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Abstract

We consider charged boson stars and study their effect on the structure of the

vacuum. For very compact particle like “stars”, with constituent mass m∗ close to

the Planck mass mP l, i.e. m2
∗ = O(αm2

P l), we argue that there is a limiting total

electric charge Zc, which, primarily, is due to the formation of a pion condensate

(Zc ≃ 0.5α−1e, where α is the fine structure constant and e is the electric charge

of the positron). If the charge of the “star” is larger than Zc we find numerical

evidence for a complete screening indicating a limiting charge for a very compact

object. There is also a less efficient competing charge screening mechanism due to

spontaneous electron-positron pair creation in which case Zc ≃ α−1e. Astrophysical

and cosmological abundances of charged compact boson stars are briefly discussed

in terms of dark matter.
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1 Introduction

Compact objects play an important role in current astrophysical research. White dwarfs

and neutron stars are examples of objects which involve physics on scales down to the one

of nuclei and even of elementary particles. The recent developments in particle physics and

cosmology suggest that scalar fields may have played an important role in the evolution of

the early universe, for instance in primordial phase transitions, and that they may make

up part of the dark matter (for a recent account see e.g. Ref.[1]). These facts motivated

the study of gravitational equilibrium solutions of scalar fields, in particular for massive

complex fields, which form so-called boson stars [2]. Recently, compact objects made

of charged bosons have been considered and static spherically symmetric solutions were

found [3]. For some charged boson star models their radius is extremely small, in which

case a large electric charge can substantially modify the structure of the vacuum.

In the presence of extended heavy nuclei the perturbative vacuum of QED is unstable

if the number of charges Z is larger than a certain critical value Zc. For Z > Zc there

is spontaneous production of electron-positron pairs [4] . For a positively (negatively)

supercritically charged and sufficiently compact object, as compared e.g. with the Comp-

ton wavelength of the electron, pair-production is continued until the created electrons

(positrons) shield the nucleus to an effective charge Zeff ≈ Zc accompanied by the emis-

sion of positrons (electrons) (for a review and detailed references on the subject see e.g.

[5]). For a point-like charge it is, of course, well-known that Zα > 1 makes the Dirac

Hamiltonian non-selfadjoint and the energy eigenvalues become complex. For extended

atomic nuclei the limiting charge has been estimated to be close to Zc = 173. It has been

argued that if the size of the extended object tends to zero Zc approaches 1/α [6].

For bosons and the Klein-Gordon equation similar conclusions hold, however with a

limiting value Zα ≥ 0.5, the equality being valid for the point-limit case (see also in

this context [7]). As the charge of the source becomes larger than the critical value Zc

pairs of particles antiparticles (pions) will be produced. The antiparticles (assumed to

have the same sign for their charge as the source) will be emitted at infinity, whereas the
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particles will be tightly bound to the nucleus. Due to Bose statistics a condensate with

arbitrary many particles could be formed. However, one also has to take into account the

mutual repulsive Coulomb interaction between the particles in the condensate. To add

new particles cost a certain amount of energy and therefore limits their number in the

condensate, which will screen the overcritical charge of the source [8].

In the present paper we confront these ideas about the existence of a limiting charge

due to the instability of the vacuum to the charged boson stars. This might also be

relevant for the stability of the charged boson stars, which has up to now been only

investigated in terms of classical concepts [9]. A basic assumption is the existence of

stable and superheavy charged scalar particles with mass m2
∗ = O(αm2

P l), which could

naturally appear owing to quantum fluctuations in the very early phases of the universe,

when its density was close to ρ ∼ c5/(G2
N h̄) = m4

P l [10] (in natural units h̄ = c = 1

which we will use from now on). It has been pointed out that the existence of very heavy

particles, called maximons in Ref. [10], would unavoidably lead to strong violation of

thermodynamic equilibrium in the very early universe [11]. A fact which is of importance

for the generation of a baryon asymmetry [11]. If such fundamental particles exist, they

may form new compact structures, i.e. boson stars.

We will discuss two limiting cases of the boson stars. In the case of a compact boson

star, as compared to the Compton wavelength of the electron, these “stars” may have

a typical size comparable to the Planck length (!) and a mass of the order of Planck

mass or more. We will argue that these very compact objects , which we shall still call

boson “stars”, have a limiting total charge close to 0.5/α. The time-scale τ of charge

screening due to the instability of the vacuum can be estimated to be of the same order

as for supercritical atomic nuclei, i.e. τ ≤ O(10−19) s [5]. Expressed in terms of the

parameter m∗ one may say m∗ >> (m∗)cr, where (m∗)cr = mP l

√
α. In the other limiting

case m∗ will be very close to (m∗)cr. Under such a condition the star might even have a

macroscopic size and the screening mechanism discussed above will be no longer efficient.

These considerations involve physics both at the Planck scale as well as at the scale of

the electron or pion mass. The effective fine-structure constant will then vary over this
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range of energy. This will, however, not change the qualitative picture and thus we will

neglect such quantum effects.

In the effective-potential approach to quantum resonances in stationary geometries

[12], like the Kerr-Newman geometry, the crossing of positive- and negative- root classical

solutions of the equations of motion for a test particle with mass m signals particle-

antiparticle production through the Klein process [13]. The gap between particle and

antiparticles states, as described by the Dirac equation, is narrowed in the gravitational

field of a collapsed star, such as neutron stars. When the star collapses to a black hole,

the gap shrinks to zero at the Schwarzschild radius and the vacuum becomes unstable due

to quantum tunneling [14] in analogy with the particle production mechanism in strong

electric fields [15]. Similarly one is led to a limiting charge-to-mass ratio for a charged

black-hole [14]. For the extended charged boson stars, which we consider here, the vacuum

instability has a different character. In the effective-potential language we will, e.g., see

that classical positive- and negative-root solutions will cross without a tunneling barrier

unless the mass scale m is much less than m∗. Since the effective-potential language has

been considered in quite a detail in this context, we will present some of these issues in

the present paper.

It has been suggested that dark matter [16] may be composed of charged massive

particles, so called CHAMPs [17]. If the mass of a CHAMP is of the order of Planck mass

mP l, like pyrgons [18] or maximons [10], one may wonder if gravitational binding effects

may be important. As we will argue, the compact boson ”stars” can be considered to be a

self-consistent model for such superheavy CHAMPs gravitationally bound and classically

stable particle-like objects.

