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ABSTRACT

The angular power spectrum estimator developed by Peebles (1973) and Hauser

& Peebles (1973) has been modified and applied to the 2 year maps produced by the

COBE DMR. The power spectrum of the real sky has been compared to the power

spectra of a large number of simulated random skies produced with noise equal to the

observed noise and primordial density fluctuation power spectra of power law form,

with P (k) ∝ kn. Within the limited range of spatial scales covered by the COBE DMR,

corresponding to spherical harmonic indices 3 ≤ ℓ<

∼ 30, the best fitting value of the

spectral index is n = 1.25+0.4
−0.45 with the Harrison-Zeldovich value n = 1 approximately

0.5σ below the best fit. For 3 ≤ ℓ<

∼ 19, the best fit is n = 1.46+0.39
−0.44. Comparing the

COBE DMR ∆T/T at small ℓ to the ∆T/T at ℓ ≈ 50 from degree scale anisotropy

experiments gives a smaller range of acceptable spectral indices which includes n = 1.

1. Introduction

The spatial power spectrum of primordial density perturbations, P (k) where k is the spatial

wavenumber, is a powerful tool in the analysis of the large scale structure in the Universe. In the

first moments after the Big Bang, the horizon scale ct corresponds to a current scale that is much

smaller than galaxies, so the assumption of a scale free form for P (k) is natural, which implies a
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power law P (k) ∝ kn. Harrison (1970), Zeldovich (1972), and Peebles & Yu (1970) all pointed out

that the absence of tiny black holes implies n<

∼ 1, while the large-scale homogeneity implied by

the near isotropy of the Cosmic Microwave Background Radiation (CMBR) requires n>

∼ 1. Thus

the prediction of a Harrison-Zeldovich or n = 1 form for P (k) by an analysis that excludes all

other possibilities is an old one. This particular scale-free power law is scale-invariant because

the perturbations in the metric (or gravitational potential) are independent of the scale. The

inflationary scenario of Guth (1981) proposes a tremendous expansion of the Universe (by a factor

≥ 1030) during the inflationary epoch, which can convert quantum mechanical fluctuations on a

microscopic scale during the inflationary epoch into Gpc-scale structure now. To the extent that

conditions were relatively stable during the small part of the inflationary epoch which produced the

Mpc to Gpc structures we now study, an almost scale-invariant spectrum is produced (Bardeen,

Steinhardt & Turner 1983). Bond & Efstathiou (1987) show that the expected variance of the

coefficients aℓm in a spherical harmonic expansion of the CMBR temperature given a power law

power spectrum P (k) ∝ kn is < a2
ℓm > ∝ Γ[ℓ+ (n− 1)/2]/Γ[ℓ+ (5−n)/2] for ℓ < 40. Thus a study

of the angular power spectrum of the CMBR can be used to place limits on the spectral index n

and test the inflationary prediction of a spectrum close to the Harrison-Zeldovich spectrum with

n = 1.

The angular power spectrum contains the same information as the angular correlation function,

but in a form that simplifies the visualization of fits for the spectral index n. Furthermore, the

off-diagonal elements of the covariance matrix have a smaller effect for the power spectrum than

for the correlation function. However, with partial sky coverage the multipole estimates in the

power spectrum are correlated, and this covariance must be considered when analyzing either the

correlation function or the power spectrum.

The power spectrum of a function mapped over the entire sphere can be derived easily from

its expansion into spherical harmonics, but for a function known only over part of the sphere this

procedure fails. Wright (1993) has modified a power spectral estimator from Peebles (1973) and

Hauser & Peebles (1973) that allows for partial coverage and applied this estimator to the DMR

maps of CMBR anisotropy. We report here on the application of these statistics to the DMR

maps based on the first two years of data (Bennett et al. 1994). Monte Carlo runs have been used

to calculate the mean and covariance of the power spectrum. Fits to estimate 〈Q2
RMS〉0.5 and n

by maximizing the Gaussian approximation to the likelihood of the angular power spectrum are

discussed in this paper. Since we only consider power law power spectrum fits in this paper, we

use Q as a shorthand for 〈Q2
RMS〉0.5 or Qrms−ps, which is the RMS quadrupole averaged over the

whole Universe, based on a power law fit to many multipoles. 〈Q2
RMS〉0.5 should not be confused

with the actual quadrupole of the high galactic latitude part of the sky observed from the Sun’s

location within the Universe, which is the QRMS discussed by Bennett et al. (1992a).

