarios. Recently it was even spec-

ulated that the anisotropy detected by the COBE DMR might be largely

due to inflation-produced tensor rather than scalar perturbations [3]. In this

Letter, we show that tensor dominance of the CMB quadrupole anisotropy

is indeed possible for a class of inflationary models. We find that the ratio

of tensor to scalar contributions is directly tied to the rate of inflationary

expansion and the “tilt” of the spectrum of density perturbations away from

scale invariance. Models that permit tensor dominance include extended in-

flation, power-law inflation and extreme versions of chaotic inflation. While

the COBE DMR results alone cannot distinguish tensor from scalar pertur-

bations, we show how additional measurements on small-angular scales may

distinguish the two. We also discuss the implications for large-scale structure.

CMB temperature anisotropies on large-angular scales (>∼ 1◦) are pro-

duced by metric fluctuations through the Sachs-Wolfe effect [4]. These tem-
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perature fluctuations can be decomposed into spherical-harmonic amplitudes;

for scale-invariant scalar-mode fluctuations, the quadrupole is given by [5]

S ≡
〈

a2
2

〉

S
≡
〈

m=2
∑

m=−2

|a2m|2
〉

=
1

60π

H4

φ̇2
=

128π2

45

V 3

V ′2m6
P l

, (1)

where H is the Hubble parameter, φ is the scalar field that rolls during

inflation, V (φ) is its potential, mP l = 1.22 × 1019 GeV is the Planck mass,

and the final expression follows from the slow-roll equation of motion, 3Hφ̇ =

−V ′. The rhs is to be evaluated N ∼ 60 e-foldings before the end of inflation,

when fluctuations on CMB length scales crossed outside the horizon [6]. The

corresponding formula for tensor fluctuations is [7]:

T ≡
〈

a2
2

〉

T
= 7.74

V

mPl
4
, (2)

The ratio of tensor to scalar quadrupole anisotropies is, therefore,

T

S
≡ 〈a2

2〉T
〈a2

2〉S
≈ 0.28

(

V ′mPl

V

)2 ∣
∣

∣

∣

∣

N∼60

. (3)

Note that the coefficients in Eqs. (1, 2) were derived assuming strict scale

invariance. Since we will find below that models with T/S >∼ 1 deviate from

scale invariance, we have numerically computed the coefficients in Eqs. (1, 2)

for “tilted” spectra and find that the numerical coefficient in Eq. (3) changes

very little (<∼ 10%) for the tilts consistent with the COBE DMR results.

Extended [8] and power-law [9] inflation models can be described in terms of

a potential of the form, V (φ) = V0 exp(−βφ/mPl), where β is constant or

slowly time-dependent. In extended inflation φ is related to a field that is

coupled to the scalar curvature (e.g., a dilaton or Brans-Dicke field), which

leads to a modification of Einstein gravity. The modified gravity action can

be re-expressed via a Weyl transformation as the usual Einstein action plus
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a minimally coupled scalar field (φ) with an exponential potential. In the

simplest example of extended inflation [8], β =
√

64π/(2ω + 3), where ω is

the Brans-Dicke parameter. For an exponential potential, Eq. (3) implies:

T

S
≈ 0.28β2 =

56

2ω + 3
(4)

The ratio T/S >∼ 1 for ω <∼ 26 (β >∼ 1.9). Interestingly, ω <∼ 26 is almost

precisely what is required to avoid unacceptable inhomogeneities from big

bubbles in extended inflation [10]. (Though ω <∼ 26 is inconsistent with

solar-system limits for Brans-Dicke theory, these constraints are evaded by

giving the Brans-Dicke field a mass.)

Chaotic inflation models [11] typically invoke a potential of the form, V (φ) =

λ φp, where φ ≫ mPl initially, and rolls to φ = 0. The ratio of tensor to

scalar anisotropies can be expressed in terms of φN , the value of the scalar

field N ∼ 60 e-foldings before the end of inflation. Using the relation,

N(φ) =
∫ tN

tend

Hdt =
8π

mPl
2

∫ φN

φend

V

V ′
dφ =

4π

p

φ2

mPl
2
− p

12
, (5)

where φ2
end = p2mPl

2/48π, we find that [12]:

T

S
≈ p

17.4

[

1 +
p

720

]

−1

, (6)

where we have set N = 60. For the chaotic-inflation models usually discussed,

p = 2 and 4, the scalar mode dominates: T/S = 0.11 and 0.23; however, for

extreme models, p >∼ 18, the tensor mode could dominate.