The present paper should be regarded as preliminary in confronting very compact

charged boson stars with quantum mechanics. Since these objects may have a size com-

parable to the Planck length it is not clear what are the effects of quantum gravity. We do

not, however, see a compelling reason why one should not pursue a study along the lines

indicated above for these objects, as a first step towards a more detailed understanding of

the physics of these objects. In section 2 we describe the basic features of charged boson
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stars. Various scenarios of vacuum instabilities of very compact charged boson “stars” are

discussed in section 3. The effective potentials for fermions (bosons), i.e. V D±
eff (V K±

eff ), are

derived in section 3.1 (section 3.2), where we also present a numerical evaluation of them

in the background fields of the compact “star”. We also confront the physical picture

as derived from these effective potentials with the energy spectra directly derived from

the Dirac or Klein-Gordon equation in the external fields of the “star”. In section 3.2

we study in some detail the formation of a charged bose condensate close to the compact

“star” and present the numerical evaluation of the coupled non-linear equations of the

bose condensate field and the electromagnetic field in the background fields of the “star”.

In the final section we discuss primordial cosmological production of charged compact

“stars” by making use of conventional kinetic equations. We argue that a background of

such CHAMPs may constitute at least a fraction of the dark matter of our universe.

2 Compact Charged Boson Stars

The equations which describe the charged boson star are obtained from the following

action of a charged, massive boson field φ coupled to gravity and a U(1) gauge field, i.e.

S =
∫

d4x
√−g

[

− R

16πGN
+ gµν(Dµφ)∗(Dνφ) − m2

∗|φ|2 −
λ

2
|φ|4 − 1

4
F µνFµν

]

, (2.1)

where

Fµν = ∂µAν − ∂νAµ , (2.2)

and

Dµφ = ∂µφ + ieAµφ , (2.3)

and e > 0 is the electric charge of the positron. If the U(1)-gauge symmetry is identified

with the electromagnetic field, α ≡ e2/4π ≈ 1/137 is the fine structure constant. We

will consider the case λ = 0, but our results do not crucially depend on the self-coupling

term. To the Lagrange density of Eq. (2.1) one may add a conformal coupling R|φ|2/6,

where R is the scalar curvature, in order to preserve conformal symmetry in the limit

m∗ → 0 [19]. The inclusion of this conformal coupling has the effect of “renormalizing”
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the |φ|4-coupling but does not otherwise change the equations of motion [19, 20]. We

therefore choose to disregard it.

A static spherically symmetric and classically stable solution of the coupled non-linear

differential equations, as derived from the action Eq. (2.1), exists only if the gravitational

attraction is larger than the Coulomb repulsion, i.e. if α < e2
crit , where e2

crit = GNm2
∗.

The space-time metric is of Schwarzschild form

ds = B(r)dt2 − A(r)dr2 − r2(dθ2 + sin2θdϕ2) , (2.4)

and, furthermore,

Aµ = (C(r), 0, 0, 0) , φ(r, t) = φ0(r)e
−iωt . (2.5)

The eigenvalue ω corresponds physically to the energy of the last charged constituent par-

ticle added to the star. The non-linear coupled differential equations for A(r), B(r), C(r)

and φ0(r), to be discussed in more detail in section 3.2, are solved numerically with the

boundary conditions

A(0) = 1 , B(∞) = 0 , dC(0)/dr = 0 , C(∞) = 0 , (2.6)

and

φ0(0) = constant , dφ0(0)/dr = 0 , φ0(∞) = dφ0(∞)/dr = 0 . (2.7)

These boundary conditions describe a localized object. As discussed in Ref.[3], the solution

is most conveniently described in terms of the rescaled variables, i.e.

r → r̃ = m∗r ,

φ0 → φ̃0 = (8πGN)1/2φ0 ,

C → C̃ = (ω − eC) ,

B → B̃ = m2
∗B ,

e2 → ẽ2 =
e2m2

P l

8πm2
∗

=
α

2

m2
P l

m2
∗

,

λ → λ̃ =
λm2

P l

8πm2
∗

. (2.8)
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In terms of the total mass M and the particle number N (or, equivalently, the total charge

Q = eN), the static solution has the asymptotic Reissner-Nordstrøm form, i.e.

A(r̃) = (1 − 2M̃

r̃
+

2Ñ2ẽ2

r̃2
)−1 , (2.9)

where M̃ = Mm∗/m
2
P l and Ñ = Nm2

∗/m
2
P l. The radial component of the electric field

has the asymptotic form

E(r) = −dC(r)/dr ≈ Q/4πr2 . (2.10)

The gravitational attraction overcomes the Coulomb repulsion if ẽ2 < 0.5, i.e. m2
∗ > αm2

P l.

In Fig.1 we exhibit a generic numerical solution for the coupled non-linear equations of

the metric functions A, B̃, the scalar field φ̃0 and the radial component of the electric

field. We notice that close to the critical charge ẽ2
c = 0.5, or equivalently m∗ = (m∗)cr, we

obtain for a solution without nodes that [3] the following maximal values of Ñ, M̃ and R̃:

Ñmax ≈ M̃max ≈ 0.44 · (ẽc − ẽ)−1/2 ,

R̃max ≈ 1.5 · (ẽc − ẽ)−1/2 (2.11)

for φ̃0(0) such that

φ̃0(0) = φ̃c(0) ≈ 0.0067 · (ẽc − ẽ)1/2 . (2.12)

Here R̃ = Rm∗ is the rescaled mean radius R of the boson star, which is defined as follows

R =
1

eN

∫

d3xrJ0 , (2.13)

where

Jµ =
√−ggµν{ie[φ∗∂νφ − φ∂νφ

∗] − 2e2Aν |φ|2} (2.14)

is the conserved electromagnetic current. If λ 6= 0 we obtain the following maximal values

of M̃ and R̃:

Ñmax ≈ M̃max ≈ 0.226 · (ẽc − ẽ)−1/2 mP l

m∗

√

λ

8π
,

R̃max ≈ 0.415 · (ẽc − ẽ)−1/2 mP l

m∗

√

λ

8π
(2.15)
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for φ̃0(0) such that

φ̃0(0) = φ̃c(0) ≈ 2.43 · (ẽc − ẽ)1/2 . (2.16)

We see that the scalar self-coupling does not change the overall picture very much, as

long as m∗ ∼ O(mP l). The mass-scale m∗ is therefore essentially our only free parameter,

if the U(1)-gauge symmetry is identified with the electromagnetic field.

The dynamical stability of spherically symmetric charged boson stars has been dis-

cussed in Ref.[9], where also the pulsation equation, which determines the normal modes

of the radial oscillations, has been derived. The particle number N and the mass M , as a

function e.g. of φ̃0(0) or equivalently the central density, have their extrema, in particular

their maximum, at the same value of φ̃0(0). From this fact it follows that the pulsation

equation has a zero mode, where N and M have their extrema. It has been shown that

for the equilibrium solutions with a value of φ̃0(0) bigger than a certain critical value

φ̃c(0), corresponding to the maximum mass, the pulsation equation has a negative mode.