2. Estimating the Angular Power Spectrum
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Wright (1993) has discussed the modification of the Hauser-Peebles angular power spectrum

estimator for use on CMBR anisotropy maps. We include a description of this method for

completeness. Consider a collection of spectral functions Fℓm which are defined to be orthonormal

in the measure dΩ/4π. These are the real spherical harmonics, normalized to have an RMS value

of unity for each harmonic.

The inner product of spatial functions f and g is defined as

< fg >=

∫

f(Ω)g(Ω)dΩ/4π. (1)

Note that the Fℓm’s satisfy

< FℓmFℓ′m′ >= δℓ′

ℓ δm′

m . (2)

Given the temperature distribution T (Ω), define the RMS power at each multipole ℓ as

T 2
ℓ =

ℓ
∑

m=−ℓ

|< FℓmT >|2 (3)

The Hauser-Peebles approach to power spectra on the sphere with non-uniform or absent coverage

involved correcting for the average density of sources: the F00 term. In the case of the DMR maps,

we clearly should also correct for dipole terms.

Redefine the inner product to apply to the non-uniformly covered sphere:

< fg >=

∑N
j=1 wjfjgj
∑N

j=1 wj

(4)

where j is an index over pixels, and wj is the weight per pixel. In the galactic plane, wj = 0. The

galactic plane cut used in this paper excludes the 1/3 of the sky with |b| < 19.5◦. Outside of the

galactic plane, one can choose whether to have wj follow the map weights based on the number

of observations, Nobs. We have used uniform weights instead of Nobs weights, which increases the

effect of radiometer noise in the results, but also reduces and simplifies the correlation between

different Tℓ’s in the result.

Now define revised functions Gℓm for ℓ > 1 given by

Gℓm = Fℓm − F00 < F00Fℓm >

< F00F00 >
−

1
∑

m′=−1

F1,m′ < F1,m′Fℓm >

< F1,m′F1,m′ >
. (5)

These functions are orthogonal to the monopole and dipole terms in the region covered by the map

with the specified weights. But they are not orthogonal to each other, nor are they normalized.

The function G31 is substantially affected by the dipole removal, since the galactic plane cut

couples harmonics with ∆ℓ = ±2 and ∆m = 0. On the other hand G13,13 is not much affected by

the monopole plus dipole removal but is far from normalized in the polar caps, since most of its

power is concentrated in the galactic plane.
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We can now define the terms used by Hauser & Peebles: the normalization integral for Gℓm

Jm
ℓ =< GℓmGℓm > (6)

and the estimated spectrum

Zm
ℓ = | < GℓmT > |2/Jm

ℓ . (7)

Hauser & Peebles recommend that the estimate to be used for the spectrum should be the average

value of the Zm
ℓ ’s weighted by the Jm

ℓ ’s. This quantity is

T 2
ℓ

2ℓ + 1
≈< Zm

ℓ >m=

∑ℓ
m=−ℓ < GℓmT >2

∑ℓ
m=−ℓ Jm

ℓ

. (8)

The DMR experiment has two independent channels, TA and TB , at each of three frequencies:

31, 53 and 90 GHz. The sum and difference maps formed from the A and B channel maps can

be used to determine error associated with this estimate of T 2
ℓ . Since T 2

ℓ is obtained as a sum of

squares, it is necessarily positive, and is thus a biased estimator. The sum and difference maps

can also be used to correct this bias. Let the sum map be S = (TA + TB)/2 while the difference

is D = (TA − TB)/2, where TA and TB are the maps produced by the A and B sides of the DMR

instrument. Then an unbiased estimate of the true power spectrum of the sky is given by

