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{ 2 {ABSTRACTWe compute the three-point temperature correlation function of the COBEDi�erential Microwave Radiometer (DMR) �rst-year sky maps to search fornon-Gaussian temperature uctuations. The level of uctuations seen inthe computed correlation function are too large to be attributable solely toinstrument noise. However the uctuations are consistent with the level expectedto result from a superposition of instrument noise and sky signal arising from aGaussian power law model of initial uctuations, with a quadrupole normalizedamplitude of 17 �K and a power law spectral index n = 1. We place limits onthe amplitude of intrinsic three-point correlations with a variety of predictedfunctional forms.Subject headings: cosmic microwave background | cosmology: observations



{ 3 {1. IntroductionNASA's COBE collaboration has reported the detection of anisotropies in the cosmicmicrowave background (CMB) radiation (Smoot et al. 1992; Bennett et al. 1992a; Wrightet al. 1992 ). The amplitude of these anisotropies is substantially greater than thelimits on possible systematic e�ects remaining in the data (Kogut et al. 1992), whilethe pattern of anisotropy is not correlated with any known Galactic or extragalacticforeground (Bennett et al. 1992a; Bennett et al. 1993). A useful characterization ofCMB anisotropies is provided by the n-point correlation functions, the average productof temperatures evaluated at n points in the sky with �xed relative orientation. TheCOBE collaboration reported a positive detection of the two-point temperature correlationfunction (Smoot et al. 1992; Wright et al. 1992), and found it to be consistent withinationary and other cosmologies. One of the basic predictions of inationary models isthat they produce a nearly scale-invariant power spectrum of primordial density uctuationswith a Gaussian distribution and random phases. It follows that large angular scaleCMB temperature anisotropies should have vanishing three-point correlations on average(though any particular cosmic observer will, in general, measure small non-zero three-pointcorrelations due to cosmic variance). In contrast, there are competing theories of structureformation (eg., theories based on topological defects or late-time phase transitions) thatare compatible with present CMB observations for which the distribution of density andtemperature uctuations are non-Gaussian. Such models can give rise to non-vanishingthree-point temperature correlations, thus a crucial test of the Gaussian nature of theprimordial density uctuations is provided by this function. Smoot et al. (1994) discuss anumber of additional tests that can be applied to the DMR sky maps to search for evidenceof non-Gaussian uctuations.In this paper we compute the three-point correlation function of the �rst-year DMRsky maps and compare the results to detailed Monte Carlo simulations of Gaussian,scale-invariant power law models. We conclude that there is evidence for non-vanishingthree-point correlations in the data, but at a level consistent with the uncertainty associatedwith cosmic variance. In the absence of a positive detection of intrinsic three-pointcorrelations we can place upper limits on correlations with selected, theoretically motivatedfunctional forms. Falk, Rangarajan, & Srednicki (1993) have considered the e�ect of acubic term in the e�ective potential of an inationary �eld ' and have concluded thatthe leading contribution to the three-point function can be expressed as a quadraticfunction of the corresponding two-point function. Luo & Schramm (1993) have argued thatnonlinear evolution of the gravitational potential � will give rise to a similar form for thethree-point function with an amplitude that likely dominates the inationary contribution.