Therefore, these configurations are dynamically unstable. On the other hand for φ̃0(0)

less than φ̃c(0) the equilibrium solutions are stable. Of course these results are based

on a purely classical treatment of the stability analysis. They do not take into account

e.g. quantum effects, such as tunneling among different configurations with the emission

of particles or particle production in the strong electromagnetic and gravitational field

which are generated by the bose stars.

3 Decay of the Vacuum

The properties of the vacuum in the presence of a charged boson star are described

by considering the spectrum of the single-particle Dirac and Klein-Gordon equations in

the background of both gravitational and electromagnetic fields of the star. We will

restrict ourselves to the behaviour of the lowest eigenvalue, corresponding to an s−wave.

When the bound state energy of the electron dives into the negative-energy continuum

the vacuum becomes unstable and pair production occurs [4, 5]. For charged bosons, as
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described by the Klein-Gordon equation, the physics is quite different due to the formation

of a Bose condensate, see section 3.2 below.

3.1 Vacuum Instabilities due to Fermions

The Dirac equation describing a stationary state of an electron (with electric charge -

e) with energy E in the presence of a static background gravitational field and a U(1)

gauge potential Aµ, as given by Eqs.(2.4) and (2.5), can, in a straightforward manner, be

reduced to the following set of two coupled differential equations

d

dr
f(r) =

√

A(r)





κ

r
f(r) + meg(r) − 1

√

B(r)

(

E + eC(r)
)

g(r)



 ,

d

dr
g(r) =

√

A(r)



mef(r) − κ

r
g(r) +

1
√

B(r)

(

E + eC(r)
)

f(r)



 , (3.1)

where κ = ±n and n is an integer. We consider the ground state solution for which

κ = −1. The functions f and g are the components of the two-component spinor Ψ,

which is defined as follows

Ψ(r, t) = 4

√

√

√

√

A(r)

B(r)







f(r)

g(r)





 e−iEt . (3.2)

Ψ is normalized in such a way that

∫ ∞

0
drΨ†(r, t)Ψ(r, t) = 1 . (3.3)

The boundary conditions correspond to normalizability and regularity at the origin, for

which df(0)/dr = dg(0)/dr = 0.

It is clear from this equation that the natural length scale for the wavefunctions f and

g is the Compton wavelength m−1
e , where me is the electron mass. As discussed in the

previous section, the mass of the particles forming the charged boson star is typically of

order mP l

√
α and their total number in the star is O(α−1). For such stars the effective

radius is roughly O(m−1
P l ), which is much smaller than the Compton wavelength of the

electron. This situation is similar to the one we get for pair production in the field of an
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extended nucleus, in which case the critical value Zc above which it occurs is increased

with respect to 1/α. Zc depends on the radius of the nucleus (see Ref.[6]). For atomic

nuclei Zc ≃ 173. In our case the radius of the boson star is several orders of magnitude

smaller than the one of atomic nucleii and therefore we expect the value of Zc practically

to coincide with 1/α. In the pointlike limit, it turns out that for Zc = 1/α the eigenvalues

of the Dirac equation become imaginary. A fact which in our case will, however, not occur

due to presence of a finite radius, even if extremely tiny. At the relevant scale, which is

the Compton wavelength of the electron, the metric is practically flat and therefore we

also do not expect any change in the value of Zc induced by the background gravitational

field.

It has been argued [12, 14] that an effective potential can be used to describe qual-

itatively the physics. We can derive an effective potential by transforming the Dirac

equation (3.1) into a second order differential equation, i.e.





√

√

√

√

B(r)

A(r)

d

dr
+
√

B(r)M(r) + iσ2(E − V (r))



×





√

√

√

√

B(r)

A(r)

d

dr
−
√

B(r)M(r) − iσ2(E − V (r))











f(r)

g(r)





 = 0 , (3.4)

where the matrix M(r) is given by

M(r) =







κ
r me

me −κ
r





 , (3.5)

and the potential V (r) is

V (r) = −eC(r) . (3.6)

If we neglect derivatives in A, B and V , we can write

− d2

d2r∗







f(r)

g(r)





 = (E − V D+
eff (r))(E − V D−

eff (r))







f(r)

g(r)





 , (3.7)

with

dr∗/dr =
√

A(r)/B(r) . (3.8)
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Eq. (3.7) is in a suitable form for a WKB approximation. Then the effective potential

V D±
eff for the Dirac equation is given by

V D±
eff (r)

m∗

=
C̃(r) − ω

m∗

±
√

B(r)

(

m2
e

m2
∗

+
κ2

r̃2

)1/2

. (3.9)

In Fig.2a (2b) we exhibit V D±
eff as a function of r̃ for a positively charged boson star with

me/m∗ ≃ 0 (me/m∗ = 1). If the minimum of V D+
eff is less than −me, pair production occurs

for a positively charged boson star. For dynamically stable charged boson equilibrium

configurations without nodes, which is the case for φ̃0(0) less than φ̃c(0) corresponding

to the maximal mass, we computed V D+
eff and checked for which values of ẽ and φ̃0(0)

it becomes less than −me starting from some value on the r axis. (In practice since

m2
e/m

2
∗ ≪ 1, it is accurate enough to see where V D+

eff becomes negative.) The negatively

charged boson star can be studied in a similar way.

It turns out that V D+
eff has negative values whenever the value for the charge is nearby

Z = 1/α, and of course for higher values of Z (this can also bee seen by making use of the

asymptotic form of Eq. (3.9) with me/m∗ ≈ 0, i.e. V D+
eff (r) ≈ (−αN + |κ|)/r̃). Obviously

since V D+
eff is an approximation the so found value of Z is nearby the expected exact one,

which is just slightly above Z = 1/α, to within an accuracy of about 10%. In Fig. 3

we plotted together with the curves for the charged boson star equilibrium configuration

also the borderline from which on V D+
eff just starts having negative values. We see that

the dynamical stable equilibrium configurations, which lie above this curve, are unstable

against pair production. We expect for them pair production to occur and the additional

charge above Zc = 1/α to be completely screened.

Since the size of the radius of the charged boson “stars” is extremely tiny the electro-

static potential becomes very deep, such that also heavier particles besides the electrons

will be overcritical, leading thus to their pair production. This effect, by considering a

nucleus with shrinking radius, has been studied in ref. [5], where the influence of the

heavier leptons, like muons and taus, has been taken into account. It turns out that the

overcritical nucleus, with Z > 1/α, gets sorrounded by shells of different leptons, but the

fact that the charge above 1/α gets completely screened remains unaffected. Notice that
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to be completely selfconsistent one should also take into account the fact that the heavier

leptons are not stable. Similar mechanism of pair production of heavier particles will of

course also occur for charged overcritical boson “stars”. The net effect remains however

that the charge above Zc = 1/α gets completely screened, as mentioned above, and as

long as such particles have not masses of the order of the constituent particles itself we

also do not expect important back-reaction effects, which could alter the structure of the

star itself.