T 2
ℓ ≈ (2ℓ + 1)

∑ℓ
m=−ℓ (< GℓmS >2 − < GℓmD >2)

∑ℓ
m=−ℓ Jm

ℓ

. (9)

These statistics evaluated for the 53+90 GHz maps with the first 2 years of data are shown

in Figure 1. Assuming that both the noise map in D and the cosmic plus noise map in S are

described by isotropic Gaussian random processes (independent of m), we get an estimate for the

uncertainty in T 2
ℓ :

σ2(T 2
ℓ ) =

2(2ℓ + 1)2
∑

(Jm
ℓ )2

[

(
∑

< GℓmS >2
)2

+
(
∑

< GℓmD >2
)2

]

(
∑

Jm
ℓ

)4
. (10)

This error estimate provides the error bars in Figure 1. The Monte Carlo simulations discussed

below have shown that this error estimate is correct: the mean over many simulations of the

variance in Equation 10 agrees with the variance computed from the scatter in the power spectra

computed using Equation 9. This uncertainty can easily be approximated for the case of no

galactic plane cut, and small signal to noise ratio. In this case Jm
ℓ = 1, and the expected value of

< GℓmS >2 and < GℓmD >2 are both ∝ σ2
1/Ntot, where σ1 is the uncertainty in a single DMR

observation and Ntot is the total number of observations over the whole sky. Thus the variance of

T 2
ℓ is

σ2(T 2
ℓ ) ∝ (2ℓ + 1)

σ4
1

N2
tot

(11)

in this case. For the Harrison-Zeldovich spectrum predicted by inflation, the signal to noise ratio

of T 2
ℓ varies like ℓ−1.5. Because of this rapid decrease of significance with increasing ℓ, we have
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constructed binned statistics by summing neighboring T 2
ℓ into bins covering the ranges ℓ = 2,

3, 4, 5-6, 7-9, 10-13, and 14-19. These bins are approximately uniform in ln ℓ. These binned

statistics are used on plots to avoid clutter, but the maximum likelihood fits discussed below use

the unbinned statistics.

These T 2
ℓ ’s are quadratic statistics derived from the DMR maps. Wright et al. (1994) define

an averaged response of a quadratic statistic to the spherical harmonics of a given order ℓ′. Let

T 2
ℓ,ℓ′m′ be the response in the ℓth order when the input is the spherical harmonic Fℓ′m′ . The mean

over m′ of this quantity, needed to analyze isotropic random processes, is

T 2
ℓ,ℓ′ =

∑ℓ′

m′=−ℓ′ T
2
ℓ,ℓ′m′

2ℓ′ + 1
(12)

Table 1 shows 1000 times this quantity for ℓ = 2 . . . 19 and ℓ′ = 0 . . . 19 when the galactic plane is

cut at |b| = 19.5◦. Note the strong coupling of orders separated by ∆ℓ = ±2 caused by the galactic

plane cut. With no galactic plane cut, T 2
ℓ,ℓ′ = δℓ′

ℓ for ℓ ≥ 2.

The values in Table 1 can be used to estimate the response to power law power spectra of

primordial density perturbations with an amplitude Q and a power law index of n:

T 2
ℓ (Q,n) ≈ Q2

∞
∑

ℓ′=2

(2ℓ′ + 1)

5
G2

ℓ′T
2
ℓℓ′

Γ[ℓ′ + (n − 1)/2]Γ[(9 − n)/2]

Γ[ℓ′ + (5 − n)/2]Γ[(3 + n)/2]
(13)

where Gℓ is the coefficient of the Legendre polynomial expansion of the beam given in Wright et

al. (1994). The effective spherical harmonic index defined by Wright et al. (1994),