New inflation models [13] entail slow-roll from φ ≈ 0 to φ = σ down flat

potentials of the Coleman-Weinberg form, V (φ) = Bσ4/2+Bφ4 [ln(φ2/σ2)−
1
2
], where B ≃ 10−15 for density perturbations of an acceptable size. In new

inflation T/S also depends upon φN ; paralleling the previous analysis,

N(φ) =
8π

mPl
2

∫ φN

φend

V

V ′
dφ ≈ π

2| ln(φ2
N/σ2)|

σ4

φ2
NmPl

2
; (7)
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T

S
≈ 3.2 × 10−4

| ln(φ2
N/σ2)|

(

σ

mPl

)4

. (8)

Scalar dominates tensor for σ <∼ 10mPl, and, naively, it would appear that

T/S can be made greater than unity for σ >∼ 10mPl. However, one finds

that φ60 is very close to σ for σ >∼ 10mPl, violating the implicit assumption,

φ60 ≪ σ. That is, for σ ≫ mP l, φ rolls down the steeper (harmonic) part of

the potential close to the minimum, so that V (φ) ≃ 4Bσ2(φ− σ)2, just as in

chaotic inflation with p = 2. In this case, the tensor mode does not dominate

(T/S ≃ 0.11) [14].

We will now show that T/S cannot be arbitrarily large by deriving model-

independent relations between T/S, the rate of inflation, and the tilt of the

density perturbation spectrum away from scale-invariance [16]. The ratio of

tensor to scalar perturbations is controlled by the steepness of the potential,

V ′mPl/V ; cf. Eq. (3). During inflation, this quantity also determines the

ratio of the kinetic to potential energy of the scalar field [15], 1
2
φ̇2/V ≃

(V ′mPl/V )2/48π, which in turn determines the effective equation of state

(p = γρ) and the evolution of the cosmic-scale factor (R ∝ tm): γ = [1
2
φ̇2 −

V ]/[1
2
φ̇2 + V ] and m = 2/3(1 + γ) (during inflation γ and m can vary). It

is simple to show that the tensor perturbations are characterized by a power

spectrum |δT
k |2 ∝ kn−1 and the scalar (density) perturbations by |δS

k |2 ∝ kn,

where n = (m−3)/(m−1). In the limit of exponential inflation, 1
2
φ̇2/V → 0,

m → ∞, the tensor and scalar perturbations are scale invariant (n = 1) [17].

The relationships between 1
2
φ̇2/V and m, m and n, together with Eq.

(3), allow us to express the expansion-rate index m and the power-spectrum

index n (for N ∼ 60) in terms of T/S:

m = 14
(

S

T

)

+1/3 ≃ 14
(

S

T

)

; n = 1− 3 (T/S)

21 − (T/S)
≃ 1− 1

7

(

T

S

)

. (9)
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(We remind the reader that the numerical coefficients here depend upon

that in Eq. (3), which depends weakly on the ratio T/S for n >∼ 0.5.) If the

tensor mode is to dominate—i.e., T/S >∼ 1—then m must be less than about

14 and n must be less than about 0.85. The converse is also true: In models

where the expansion is exponential and the spectrum is scale invariant, the

ratio of tensor to scalar is very small. From the fact that inflation must be

“superluminal” (m > 1), we can use Eq. (9) to derive an approximate upper

bound, T/S <∼ 20 [18]. However, the COBE DMR [1] bound on the power-

spectrum index n, n = 1.1 ± 0.6, which implies that n >∼ 0.5 when T/S >∼ 1,

leads to the stronger limit, T/S <∼ 3 (and m >∼ 5). (Doubtless, there are yet

stronger bounds on n based upon structure formation).

We can now apply these results for the specific models for which we

found T/S >∼ 1, extended and chaotic inflation. In extended (or power-law)

inflation, the power spectrum is tilted according to n ≃ (2ω−9)/(2ω−1) and

m = (2ω + 3)/4. Using the COBE DMR limit, n >∼ 0.5, we find a plausible

range, 26 >∼ ω >∼ 9. For chaotic inflation, n ≈ 1 − p/120 and m ≈ 240/p,

leading to a somewhat extreme range, 60 >∼ p >∼ 18.