As an illustrative example we have also computed the spectrum of the Dirac equation

for a fermionic particle of mass equal to m∗ rather than the mass of the electron me. In

Fig. 4 we show E/m∗ as a function of ẽ2, or equivalently αm2
P l/2m2

∗, for various values

of φ̃0(0) for the 1s1/2 state (κ = −1). We see that in this case E decreases by increasing

ẽ and can even become negative. However, not as much as E/m∗ = −1 and therefore

pair production does not occur. This because the mass m∗ is too heavy. For this case

the presence of gravity plays an important role, since now the typical length scale of the

wavefunctions f and g is of order 1/m∗, a distance at which the metric is still far from

being flat. The solution of the Dirac equation in the external fields of the compact charged

boson “star” leads to a physical picture in agreement with the one obtained by making

use of the effective potential V D±
eff .

3.2 Vacuum Instabilities due to Bosons

One may also consider pair production of charged bose particles, like for instance pions.

For atomic nuclei at normal nuclear density the critical value Zc above which pion pair

production occurs is large: Zc ∼ 3000 [5]. As for fermions it depends on the radius of the

nucleus. It decreases by decreasing the nuclear size. Since the charged boson stars are

extremely small the corresponding value Zc is much smaller and is actually very close to

0.5/α [21]. In Fig.5 we illustrate this approach to the critical charge Zc by considering

the ground state energy E(Z, R) of the Klein-Gordon equation in the external field of an

extended uniformly charged sphere with radius R (in Ref.[21] one considers for a radius

smaller than R a constant potential). Analytic solution can be obtained for r ≤ R and
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r ≥ R. These solutions are then numerically linked together at r = R in a standard

manner [22]. We notice that ∂E(Z, R)/∂Z tends to minus infinity as R tends to zero for

Z close to Zc.

Once the lowest bound state of the Klein-Gordon equation dives into the continuum

pair production of pions occurs. Due to Bose statistics a condensate of pions is then

formed. The number of pions in the condensate can be quite large. It is limited, however,

due to the Coulomb repulsion among the pions, such that above a certain critical number

it is energetically no more possible to add new pions to the condensate [5].

The presence of such a bose condensate, which is described by the negatively charged

scalar field η of the pion or any other similar charged scalar field, can be conveniently

incorporated by including an additional term Scon to the action Eq. (2.1), i.e.

Scon =
∫

d4x
√
−g

[

gµν(Dµη)∗Dνη − m2|η|2
]

, (3.10)

where now

Dµ = ∂µ − ieAµ . (3.11)

Higher order terms in the field η can be added to this action if there are additional

interactions among the η fields as for instance a λη4 term [8]. Here, however, for clarity

we restrict ourselves to this form. The electromagnetic and gravitational fields couple

to both η and φ. Variation of the various fields leads now to the following equations of

motion, i.e. the two Einstein equations

A′

A2r
+

1

r2
(1 − 1

A
) = 8πGN

[

(
(ω − eC)2

B
+ m2

∗)φ
2
0 + (

(E + eC)2

B
+ m2)η2

0

+
φ

′2
0

A
+

η
′2
0

A
+

C
′2

2AB

]

, (3.12)

and

B′

ABr
− 1

r2
(1 − 1

A
) = 8πGN

[

(
(ω − eC)2

B
− m2

∗)φ
2
0 + (

(E + eC)2

B
− m2)η2

0

+
φ

′2
0

A
+

η
′2
0

A
− C

′2

2AB

]

, (3.13)
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the Maxwell equation

C ′′ + (
2

r
− A

′

2A
− B

′

2B
)C

′

+ 2eφ2
0A(ω − eC) − (E + eC)2eAη2

0 = 0 , (3.14)

and the scalar wave equations for φ0

φ′′
0 + (

2

r
− A

′

2A
+

B
′

2B
)φ

′

0 + A(
(ω − eC)2

B
− m2

∗)φ0 = 0 , (3.15)

where a prime denotes differentiation with respect to r. For the field η we have assumed

η(r, t) = η0(r)e
−iEt , (3.16)

and hence we also obtain

η
′′

0 + (
2

r
− A

′

2A
+

B
′

2B
)η

′

0 + A(
(E + eC)2

B
− m2)η0 = 0 . (3.17)

In order to solve this Klein-Gordon equation we impose the boundary conditions

η0(0) = const , dη0(0)/dr = 0 , η0(∞) = dη0(∞)/dr = 0 . (3.18)

Similarly to the Dirac case one can also find an effective potential V K±
eff . If we neglect

derivatives of the metric functions A and B, the Klein-Gordon equation (3.17) leads to

− d2u(r)

d2r∗
= (E − V K+

eff (r))(E − V K−
eff (r))u(r) , (3.19)

where

η0(r) = u(r)/r , (3.20)

and dr∗ is defined as in eq.(3.8). The effective potential for the Klein-Gordon equation is

then given by
V K±

eff (r)

m∗

=
C̃(r) − ω

m∗

±
√

B(r)
m

m∗

, (3.21)

where C̃(r) is defined in Eq.(2.8). We found, however, that it is difficult to numerically

determine the critical charge with hig accuracy by making use of this effective potential.

13



We notice that V K±
eff = V D±

eff |κ=0
4. In Fig.6a (6b) we exhibit V K±

eff (r̃) for a positively

charged boson star with m/m∗ = 0.05 (m/m∗ = 1). In Fig.6a we see that the bound

state of the negatively charged particle dives into the negative continuum, corresponding

to anti-particle states, without the presence of a tunneling barrier. If m/m∗ = 1 there is

a finite energy barrier between the spectrum of particle and anti-particle.

We investigate now the effect of a pion condensate on a charged boson star in which

case m2/m2
∗ = O(m2

π/αm2
P l), which, of course, is a very small number. In our case

the compact object can therefore be considered as a charged point source. In fact the

typical length scale of the pion condensate is the Compton wavelength of a pion, i.e.

the compact object has a size much smaller than the bose condensate as follows from

Eq.(3.17). Therefore, the fields φ0(r), A(r) and B(r), as described by the equations of

motion Eqs.(3.10)-(3.17), will be very localized as compared to variations of the fields η0(r)

and C(r) (see Fig.1a and 1b). It is reasonable to assume that under such circumstances

we can neglect the effect of the bose condensate on the compact object itself.