ℓeff = 2exp

[

∂ ln
(

T 2
ℓ /Q2

)

∂n

∣

∣

∣

∣

∣

n=1

]

, (14)

can be evaluated either from the sum above or from the mean of Monte Carlo simulations. The

result is that ℓeff is significantly smaller than ℓ. The solid curve in Figure 2 shows the relationship

for |b| > 19.5◦. Even for the case of no galactic plane cut, ℓeff is smaller than ℓ when ℓ > 2, as

is shown by the dashed curve in Figure 2. For ℓ’s beyond the DMR beam cutoff at ℓ ≈ 19 the

response to an n = 1 input spectrum is dominated by the off-diagonal response to low ℓ’s, so ℓeff

saturates. These high ℓ statistics are primarily sensitive to high n models.

3. Monte Carlo Simulations

Monte Carlo simulations of the T 2
ℓ statistics have been done for n = −0.75 to 2.75 in

P (k) ∝ kn, and various values of Q. Since the power spectrum is a quadratic function of the sky

temperatures, calculation at 3 different values of Q for a given realization of the detector noise
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and cosmic variance suffice to produce the result for all values of Q using quadratic interpolation.

Therefore the power spectrum of a particular Monte Carlo realization is given by

T 2
ℓ (Q,n) = a(n)Q2 + b(n)Q + c(n) (15)

and the mean power spectrum of a set of Monte Carlo skies, T 2
ℓ (Q,n), is given by

T 2
ℓ (Q,n) = a(n)Q2 + b(n)Q + c(n). (16)

Note that the expected values of b(n) and c(n) are zero, but the actual values from a finite set of

Monte Carlo simulations will be non-zero. The covariance matrix C(Q,n) of the T 2
ℓ statistics is

also determined using the Monte Carlo simulations. Since the T 2
ℓ are quadratic functions of Q,

the covariance matrix is a quartic polynomial in Q. The coefficients of the odd powers of Q in

this polynomial have expected values of zero, so the covariance matrix breaks into a noise-noise

part (the coefficient of Q0), a signal-noise part (the coefficient of Q2) and a signal-signal part (the

coefficient of Q4). Seljak & Bertschinger (1993) decompose the covariance matrix of the angular

correlation function in the same way.

The radiometer noise contribution to the simulated maps includes the positive noise

correlation for pixels separated by 60◦ using a corrected version of the technique given in Wright

et al. (1994). The DMR maps are found by solving the matrix equation AT = M (Lineweaver et

al. 1994), where A is a sparse symmetric matrix, with diagonal elements Aii = Ni, the number

of observations of the i’th pixel; and off-diagonal elements Aij equal to minus the number of

times the i’th and j’th pixels were compared. Wright et al. (1994) assumed that the right-hand

side vector M would be uncorrelated, but it is actually anti-correlated for pixels separated by

60◦. A correct way to generate correlated noise maps is to note that σ2
1A

−1, with σ1 being the

error in a single sample, is the covariance matrix of the noise maps. This implies that noise

maps can be created using T = σ1A
−0.5U , where U is a vector of uncorrelated, zero mean unit

variance Gaussian random numbers. Even though A is singular, a series expansion of A−0.5

converges rapidly except for the eigenvector corresponding to the mean of the map. This series is

derived by writing A = D(I + E)D, with Dij = δij

√
Aii and Eij = (1 − δij)Aij/

√

AiiAjj. Then

A−0.5 ≈ D−1(I − 0.5E + 0.375E2 − . . .). The first term gives an uncorrelated noise map, while

the second term gives a first-order correction for the 60◦ correlation that is exactly one-half the

correction used by Wright et al. (1994). Thus we first generate a 0’th order map using uncorrelated

random numbers scaled by N−0.5
i . The first order correction is 1/2 of the weighted mean over the

reference ring at 60◦ separation of the 0’th order map values, with the weights given by the number

of times each pixel pair is observed. The second order correction is 3/4 of the weighted mean

over the reference ring of the first order correction. The m’th order correction is (2m − 1)/(2m)

of the weighted mean over the reference ring of the (m − 1)’th order correction. A similar series

approximation for the covariance matrix itself is A−1 ≈ D−1(I − E + E2 − . . .)D−1.
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4. DMR Data Selection and Power Spectrum Estimates