Tensor contributions have significant implications for CMB measurements.

First, the COBE DMR results alone do not distinguish scalar from tensor con-

tributions to the anisotropy; see Fig. 1. However, the COBE DMR results,

combined with measurements on smaller-angular scales, might distinguish

the two. The COBE DMR measurement implies 〈a2
2〉 = (4.53± 2.5)× 10−10,

where we should keep in mind that this is a measurement of 〈a2
2〉T +〈a2

2〉S. Go-

ing to smaller-angular scales, the scalar contribution to the CMB anisotropy

grows relative to the tensor, but the net contribution to small-angle measure-

ments is diminished compared to no tensor mode at all; see Fig. 2. (We are

5



assuming that no late re-ionization washes out fluctuations on small-angular

scales.) Hence, comparing large- and small-angle anisotropy measurements

can, in principle, separate the scalar and tensor contributions. (Another

possibility for separating the two is to measure the polarization of the CMB

anisotropy as the tensor modes lead to a slight polarization [19].)

The tensor mode can seriously affect the interpretation of CMB measure-

ments for large-scale structure, regardless of the form of dark matter. As

an example, the best fit cold dark-matter (CDM) model to the COBE DMR

results assuming T/S ≪ 1 has a bias factor b ≃ 1. (The bias factor b ≡ 1/σ8,

where σ8 is the rms mass fluctuation on the scale 8h−1 Mpc.) If, however,

the tensor contribution to the CMB quadrupole is significant, then the ex-

trapolated density perturbation amplitude at 8h−1 Mpc is reduced, and the

best-fit CDM model has b > 1; see Fig. 2. Two related effects combine to

increase b: the power spectrum is tilted (less power on small scales for fixed

quadrupole anisotropy), and scalar perturbations only account for a fraction

of the quadrupole anisotropy. We find, very roughly,

b ≃ 100(1−n)/2
√

1 + T/S ≃ 10(T/S)/7
√

1 + T/S, (10)

where “100” is the ratio of the scale relevant to the quadrupole anisotropy,

λ ∼ 1000h−1 Mpc, to the scale 8h−1 Mpc. For T/S = 0.53, 1.4, 2.5, and 3.3,

the bias factor b = 1.4, 2.4, 4.6, and 7.8 (and n = 0.92, 0.78, 0.59 and 0.44).

While these numbers should only be taken as rough estimates, the trend is

clear: larger T/S permits larger bias.

In sum, if small-angular-scale measurements find ∆T/T significantly lower

than that extrapolated from the COBE DMR quadrupole (see e.g., [20]),

there are now at least two possible explanations consistent with inflation.

Either re-ionization has washed out the small-angle fluctuations, or tensor

6



fluctuations contribute significantly to the COBE DMR observations. In the

latter case, what can CMB studies tell us about inflation? Our analysis sug-

gests a remarkable conclusion—COBE DMR combined with small-angular-

scale measurements can directly relate the key cosmological parameters that

govern large-scale structure, such as the bias factor b in CDM models and

the power-spectrum index n, to the microphysical parameters that control

inflation.
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FIGURE CAPTIONS

1. Temperature auto-correlation function (from the Sachs-Wolfe effect) for

tensor and scalar modes each normalized to the COBE DMR quadrupole

anisotropy using a scale-invariant spectrum and the COBE DMR window

function [1]. Tensor and scalar modes are distinguishable at small angles but

COBE DMR (data superimposed) is unable to resolve the difference. CDM

predictions [21] for the scalar contribution to C(0) (assuming h = 0.5 and

Ωb = 0.1) is C(0) ≈ 980 for b = 1 and C(0) ≈ 460 for b = 1.5.

2. Constraints to the CMB anisotropy from various experiments and pre-

dictions for the South Pole anisotropy experiment on 1◦ for CDM models

(Ω = 1, ΩB = 0.1, h = 0.5), using the filter function from [22]: Open circle,

CDM with b = 1, the best-fit CDM model to the COBE DMR if T/S ≪ 1;

Open triangle, CDM with b = 2, consistent with the COBE DMR only if

T/S >∼ 1; Closed triangle, upper bound if COBE DMR were detecting the

Sachs-Wolfe effect from pure tensor mode (T/S ≫ 1).
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