We checked this by solving numerically the full set of Eqs.(3.12)-(3.17) for some values

of the ratio m/m∗. It turns out that the back-reaction of the condensate on the boson

star itself is small even for relatively large mass ratios. In fact the total mass, particle

number and size of the star is very little changed by the presence of the condensate. We

illustrate this feature for a dynamically stable charged boson star with ẽ2 = 0.25 and

φ̃0(0) = 0.2, which corresponds to about N ≈ 66 particles for the compact object itself

when there is no condensate present. If we now include a condensate with a mass ratio

m2/m2
∗ = 1/1000, we find that the boson star remains essentially unaffected (the particle

number as well as its mass changes only within less than one percent) apart from its

electromagnetic properties at large distances. As seen in Fig.7, the charge distribution

4The two effective potentials are equal as far as non-relativistic effects are concerned. This can be

seen by making use of the the so called Langer modification of the effective potential [23]: we perform the

shift m/m∗ →
√

(m/m∗)2 + (l + 1/2)2/r2 in V K±

eff , where l is the angular momentum quantum number,

and in V D±

eff the shift κ → κ + 1/2. V K+

eff and V D+

eff lead to the correct spectrum in the non-relativistic

limit by making use of the WKB-approximation. With the Langer modification V K+

eff will change sign

for some value of r̃ at Z = Zc = 0.5/α within an accuracy of about 15% if m/m∗ ≪ 1.
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of the condensate is localized mostly outside the compact object and contains Nc ≈ 10

particles, i.e. at large distances the star, however, appears to have a net charge Q ≈ 56e.

We have verified numerically that the back-reaction of the condensate on the boson star

gets even less when m2/m2
∗ decreases.

We now return to the issue concerning a pion condensate on a charged boson star, in

which case m is the mass of the pion. At distances much larger as compared to m−1
∗ we

therefore regard the term in Maxwell’s equation

ρext(r) = 2eφ0(r)
2A(r)(ω − eC(r)) (3.22)

as a localized external charge distribution for which we can put A(r) ≈ 1. Let C0 be a

solution to

−
(

C ′′
0 +

2

r
C ′

0

)

= ρext , (3.23)

i.e. at large distances

C0 =
Q

4πr
. (3.24)

We now write C = C0 + Cb. At distances which are large compared to m−1
∗ , Maxwell’s

equation becomes
(

C̃ ′′
b +

2

r
C̃ ′

b

)

=
(

E + eC0 + eqC̃b

)

2eη̃2
0 , (3.25)

and the Klein-Gordon equation

η̃
′′

0 +
2

r
η̃

′

0 +
(

(E + eC0 + eqC̃b)
2 − m2

)

η̃0 = 0 . (3.26)

Here we rescaled the fields as follows:

C̃b = Cb/q , η̃0 = η0/
√

q , (3.27)

where q is choosen in such a way that

2e2
∫

d3x η̃2
0

(

E + eC0 + eqC̃b

)

= 1 . (3.28)

The η̃0-field is normalized to a unit charge. The parameter −q corresponds thus to the

total electric charge of the condensate. The physical interpretation of these equations is
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now clear. The set of eqs (3.26) and (3.28) is analogous to the Thomas-Fermi equation,

which describes in a self-consistent way the electron wave functions in the field of a

nucleus. The repulsive interaction between the pions is crucial to ensure the stability

of the system. Otherwise there would be production of an arbitrarily large number of

particle antiparticle pairs.

The eigenvalue E corresponds to the energy of the last particle added to the condensate

[5]. A natural choice is E = −m, where m is the rest mass of the pion. With this choice

η̃0 does no longer decrease exponentially for r → ∞, as can be seen from eq. (3.26). As

a result it turns out that the normalization integral, eq. (3.28), is divergent. This fact

may indicate that the mean field approximation breaks down, or that one has to take into

account other interactions among the pions, as for instance a λη4 term.

However, if weak decays of the pions are taken into account the first source of instability

is the “inverse β decay” [21]: N → (N, π−) + e+ + νe. N denotes the “star” (positively

charged) and (N, π−) a π− bound state in the field of the “star”. This process sets in for

Z ≥ Zc, as soon as the ground state energy of the Klein-Gordon equation is lower than

−me (the energy of νe can be arbitrarily small), rather than −m. As we have seen above

when the radius of the “star” is sufficiently small compared to the Compton wavelength of

an electron or a pion and Z ≥ Zc, the ground state energy of the Klein-Gordon equation

becomes very rapidly negative, see Fig.5. In this case one can set E = −me in eq.(3.26).

Then η̃0 falls off exponentially for r → ∞ and thus the integral (3.28) is finite.

We have numerically solved the above Eqs.(3.25)-(3.28) with E = −me for the electro-

magnetic field C̃b and the condensate η̃0 using an iterative method as discussed in Ref.[5].

For our purposes it is sufficient to consider a uniformly positively charged solid sphere

with radius R. The critical charge Zc is first determined by solving the corresponding

Klein-Gordon equation with q = 0 for a negatively charged particle with binding energy

E close to zero. The corresponding solution is then inserted into Eq.(3.25) as initial data

for η̃0 in the iterative method, where we now solve for C̃b. With it we solve again for η̃0

in Eq.(3.26) with q as an eigenvalue and renormalize the solution according to Eq.(3.28).

This iterative procedure converges rapidly and it is interrupted when the desired numeri-
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cal accuracy in q is reached. In Fig.8 we present the result of such a numerical calculation

for three different values of R in terms of an effective charge Zeff = Z−q of the “star”. It

turns out that, as already discussed to some extent in Ref.[5], the number of particles q/e

in the charged condensate depends on δZ (δZ = Z − Zc is the amount of charge above

the critical value) and also on the radius R of the “star”. For very compact objects, with

a radius smaller than pion’s Compton wavelength, our numerical calculations show that

the absolute value of q is bigger than δZ. This tendency increases by shrinking the radius.

It may even turn out that in the point-like limit, for Z ≥ 0.5/α, the pion condensate will

completely screen the object, i.e. it becomes neutral. We would therefore obtain a limit-

ing charge Zc = 0.5/α for a point-like charge defined as the limit of an extended charge

distribution. Recently Gribov and Nyiri [24] have reached a similar conclusion, however

in the approximation of a massless “pion”. We intend to return to this issue elsewhere.