{ 4 {In addition, Luo & Schramm (1993) suggest that a late-time phase transition could producea contribution that may be expressed as a cubic function of the corresponding two-pointfunction. We place constraints on the amplitudes of such contributions.The DMR experiment (Smoot et al. 1990; Bennett et al. 1992b) has produced twoindependent microwave maps (A and B) at each of 3 frequencies (31.5, 53 and 90 GHz). Theresults presented here are based on the �rst year of data, and we consider only the relativelysensitive 53 and 90 GHz maps. In all cases we restrict our analysis to Galactic latitudesjbj > 20�, and we subtract a best-�t monopole and dipole from the data. The generalthree-point correlation function is the average product of three temperatures with a �xedrelative separation on the sky: C3(�1; �2; �3) = hT (n̂1)T (n̂2)T (n̂3)i where n̂1 � n̂2 = cos �1,n̂2 � n̂3 = cos �2 and n̂3 � n̂1 = cos �3. Due to computational constraints we evaluate onlytwo special cases: 1) the direction vectors n̂i, n̂j , and n̂k form an equilateral triangle,�1 = �2 = �3 (the equilateral case), and 2) n̂i is nearly parallel to n̂j (the pseudo-collapsedcase). We motivate and de�ne the use of \nearly" in x3 below. Our notation is as follows:latin indices i, j, and k refer to sky pixels, while greek indices � and � refer to bins ofangular separation, which we take to be of width 2.6 degrees, the width of our sky pixels.Additionally, the use of � as an argument to a correlation function denotes a value ofangular separation in degrees. 2. The Equilateral CaseThe DMR sky maps are binned into 6144 nearly equal-area pixels, 4016 of which passthe 20 degree Galaxy cut. We de�ne the equilateral three-point correlation function to beC(e)3 = Xi;j;kwiwjwk TiTjTk=Xi;j;kwiwjwkwhere the sum is restricted to pixel triples (i; j; k) for which all three pixel separations residein a single angular separation bin, Ti is the observed temperature in pixel i after monopoleand dipole subtraction, and wi is the statistical weight of pixel i: wi = 1=�2i = Ni=�20, whereNi is the number of observations of pixel i, and �0 is the rms temperature uctuation perobservation due to instrument noise.We have evaluated this statistic for the 53 and 90 GHz DMR maps and present theresults in Figure 1. The left-hand panels of the �gure show results for both the (A+B)/2(\sum") maps, which include both sky signal and instrument noise, and the (A�B)/2(\di�erence") maps which contain only instrument noise. The grey band in these panelsrepresents the rms scatter computed from 2000 Monte Carlo realizations of the instrument



{ 5 {noise. The right-hand panels repeat the results for the sum maps, but in these panelsthe grey bands represent the rms scatter computed from 2000 Monte Carlo realizations ofsimulated CMB sky signal plus instrument noise. In the present analysis we have simulatedthe CMB signal using a Gaussian, scale-invariant power law model with random phases anda mean quadrupole normalization of 17 �K. Power from l = 2 to l = 40 �ltered through theDMR window function (Wright et al. 1994) is included. Instrument noise was simulated foreach channel A and B (with the appropriate DMR sky coverage pattern) using the followingvalues for the instrument noise per 0.5 second observation: �0 = 24.2, 28.2, 47.8, and 35.6mK (thermodynamic temperature) for channel 53A, 53B, 90A, and 90B respectively. Foreach realization of sky signal and noise, we form sum and di�erence maps and subtractbest-�t (for jbj > 20�) monopoles and dipoles from each. From the ensemble of realizationswe compute the rms scatter in each of the 48 angular separations bins, as well as the fullcovariance matrix to account for bin-to-bin correlations induced by the sky signal.We have run a set of noiseless Monte Carlo simulations to compare the results ofour routine with existing analytic predictions for the level of cosmic variance expectedin the three-point function (Srednicki 1993). First we have generated a set of 400Harrison-Zel'dovich (n = 1) skies with unit quadrupole normalization including power froml = 3 to l = 40, �ltered through the DMR window function. For each realization in thisensemble we compute the three-point function using uniform weights over the entire sky.The rms scatter of these functions may then be directly compared to Figure 2 of Srednicki(1993); our results agree to within a few percent. The Galactic plane cut is an additionalsource of theoretical uncertainty (a form of \sample variance"). We �nd that restrictingthe sky coverage to jbj > 20� produces an rms that is larger than the full-sky case by afactor of � 1:5, somewhat larger than the factor of 1.23 predicted by Srednicki, based onthe work of Scott, Srednicki, & White (1993). An additional source of sample variancein our data arises from the pattern of weights used to estimate the three-point function.Including the quadrupole in our noise-free simulations, and weighting the computation ofthe three-point function by the inverse of the DMR noise variance, we �nd the rms to bea factor of � 5� 8 times larger (depending on the angular separation) than the uniformlyweighted, full-sky, no-quadrupole case. It is advantageous to weight the computation of thethree-point function to minimize the noise variance since the signal-to-noise ratio in our�rst-year maps is relatively poor. However, with additional years of data, cosmic variancewill dominate noise uncertainties and it will be preferable to weight the pixels uniformly tominimize this source of uncertainty.The hypothesis that the computed three-point function is consistent with zero is testedby computing �2 = P�;� C� (M�1)�� C� where C� is the observed three-point function inangular separation bin �, and M�� is the covariance matrix computed from the simulated