The data analyzed in this paper are the maps from the first 2 years of DMR data

discussed by Bennett et al. (1994). The maps are made using pixels with cube faces oriented

in galactic coordinates. To minimize the noise, a linear combination of the 53 GHz and 90

GHz channels is made: 0.6T53/0.931 + 0.4T90/0.815. The denominators in this expression

convert the Rayleigh-Jeans differential temperatures T53 and T90 into thermodynamic ∆T ’s, and

the 60:40 weighting is used because the 53 GHz channels are the most sensitive. This linear

combination applied to the publicly released 1 year maps in ecliptic oriented pixels has also been

analyzed. A cross-over version of this combination, using 53A+90B and 53B+90A, has also been

analyzed. A second linear combination used is the “No Galaxy” map constructed using weights

TNG = −0.4512T31 + 1.2737T53 + 0.3125T90. This combination is calibrated in thermodynamic

∆T units, gives zero response to the mean galactic plane and to free-free emission (Bennett et

al. 1992a). The 53 GHz maps are also analyzed by themselves, using T53/0.931 to convert to a

thermodynamic ∆T scale. Finally, the cross-power spectrum of the 53 × 90 GHz maps has been

found, by letting the sum map be the average of the 53 and 90 GHz maps, each converted into

thermodynamic ∆T ’s, while the difference map D is (53 − 90)/2. Table 2 gives the binned power

law statistics for these four data sets. The error bars are the square root of the diagonal elements

of the binned covariance matrix C(Q,n) from the Monte Carlo runs, evaluated at the best fit

values of Q and n, and thus include both radiometer noise and “cosmic variance”. The radiometer

noise for each case is derived from the variance of the difference maps. The “cosmic variance”

is the error in estimating the global mean properties of the Universe from a limited sample. It

can be estimated from Equation 10 and Equation 9 in the case where the difference map is zero,

giving a limiting fractional precision of σ(T 2
ℓ )/T 2

ℓ ≈
√

4π/[Ω(ℓ + 0.5)], where Ω is the sky coverage

(Scott, Srednicki & White 1994).

5. Maximum Likelihood Estimation

Given the mean power spectrum T 2
ℓ (Q,n), the covariance matrix C(Q,n) and the actual power

spectrum T 2
ℓ , define the deviation vector eℓ = T 2

ℓ −T 2
ℓ (Q,n) and the χ2 statistic χ2 = eT C−1e. All

of the fits in this paper are based on the range ℓ = ℓmin . . . ℓmax with ℓmin = 3 and ℓmax = 19or30.

C is thus a 17 × 17 or 28 × 28 matrix. Ignoring the quadrupole is reasonable because the galactic

corrections are largest for ℓ = 2, and the maximum order used is set by the DMR beam-size of

7◦ and the increased computer time required to analyze more orders. Since the magnitude of the

covariance matrix gets larger rapidly when Q increases there is a bias toward large values of Q

when minimizing χ2. One can allow for this by minimizing −2 ln(L) instead of χ2, where L is the

Gaussian approximation to the likelihood:

− 2 ln(L) = χ2 + ln(det(C)) + const. (17)
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Seljak & Bertschinger (1993) have applied this method to the correlation function of the DMR

maps. This method has the interesting property that if the observed power spectrum matches the

model exactly then the fitted value of Q is significantly less than the true value. At the minimum

of χ2, which is χ2 = 0 in this case, there is still a large slope in −2 ln(L) because of the rapid

variation of ln(det(C)) with Q. Figure 3 shows this effect: the diamond symbol shows the values

of the amplitude and n obtained by minimizing −2 ln(L) when the observed power spectrum is the

mean of 4000 Monte Carlo’s with n = 1 and Q = 17 µK. It is clearly biased toward low amplitude

when compared to the dots, which show fits to the individual power spectra from the 4000 Monte

Carlo’s. The big circle shows the results of minimizing −2 ln(L) for the real sky power spectrum

from the 53+90 map with 2 years of data.