As already mentioned in the previous section on fermion instabilities, due to the

extremely small radius of the “star” also particles heavier than the pions could contribute

to the condensate. Like in the fermion case, we do not expect this fact to alter significantly

the result for the screening of the overcritical charge, since this depend primarily from the

electromagnetic charges involved and not from the the particle mass. As mentioned above

we solved numerically the full set of eqs. (3.25) - (3.28) for large values of the the ratio

m/m∗ (in particular for ≈ 1/32) in order to study possible back-reaction effects on the

star itself. We find that such effects are negligible. For larger m, comparable to m∗, the

vacuum is however no longer overcritical (see Fig. 4) and thus such particle will not be

produced. We conclude thus that within our Thomas-Fermi like approach back-reactions

are not important. Of course the actual composition of the condensate may change from

the simple one particle-type solution presented here, but not the net screening effect. This

last point is what is most important for our following astrophysical applications.

In this section we have shown that the vacuum is unstable against pair production of

fermions or bosons if the charged bose-“star” is overcritical, i.e. if Z ≥ Zc. The time-scale,

tc, of the destabilization of the vacuum can be obtained from the structure of the bound

state wave function of the Dirac equation or Klein-Gordon equation close to the edge of
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the negative continuum, the negative continuum states themselves and the structure of

the potential C in terms of an overlap integral of these quantities, as far as one considers

only one state diving into the negative continuum (c.f. chapter 6 in Ref.[5]). The natural

scale determining the relevant time-scale, therefore, corresponds to the scale of the bound

state wave functions, i.e. the electron mass or the pion mass. For our purposes tc can be

estimated, within a few orders of magnitude, by making use of the probability density per

unit time, ω, for pair production of particles with mass m and spin s in a strong electric

field E [15], i.e. (h̄ = c = 1)

ω = (2s + 1)
αE2

2π2

∞
∑

n=1

1

n2
(−1)(2s+1)(n+1) exp

(

−nπm2

eE

)

, (3.29)

where we use eE ≃ Nα/r2
C and rC = 1/m. We can then estimate the change in the

screening charge, dQ/dt, by writing (c.f. chapter 21 in Ref.[5])

1

e

dQ

dt
≃ r3

Cω . (3.30)

The time-scale tc for a process for which the change in particle number is of order one,

i.e. ∆Q/e ≃ 1, is

tc ≃
8π3rC

α2N2(2s + 1)A
, (3.31)

where A ≈ 0.022(≈ 0.021) for fermions (bosons) and we used N ≃ 1/α. For the charged

and very compact bose “stars” we thus obtain tc ≃ 10−17s for the pair production of

electrons and positrons, whereas for pions we get a time-scale which is three orders of

magnitude smaller, i.e. tc ≃ 10−20s. From these values we conclude that the pion con-

densate most likely will form first and is thus an efficient screening mechanism once the

radius of the bose “star” is less than 0.1fermi.

4 Final Remarks

The very compact charged boson “stars” taken as a self-consistent model for CHAMPs

involve physics at Planck scale, a fact this which makes it difficult to perform reliable

estimates of their possibile cosmological relic density. Nevertheless, below we suggest some
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plausible arguments in favour of such a relic abundance which may even be observable

and make up a substantial fraction of the dark matter present in the universe.

A bound on the mass M of CHAMPs is found by considering their cosmic relic num-

ber density, nM , along the lines discussed in Ref.[17]. We assume that CHAMPs, in the

form of compact boson “stars” with mass M , were formed in the very early universe. At

a temperature T = T∗, such that M/T∗ ≃ 40 [25], the superheavy CHAMPs (and anti-

CHAMPs) will freeze out due to the equality between the Hubble expansion rate and the

annihilation rate of particles and anti-particles. Then, a bound on the mass M emerges by

equating the relic energy density to the critical density ρc = 3H2
0/8πGN ≈ 10−29gcm−3,

where H0 ≈ 100kms−1Mpc−1 is the Hubble parameter, i.e. we assume that the super-

heavy CHAMPs constitute the dark matter of the universe [16]. If only electromagnetic

interactions are taken into account, we would get M ≃ O(TeV ). For larger values of M

the universe becomes matter dominated. Such an estimate is based on the assumption

that the CHAMPs are in thermal equilibrium at sufficiently high temperatures as com-

pared to their rest mass. Since in our case M ≃ O(1/
√

α)mP l, this may be a doubtful

assumption.

One may instead assume that CHAMPs are thermally produced in the early universe

starting with a very small or even a vanishing initial density. This way we get a lower

bound on their present relic abundance for a given ratio M/Ti. Ti is the temperature where

the termal production is assumed to begin. The thermal production (and annihilation) in

an expanding universe is assumed, in analogue with thermal production of grand unified

magnetic monopoles [26], to be described by a Boltzmann equation

df(x)

dx
= Z

(

f 2(x) − g(x)f 2
γ (x)

)

, (4.1)

where

x = T/M , f(x) = nM (T )/T 3 , fγ(x) = nγ(T )/T 3 . (4.2)

Here nγ(T ) is the number density of photons at temperature T . Since we consider a

radiation dominated phase for the early universe, we have the following relation between
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the temperature T (t) and the time t:

T (t)2 =

√

45

16π3GNNeff

1

t
, (4.3)

where Neff ≃ 427/4 is the effective number of degrees of freedom for the standard model

well above the electro-weak scale. We also have that R(t)T (t) remains constant in time,

where R(t) is the cosmic scale factor. The first term in Eq.(4.1) describes the annihilation

process of CHAMPs (and anti-CHAMPs) and −Zgf 2
γ describes all possible production

processes. The parameter Z characterizes the electromagnetic annihilation process and is

given by

Z = 2M < σv > mP l

√

45

16π3Neff

. (4.4)

< σv > is an average annihilation cross section, which we assume to have the form

< σv >≃ πN4α2/M2 ≃ π/α2M2 , (4.5)

where M ≃ Nm∗ or N ≃ 1/α. If the particles whose reactions produce CHAMPs are in

thermal equilibrium themselves, it was shown by Turner [26] that for x < 1, g(x) is given

by an equilibrium distribution, i.e.

g(x) ≃ 1

x3
exp(−2

x
) . (4.6)

If we neglect the annihilation term in Eq.(4.1) we obtain

d

dx

(

nM(T )

T 3

)

= −a
1

x3
exp(−2

x
) , (4.7)

where a = O(10) if M = O(1/
√

α)mP l , i.e.

nM(T∗)

T 3
∗

=
a

2
exp(− 2

xi
)
(

1

xi
+ 0.5

)

+
nM(Ti)

T 3
i

, (4.8)

if T∗ << Ti. Here xi = Ti/M . This solution actually overestimates nM(T ), since we have

neglected the annihilation process. However, by inspection we now see that the annihi-

lation term can be neglected in comparison with the production term in eq.(4.1). If the

initial temperature Ti is such that xi ≈ 0.028 and the initial density fulfills nM(Ti) = 0,

then we would get at T = T∗, e.g. the today temperature of the cosmic background
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radiation, a relic density compatible with the cosmological critical mass density ρc. Since

we should require Ti ≤ TP l, which is easily fulfilled for the CHAMPs under consideration,

we would then obtain an unobservable small relic density for heavier CHAMPs, corre-

sponding to M ≫ mP l/
√

α, unless the initial abundance nM (Ti) differs from zero and

is such that nM(Ti)/nγ(Ti) = (nM(Ti)/nγ(Ti))crit ≥ O(10−28). This critical abundance

corresponds to ρc. We conclude that CHAMPs with M ≃ mP l/
√

α, could be thermally

produced in the very early universe with no initial abundance and thereby leading to a

critical density.