{ 6 {three-point functions. The observed values of �2 are given in Table 1, the numbers givenin parentheses are the percentage of simulations for which �2 exceeded the observed value.Consider �rst the hypothesis that the observed three-point functions are consistent with nosky signal, ie., that the observed uctuations are due only to instrument noise. In this casewe evaluate �2 using the three-point functions observed in the sum maps and the covariancematrix derived from the ensemble of di�erence maps which have the same noise propertiesas the sum maps. We �nd �2 = 69 and 57 for the 53 and 90 GHz data respectively; only4% of our 53 GHz di�erence simulations and 18% of our 90 GHz di�erence simulations hadhigher values of �2. We conclude that there exist non-vanishing equilateral three-pointcorrelations in the observed CMB sky at the �95% con�dence level. We next test thehypothesis that the uctuations seen in the three-point function are consistent with thelevel expected to arise from a superposition of instrument noise and sky signal arising fromGaussian, scale-invariant power law uctuations. In this case �2 is evaluated using thecovariance matrix computed from the ensemble of sum maps; we �nd �2 = 49 and 50 forthe 53 and 90 GHz data respectively. As indicated in Table 1, these values are well withinthe range seen in the simulations, which indicates that the uctuations observed in theequilateral three-point function are consistent with a superposition of instrument noise andGaussian CMB uctuations.As a check on the noise levels in our simulations we have evaluated �2 using thethree-point functions observed in the di�erence maps. We �nd the 53 GHz value to be wellwithin the expected range while the 90 GHz value is not: only 1 of our 2000 simulationshad as large a �2 for 48 degrees of freedom. We attribute this to a weak anti-correlationbetween the noise in the 90 GHz A and B channels, which we have recently identi�ed byother analyses. As a consequence the 90 GHz di�erence map is not a reliable estimator ofthe instrument noise level in the maps. We expect to correct this anti-correlation in futurereleases of the data and to discuss it more fully in a future publication. We emphasize thatno present or previously reported results are compromised by this e�ect.In the absence of a positive detection of intrinsic three-point correlations we can placelimits on the amplitudes of contributions with certain predicted functional forms. Falk et al.(1993) and Luo & Schramm (1993) argue that the equilateral con�guration of the three-pointfunction will have leading contributions of the form C(e)3 (�) � k2C22(�) + k3C32 (�), whereC2(�) is the corresponding two-point function, and k2 and k3 are constants. To place limitson k2 and k3 one should ideally invoke a full Monte Carlo simulation of CMB skies with theappropriate non-Gaussian e�ects included. However, since the above predictions are onlyapproximate, we feel it is su�cient at this time to adopt the theoretical form for the meanof C2(�) as a basis for our model functions, and to perform the �ts using the errors obtainedfrom our Gaussian Monte Carlo simulations. In particular we de�ne C2(�) as (Abbott &



{ 7 {Wise 1984) C2(�) = (6=5) 40Xl=2(2l + 1)=(l(l + 1)) G2l Pl(�)where the Gl's, given by Wright et al. (1994), de�ne the DMR window function, andthe Pl's are the Legendre polynomials. For reference, C2(0) = 4:24. We then performleast-squares �ts to the data by minimizing a �2 de�ned to be�2 =X�;� (C� � kmCm2 (�)) �M�1��� (C� � kmCm2 (�))for m = 2; 3. We evaluate the model function C2(�) at the center of each angular separationbin. The covariance matrix is derived from the ensemble of sum maps; thus the quotedcon�dence intervals include the e�ects of cosmic variance. Since the two functional formsare nearly degenerate, we cannot place meaningful simultaneous constraints on the twoparameters k2 and k3, so we perform each �t separately. We de�ne approximate 68%con�dence intervals for k2 and k3 by the condition �2(km) < �2min + 1 for m = 2; 3. Theresults of these �ts are given in Table 2, which also includes weighted averages. Both k2and k3 are consistent with zero.3. The Pseudo-Collapsed CaseThe simplest con�guration of the three-point correlation function is that in which twolegs of the correlation function are evaluated at a common point in the sky. SubbaRao etal. (1993) have proposed the use of the \collapsed" three-point function as an e�ectiveprobe of non-Gaussian structure in the CMB. Using the same notation as above, we de�nethe collapsed three-point function to beC(c)3 =Xi;j wiw2j TiT 2j =Xi;j wiw2jwhere the sum is over all pixel-pairs within a given angular separation bin. Unfortunately,because of the quadratic term, T 2j , in this statistic, the collapsed three-point functionsu�ers from a severe noise bias. In other words C(c)3 is not a central estimator of the truecollapsed three-point function in the presence of instrument noise. To see this consideran ensemble average of C(c)3 over many realizations of the instrument noise, with a �xedtrue sky temperature. We can decompose the observed sky temperature Ti into a truetemperature ti and a noise contribution ni: Ti = ti + ni. Then, by using the facts thathtpi i = tpi , hnii = hn3i i = 0, and hn2i i = �2i we obtainhC(c)3 i =Xi;j wiw2j tit2j=Xi;j wiw2j + Xi;j wiw2j ti�2j=Xi;j wiw2j