The maximum likelihood technique gives an asymptotically unbiased determination of the

amplitude Q and index n, but only as the observed solid angle goes to infinity. Since we are

limited to about 8 sr of sky, asymptotically unbiased means biased in practice. In addition, the use

of a Gaussian approximation for the likelihood of our quadratic statistics can introduce additional

errors. We use our Monte Carlo simulations to calibrate our statistical methods to avoid biased

final answers. If we maximize L using the simplex method we find that the maximum likelihood

index is biased upward from the input n used in the Monte Carlo’s by ≈ 0.1. An alternative

method based on finding the zero in the finite difference L(Q,n + 0.2)−L(Q,n− 0.2) gave a much

smaller bias but sometimes failed to converge for power spectra that were not well fit by a power

law.

The cross power spectrum of the real sky based on the (53A+90A)×(53B+90B) maps is best

fit in the range 3 ≤ ℓ ≤ 19 by an n = 1.55 model when we use the simplex method to maximize

the likelihood. The improvement in 2 ln(L) between the fit with n forced to be 1 and the n = 1.55

model is 2.5, which corresponds to 1.6 σ. However, 14% of the Monte Carlo simulations made

with nin = 1 and the maximum likelihood amplitude for n = 1 give fitted values of n that are

larger than 1.55, so this deviation from a Harrison-Zeldovich spectrum is really only a “1.06

σ” deviation. Similarly, 54% of simulations made with nin = 1.5 and the maximum likelihood

amplitude for n = 1.5 had fitted indices higher than 1.55, indicating that nin = 1.5 is actually too

high by 0.10σ. Using the same procedure we find that nin = 0.5 is 2.07σ low, nin = 2 is 1.41σ

high, and nin = 2.5 is 2.81σ high. Interpolating to find values of nin that deviate by -1, 0 and +1

σ defines our quoted limits on the spectral index for 3 ≤ ℓ ≤ 19: n = 1.46+0.39
−0.44.

With 4 years of data these limits will improve to ∆n ≈ +0.32
−0.35 for the 53+90 maps if we assume

that the maximum likelihood n remains the same.

While waiting for this paper to be refereed, new computing facilities allowed us to increase

ℓmax to 30. The increased power at 20 ≤ ℓ ≤ 30 expected for nin ≈ 1.5 is not seen in the real

maps, so the fitted values of n go down. Over the 3 ≤ ℓ ≤ 30 range the fits to the cross power

spectra are n = 1.32+0.39
−0.45 for (53A+90A)×(53B+90B), n = 1.22+0.42

−0.46 for (53A+53B)×(90A+90B),

and n = 1.20+0.42
−0.46 for (53A+90B)×(53B+90A). These values have all been de-biased using the
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Monte Carlo simulations as discussed above. Each of these fits involves 4 of the 6 possible cross

spectra among the 53A, 53B, 90A and 90B maps. Averaging these three cross spectra gives us all

of the 6 possible cross spectra. The signal-to-noise ratio improvement from using 6 instead of 4

cross products is quite modest, however, and is equivalent to a 22% increase in integration time.

Thus the adopted range for the spectral index is n = 1.25+0.4
−0.45.

The spectral index from the NG maps is n = 1.41+0.75
−1.17, where the large uncertainty is caused

by the increased noise in the NG maps. The galaxy removal process subtracts the relatively noisy

31 GHz channels of the DMR from a weighted sum of the quieter 53 and 90 GHz channels, and

then rescales the result to allow for the partial cancellation of the cosmic ∆T by the subtraction.