If the initial abundance is much larger than (nM(Ti)/nγ(Ti))crit and m2
∗/m

2
pl ≃ O(α),

we expect the freeze-out temperature Td to be below the Planck scale within a few or-

ders of magnitude. One can then imagine a completely different scenario for the cosmic

production of superheavy CHAMPs as compared to the analysis of Ref.[17]. A mech-

anism of diluting an early matter dominated phase of the universe has been discussed

in quite a detail by Polnarev and Khlopov [27]. We will thus not discuss that scenario

in great detail. We would like, however, to point out that the most simple aspects of

this scenario may lead to an upper bound on m∗, which is not in contradiction with the

requirement that α ≤ (m∗/mP l)
2. The physical picture is again an early radiation dom-

inated phase with subsequent thermal production of CHAMPs. Let νd = ν(Td), where

ν(T ) = nM(T )/nr(T ), be the ratio of the number densities of CHAMPs (nM) and rela-

tivistic degrees of freedom (nr) at the freeze out temperature T = Td. The universe will

then develop into a matter dominated phase at the temperature [27]

T ≃ νdM , (4.9)

where we demand that νd is much smaller than one. Small initial metric perturbations

can grow large in this matter dominated phase and thereby convert the primordial gas

of CHAMPs and anti-CHAMPs into primordial black holes (PBH), provided the early

matter dominated phase lasts sufficiently long. (PBHs with a mass ≤ 1015g would have

been evaporated today by Hawking radiation. The time-scale τ for such an evaporation

process is τ ≃ 1010years(MBH/1015)3, where MBH is the mass of the black hole in units
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of g.) In this scenario the early matter dominated stage is assumed to end by a gradual

transition into a radiation dominated phase. Besides the formation of PBHs, it may be

that a certain amount of CHAMPs survive. Their abundance will then, of course, be

bounded by the critical density ρc. The production of PBHs will, however, put limits on

M and hence on m∗, due to the observed spectrum of PBHs [27, 28]. For this scenario to

work it requires that the relic abundance of CHAMPs at T = Td does not dominate the

energy density of the universe: nMM ≤ nrTd ≤ nrTP l, i.e. νdM/mP l ≤ 1. The Boltzmann

equation, which determines the temperature Td at decoupling and the relic abundance of

charged boson particles with mass M , is [25]

df(x)

dx
= Z

(

f 2(x) − f 2
eq(x)

)

, (4.10)

with x = T/M and Z is again given by Eq.(4.4). Here we have, although this is question-

able, allowed for an initial condition corresponding to thermal equilibrium in order to get

an estimate of f(xd), where xd = Td/M .

In the expression for Z, < σv > is an average annihilation cross-section, where for the

relative particle anti-particle velocity v we insert a typical virial velocity taken from the

PBH-formation process and which is of the form v ≃ δ
1/2
0 [27]. Here the initial metric

perturbation δ(M̃) on a mass-scale M̃ is parametrized by δ0 and n, with

δ(M̃) = δ0

(

M̃

M̃0

)−n

, (4.11)

where M̃0 is the mass inside the horizon at the beginning of the early matter dominated

phase. The annihilation cross section for the superheavy CHAMPs is estimated simi-

larly as for the magnetic monopoles, i.e. the dominant process is the emission of dipole

radiation. Thus we get [29]

< σv >≃ πα2v−9/5

M2
N4 . (4.12)

The equilibrium distribution feq(x) in Eq.(4.10) is now

feq(x) =
1

2π2

∫ ∞

0
dy

y2

exp(
√

y2 + 1/x2) − 1
. (4.13)
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The freeze-out temperature Td corresponds to the temperature when the expansion rate

R−1(t)dR(t)/dt is comparable to the reaction rate < σv > neq. This temperature can

approximatively be determined by considering

dfeq(xd)

dxd
= Zf 2

eq(xd) . (4.14)

For xd ≪ 1, Eq.(4.14) leads to 1/xd + 0.5 log(1/xd) ≃ log(Z/(2π)3/2). We then find that

f(xd) ≃
√

2feq(xd) ≃
√

2

Zx2
d

. (4.15)

For metric perturbations in the range O(10−5) ≤ δ0 ≤ O(10−3) we can use 1/xd ≃ O(15).

The bound νdM/mP l ≤ 1 leads then, within an order of magnitude, to

1

α

(

m∗

mP l

)

≤ 1

α2
δ−0.9
0 x2

d . (4.16)

In Fig.9 we present the numerical evaluation of the Boltzmann equation Eq.(4.10) in the

range 0.001 ≤ x ≤ 0.5 where, for our purpose, we consider as initial data f(xi) = feq(xi)

with xi = 0.5 and Z = O(106). The numerical value of f(xd) ≃ O(10−5) does not depend

strongly on the actual value of xi. The results obtained numerically are in good agreement

with the qualitative solution presented above. Notice that the bound, Eq.(4.16), is not

in contradiction with the condition α ≤ (m∗/mP l)
2. For a scale invariant initial metric

perturbation, i.e. n = 0 in Eq.(4.11), with δ0 ≃ 10−3 and following the analysis for

magnetic monopoles of Ref.[27] one would get M ≤ 1017GeV . As pointed out in Ref.[27]

such a limit does, however, not apply if the initial metric perturbation is to small, i.e.

if δ0 ≤ (δ0)min = 6 × 10−4. The recent COBE data [30] give δ0 ≃ O(10−5) and thus we

would not get such a strong bound on m∗ in this way. The scenario discussed above,

therefore, suggests that an early matter dominated phase can be diluted by the process

of primordial black hole formation. We are then lead to the thermal production scenario

with a small initial abundance, in which case we have argued that, for the CHAMPs under

consideration, the today cosmic abundance will be small but nevertheless may lead to a

critical density.