{ 8 {The �rst term is the \true" three-point function of the sky temperature, while the secondis a bias term that is a cross-correlation of the true sky temperature with the average noisepattern. Given the current DMR noise levels and the apparent absence of three-pointcorrelations in the CMB anisotropies, the bias term dominates the behavior of this statistic.We have investigated a number of ways around this problem. For example, we could selectthe weights wi in such a way as to make the bias term cancel based on the average noiseproperties of the map. However, detailed Monte Carlo simulations show that no choiceof weights simultaneously removes the noise bias while recovering the \true" three-pointfunction. Alternatively we can evaluate the collapsed function with a subset of the maps,wherein we replace the quadratic term T 2j with the expression TA;jTB;j where TA is theobserved temperature in the channel A map, and likewise for TB. Since the noise in thetwo channels is uncorrelated (the 90 GHz channels notwithstanding, see above), there is nosurviving bias. However one does sacri�ce signi�cant sensitivity with this scheme. Smoot etal. (1994) give a more detailed discussion of noise bias in higher-order statistical quantities.The technique adopted in this paper for overcoming the noise bias is to evaluate a\pseudo-collapsed" three-point correlation function. We de�ne this statistic asC(pc)3 =Xi;j;kwiwjwk TiTjTk=Xi;j;kwiwjwkwhere the sum on j is over all pixels that are nearest neighbors to i, and the sum on k isover all pixels (except j) within a given angular separation bin of i. Since the sky mappixels are 2:6� across and our beam has a 7� FWHM, the nearest neighbor pixels will havecorrelated sky signal but uncorrelated instrument noise. Additionally, since most pixelshave eight nearest neighbors, we are summing over roughly four times as many independentpixel triples as in the true collapsed case, which signi�cantly enhances the sensitivity.We have evaluated this statistic for the 53 and 90 GHz DMR maps and present theresults in Figure 2, which has the same format as Figure 1. As with the equilateral case,we test the hypothesis that the data are consistent with vanishing three-point correlationsby computing �2 = P�;� C� (M�1)�� C� where C� is now the observed pseudo-collapsedthree-point function in angular separation bin �, and M�� is the covariance matrixcomputed from the ensemble of simulated, pseudo-collapsed three-point functions. Thevalues of �2 are given in Table 3, which has the same format as Table 1. The �2 valuesfor the hypothesis that the three-point correlations in the sum maps are consistent withinstrument noise are 138 and 127 for the 53 and 90 GHz data respectively. Only 0.1% ofour 53 and 90 GHz di�erence simulations had a larger �2. We conclude that there existnon-vanishing pseudo-collapsed three-point correlations in our sky at the �99.9% con�dencelevel. However, when we include the e�ects of cosmic variance, the �2 values diminishconsiderably. Both the 53 and 90 GHz values fall well within the range of our simulations,



{ 9 {as indicated in Table 3. Thus cosmic variance can comfortably explain the observed level ofpseudo-collapsed three-point correlations.The functional form predicted by Luo & Schramm (1993) for the pseudo-collapsedcon�guration of the three-point function isC(pc)3 (�) = k2[2C2(2:6�)C2(�) + C22(�)] + k3C2(2:6�)C22(�)where we have used the fact that the mean separation between nearest neighbor pixels is� 2:6�. For the form of C2 given in x2 we �nd C2(2:6�) = 4:09. Using the above modelfunctions and the covariance matrices computed from the ensemble of pseudo-collapsedfunctions, we perform least squares �ts for k2 and k3 as in x2. The results are given in Table4. As before, the results are consistent with zero; additionally, since the pseudo-collapsedcon�guration has greater sensitivity, the con�dence intervals are somewhat smaller thanthose derived from the equilateral con�guration.4. ConclusionsWe have evaluated the three-point temperature correlation function for the �rst yearCOBE DMR sky maps and �nd evidence for non-zero three-point correlations in the data.However, we demonstrate that the observed level of uctuations are consistent with thelevel expected to result from the superposition of instrument noise and CMB sky signalarising from a Gaussian, scale-invariant power law model of initial uctuations, with aquadrupole normalized amplitude of 17 �K. We have placed limits on the amplitudes ofintrinsic three-point correlations with speci�c, theoretically-motivated functional forms.Given that the three-point function is a cubic statistic, the noise levels will diminishrelatively rapidly (/ time�3=2) with additional data. In the four year 53 GHz maps, therms noise per 2.6� angular separation bin will be roughly eight times smaller than thelevels depicted in Figures 1a and 2a. This corresponds to �(11-12 �K)3 for the equilateralcon�guration and �(6-9 �K)3 for the pseudo-collapsed con�guration, depending on angularseparation. Thus, our sensitivity to three-point correlations will ultimately be limited bycosmic variance.