Both the subtraction and the rescaling increase the noise, and the overall process effectively

doubles the radiometer noise.

The difference between the n = 1.22+0.42
−0.46 reported here for 53 × 90 and the n = 1.15 reported

by Smoot et al. (1992) is partly caused by the use of the real beam in this paper instead of the

Gaussian beam approximation used by Smoot et al.. The ratio of G10/G4 from Wright et al.

(1994) for the real beam to the same quantity for the Gaussian approximation is 0.92, and to

compensate for the greater suppression of ℓ = 10 by the real beam the fitting procedure increases

n by 0.2. This increase has been partly compensated by a decrease of n when going from the 1

year to the 2 year maps. The de-biased fit to the 1 year (53A+90A)×(53B+90B) cross-power

spectrum for 3 ≤ ℓ ≤ 30 is n = 1.69+0.45
−0.52.

Bennett et al. (1994), using the real DMR beam instead of the Gaussian approximation, find

that the maximum of the likelihood L(Q,n) occurs at Q = 12.4 µK, n = 1.59 from an analysis

of the cross-correlation function of the 2 year 53 × 90 GHz maps. This analysis included the

quadrupole, and the low observed quadrupole leads to increased values of n when it is included in

the fit. A no quadrupole fit gives the maximum likelihood at n = 1.21+0.60
−0.55.

Smoot et al. (1994) give estimates of the spectral index n derived from the variation with

smoothing angle of the moments of the DMR maps, and of the genus of the DMR maps. The

determination from moments is primarily based on the second moment, and the variation of the

second moment with smoothing angle is equivalent to the power spectrum. This moment method

gives n = 1.7+0.3
−0.6 when applied to the first year maps, which is quite consistent with the power

spectrum of the first year maps. The genus method also gives n = 1.7 but n = 1 does not give a

significantly worse fit.

Górski et al. (1994) examine linear statistics that are similar to 〈GℓmT 〉. These have the

major advantage that their distribution is exactly Gaussian, and thus the Gaussian form for the

likelihood in Equation 17 is exact. The linear statistics used by Górski et al. define a position

in a 961 dimensional space (for ℓ ≤ 30) which is hard to visualize, but using the exact Gaussian

likelihood function for 3 ≤ ℓ ≤ 30, Górski et al. (1994) find the maximum of L(Q,n) occurs at

n = 1.02 for the combined 2 year 53 GHz plus 90 GHz map. Note that the 3 ≤ ℓ ≤ 30 fits in

this paper still include the small effect of the quadrupole on higher ℓ’s due to the off-diagonal
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elements in the response matrix, while those in Górski et al. (1994) are completely independent

of the quadrupole. If Equation 5 is modified to also subtract quadrupole terms from the Gℓm’s,

a different modified Hauser-Peebles power spectrum is obtained which is much more similar to

the ℓ = 3 − 30 analysis of Górski et al. (1994). In this variant the mean power in T 2
4 for n = 1

Monte Carlo skies goes down by 31% while T 2
4 for the real sky goes up by 16%, leading to a higher

ℓ = 4 point that balances the high ℓ = 14 − 19 bin and reproduces the Górski et al. spectral index

n = 1.0. Also note that Górski et al. (1994) use a known shape and amplitude for the noise power,

computed from the covariance matrix of the map, which allows them to use the “auto-power

spectra”, while this paper just assumes that the A and B noises are uncorrelated and can only use

cross-power spectra.

Table 4 summarizes these results and includes model-dependent comparisons of COBE data

to smaller-scale data. The apparent large-scale index we have used above is denoted napp, while

the model-corrected primordial spectral index is npri.