Since the CHAMPs we considered are superheavy, they will not affect big-bang nucle-

osynthesis. A likely scenario is that the compact charged boson stars formed will not bind

23



to nuclei as is the case for the CHAMPs discussed in Ref.[17]. Thus at least a fraction of

the dark matter of the universe could be made of compact boson stars.

As discussed in the previous section there is a limiting charge for such objects, i.e.

Z ≤ 0.5α−1. With regard to possible detection of such a dark matter candidate we notice

that compact bose stars with large Z will, with regard to their ionization properties,

behave like superheavy magnetic monopoles. Supermassive electrically charged particles

have recently been looked for by making use of plastic track detectors sensitive to masses

M ≥ 10−7mP l [31]. The bound on their number density, nM , relative to the number

density of the cosmic background radiation nγ ≃ 400(Tγ/2.7K)3cm−3 was found to be

nM/nγ ≤ 10−29. Even such a small relative fraction of supermassive CHAMPs can lead

to a critical density for the universe, as we already pointed out above. It is e.g. sufficient

to consider compact charged boson stars with a mass M ≃ 250mP l. Another completely

different scenario of diluting an early abundance is, of course, inflation which we have not

considered here.

Strongly interacting microgram dark matter has been discussed recently [32]. For

that case one may replace in the above calculation the annihilation cross-section with a

suitably scaled strong-interaction annihilation cross-section as in Ref.[17]. The previous

analysis can be repeated for such CHAMPs with a resulting less restrictive bound on

m∗. If the physical meaning of the U(1) charge of the CHAMPs under consideration is

different from the electromagnetic coupling, then alternative astrophysical scenarios may

be possible. This has been discussed by Madsen and Liddle [33].
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Figure Captions

Fig.1 The metric functions A(r̃) and B(r̃) (upper and lower curve respectively in Fig.1a),

the scalar field φ̃0(r̃) and the electric field E(r̃) (Fig.1b) as a function of r̃ = m∗r for a

typical “star” with φ̃0(0) = 0.1, ẽ2 = 0.4, M ≈ 166m∗ and N ≈ 168.

Fig.2 The effective potential V D+
eff , upper curve, (V D−

eff , lower curve) for electrons (positrons)

with mass me, i.e. me/m∗ ≃ 0, as a function of r̃ = m∗r for a positively charged “star”

with φ̃0(0) = 0.1, ẽ2 = 0.4 and Q ≈ 168e (Fig.2a). For a sufficiently large value of r̃, V D+
eff

becomes negative . This signals that the bound states dive into the negative continuum of

the Dirac sea and that the vacuum becomes unstable against e+e−-pairs production. In

Fig.2b we show the corresponding effective potentials if me = m∗. In this case the bound

states will not dive into the negative continuum. (V D+
eff : upper curve; V D−

eff : lower curve.)

Fig.3 The mass M̃ of the charged boson star in units of m2
P l/m∗ as a function of φ̃0(0)

for various values of the effective charge ẽ. The line (the dashed one) going through

the maxima of the mass is drawn. Equilibrium configurations to the left of this line

are dynamically stable, whereas the other ones are unstable. The lines above which the

vacuum becomes unstable against pion pair production (dotted line), which is determined

by Z = 0.5/α, and electron positron pair production (dotted dashed line) are also drawn.

Fig.4 The lower branch of the curves is the bound state spectrum of the Dirac equation

for negatively charged fermions of mass m∗ in a 1s1/2 state (κ = −1) in the field of

a positively charged boson star as a function of ẽ2 with φ̃0(0) = 0.2 (continuous line)

and φ̃0(0) = 0.5 (dashed line). The latter choice corresponds to a dynamically unstable

configuration. The upper branch of the curves correspond to the anti-fermion bound

states. The binding energy becomes zero nearby the critical value of the ẽ-coupling. The

corresponding spectrum for the Klein-Gordon equation agrees, within the accuracy of our

results, with that of the Dirac equation.

Fig.5 The Klein-Gordon equation ground-state spectrum for negatively charged bosons

with mass m in the field of a positively charged “star” approximated by a uniformly

charged sphere of radius R and charge Ze. As R tends to zero the spectrum dives faster
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into the negative continuum corresponding to anti-particle states. In the point-like limit

(R → 0), we reach the critical value Zc = 0.5/α.

Fig.6 The effective potential V K+
eff , upper curve, (V K−

eff : lower curve) for “pions” (anti-

“pions”) with mass m, where we consider as an illustrative example m/m∗ = 0.05, as

a function of r̃ = m∗r for a positively charged “star” with φ̃0(0) = 0.1, ẽ2 = 0.4 and

Q ≈ 168e (Fig.6a). V K+
eff is negative and less than -0.05 for sufficiently small values of r̃.

This signals that the bound states dive into the negative continuum of the anti-“pions”

and that the vacuum becomes unstable against particle production. In Fig.6b we show

the corresponding effective potentials if m = m∗. In this case the bound states do not

dive into the negative continuum. (V K+
eff : upper curve; V K−

eff : lower curve.)

Fig.7 The particle number density n(r̃) = 4π
e
J0(r̃)r̃2, such that N =

∫∞
0 n(r̃)dr̃, for a

dynamically stable boson star with φ̃0(0) = 0.2, ẽ2 = 0.25 corresponding to N ≈ 66 in

the presence of an induced charged condensate. The solid curve is the number density

of the star itself . The dashed curve corresponds to the particle number density of the

condensate (multiplied with a factor 50) in which we use m2/m2
∗ = 10−3 as an illustrative

example. The mean number of particles in the condensate is Nc ≈ 10. With regard to

the gravitational properties of the boson star the back-reaction of the condensate on the

star is negligible. On the scale of the figure, the particle number density of the star in

the absence of the condensate actually coincides with the solid curve.

Fig. 8 The effective charge of the bose “star”, Zeff = Z−q, where −q is the total charge

of the pion condensate. The “star” is approximated by a positive uniformly charged

sphere with radius R and charge Ze. The critical charge Zc of the “star” is determined

for fixed R by finding Z such that the binding energy E = −me, which is very close to

zero so that it can practically be taken equal to zero. As R tends to zero the screening

becomes more efficient.

Fig. 9 The number density nM (T ) of charged boson stars with M ≃ mP l/
√

α (solid line)

as derived from the Boltzmann equation valid for a radiation dominated universe for the

range 0.001 < x < 0.5 and Z = O(106). The initial data is such that nM (Ti) = neq(Ti),

where we chose Ti/M = 0.5. As a comparison we also plot (dashed line) neq(Ti)/T
3
i ≈
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0.053, which corresponds to the solution of the Boltzmann equation for charged bosons

with mass M = m∗ ≃ mP l

√
α and an initial equilibrium distribution, i.e. in this case the

bosons remain in thermal equilibrium.
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