{ 10 {Table 1. �2 Values for the Equilateral Con�gurationaDatab �2(M (+)�� ) �2(M (�)�� )c53 GHz C(+)� 49 (42%) 69 (4%)53 GHz C(�)� � � � 51 (36%)90 GHz C(+)� 50 (39%) 57 (18%)90 GHz C(�)� � � � 87 (0.05%)aThere are 48 angular separation bins in the equilateral three-point function.bC(�)� denotes a three-point function computed from an (A�B)/2 map.cM (�)�� denotes a covariance matrix computed from an ensemble of simulated (A�B)/2maps; separate covariance matrices were computed for the 53 and 90 GHz noise levels.Table 2. 68% Con�dence Intervals, in �K3, for k2 and k3aFrequencyb k2c k3d53 GHz �324 < k2 < 2841 �167 < k3 < 75090 GHz �7325 < k2 < �431 �2020 < k3 < 118Average �1074 < k2 < 1803 �324 < k3 < 519aApproximate 68% con�dence intervals, derived from the equilateral con�guration, includeuncertainties due to cosmic variance.bThe line denoted \Average" gives weighted average con�dence intervals under theassumption that the 53 and 90 GHz uncertainties are uncorrelated.ck2 is the coe�cient of the model function C22(�)dk3 is the coe�cient of the model function C32(�)



{ 11 {Table 3. �2 Values for the Pseudo-collapsed Con�gurationaDatab �2(M (+)�� ) �2(M (�)�� )c53 GHz C(+)� 50 (83%) 138 (0.01%)53 GHz C(�)� � � � 71 (42%)90 GHz C(+)� 89 (18%) 127 (0.01%)90 GHz C(�)� � � � 114 (0.9%)aThere are 71 angular separation bins in the pseudo-collapsed three-point function.bC(�)� denotes a three-point function computed from an (A�B)/2 map.cM (�)�� denotes a covariance matrix computed from an ensemble of simulated (A�B)/2maps; separate covariance matrices were computed for the 53 and 90 GHz noise levels.Table 4. 68% Con�dence Intervals, in �K3, for k2 and k3aFrequencyb k2c k3d53 GHz �169 < k2 < 644 �9 < k3 < 53490 GHz �1223 < k2 < 113 �1448 < k3 < �353Average �323 < k2 < 371 �212 < k3 < 276aApproximate 68% con�dence intervals, derived from the pseudo-collapsed con�guration,include uncertainties due to cosmic variance.bThe line denoted \Average" gives weighted average con�dence intervals under theassumption that the 53 and 90 GHz uncertainties are uncorrelated.ck2 is the coe�cient of the model function [2C2(2:6�)C2(�) + C22 (�)]dk3 is the coe�cient of the model function C2(2:6�)C22(�)
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{ 13 {

Fig. 1.| a) 53 GHz equilateral three-point correlation functions. The thick line is the resultfor the (A+B)/2 map, the thin line is for the (A�B)/2 map. The grey band represents therms scatter due to instrument noise, see the text for details. b) 53 GHz equilateral three-pointfunction for the (A+B)/2 map. The grey band represents the rms scatter due to simulatedCMB sky signal plus instrument noise, see the text for details. c) 90 GHz equilateral three-point correlation functions, same format as a). d) 90 GHz equilateral three-point correlationfunction, same format as b).
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Fig. 2.| a) 53 GHz pseudo-collapsed three-point correlation functions, same format asFigure 1a. b) 53 GHz pseudo-collapsed three-point function, same format as Figure 1b. c)90 GHz pseudo-collapsed three-point correlation functions, same format as Figure 1c. d) 90GHz pseudo-collapsed three-point correlation function, same format as Figure 1d.