Maximum likelihood fits for Q with n forced to be 1 over the 3 ≤ ℓ ≤ 30 range give new

determinations of the power spectrum amplitude: Q = 20.2± 1.8, 19.2± 1.3 and 15.6± 2.1 µK for

the 53, 53+90 and NG maps. Comparing fits forced to n = 0.5 and n = 1.5 allows a determination

of the effective wavenumber for these amplitudes: ℓeff = 6.1, 6.8 and 4.2 respectively. The

amplitudes for the 53 and 53+90 maps are higher than the 17 µK reported earlier because the

maximum likelihood fit has emphasized the higher ℓ’s in determining the best fit since they have

smaller cosmic variance, and shifting to higher ℓ’s gives a higher amplitude because the best fit

value of n is greater than 1. The values from the NG maps are statistically consistent with the

53+90 maps, but the possibility of a galactic contribution to Q and n is much reduced with the

NG map. The maps are actually more similar than the 26% spread in best fit n = 1 amplitudes

would suggest: the simpler σ(10◦) statistic computed using DMRSMUTH (see Wright et al. 1994)

in |b| > 30◦ is 31.9, 32.6 and 31.4 µK for the 53, 53+90 and NG maps respectively, a spread of

only 4%; while the GET SKY RMS program in |b| > 20◦ gives σ(10◦) = 31.3, 29.1 and 30.7 µK, a

spread of only 7%. Thus most of the difference in the best fit amplitudes is caused by the shift of

the weights to higher ℓ’s.

6. Comparison with Degree Scale Experiments

Several groups have reported statistically significant signals from ∆T experiments with beam

sizes and chopper throws close to 1◦. These results are usually reported as limits on the amplitude

of a Gaussian correlation function,

Cg(θ) = Cg(0) exp(−0.5θ2/θ2
c ). (18)

We have calculated the conversion from the reported limits on Gaussian Cg(0) to limits on power

law power spectra as follows: first, given the size of a Gaussian approximation to the experiment
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beam, σB =FWHM/
√

8 ln 2, find the beam smoothed Gaussian correlation function:

Cg,sm(θ) = Cg(0)
θ2
c

θ2
c + 2σ2

B

exp[−0.5θ2/(θ2
c + 2σ2

B)]. (19)

Then the single subtracted, double subtracted, triple subtracted (Python) or square pattern (+
−

−

+)

double subtracted (WD2) temperature difference is found from

var(∆TSS) = 2(Cg,sm(0) − Cg,sm(θ))

var(∆TDS) = 1.5Cg,sm(0) − 2Cg,sm(θ) + 0.5Cg,sm(2θ)

var(∆TTS) = 1.25Cg,sm(0) − 1.875Cg,sm(θ) + 0.75Cg,sm(2θ) − 0.125Cg,sm(3θ)

var(∆TSQ) = Cg,sm(0) − 2Cg,sm(θ) + Cg,sm(
√

2θ) (20)

where θ is the chopper throw. The same temperature differences are then estimated for power law

power spectra with Q = 17 µK and n = 0.5, 1, and 1.5 using the expression for the beam smoothed

power law correlation function

Cn,sm(θ) = Q2 Γ[(9 − n)/2]

Γ[(3 + n)/2]

×
∞
∑

ℓ=2

(2ℓ + 1)

5
Pℓ(cos θ) exp[−ℓ(ℓ + 1)σ2

B ]
Γ[ℓ + (n − 1)/2]

Γ[ℓ + (5 − n)/2]
. (21)

With Q held fixed, we can define the effective spherical harmonic order for a given experiment

using

ℓeff = 2 × var(∆T [n = 1.5])

var(∆T [n = 0.5]
(22)

where var(∆T ) is one of the four expressions in Equation 20 with Cg,sm replaced by Cn,sm

and the choice of which expression for var(∆T ) to use depends on the chopping strategy used

in each experiment. The ratio of the observed var(∆T ) derived from Cg,sm in Equation 20 to

var(∆T [n = 1]) with Q = 17 µK then defines the y-axis coordinate in Figure 4, while ℓeff gives

the x-axis coordinate.

Ganga et al. (1993, 1994) have have estimated the power spectral parameters Q and n using

data from the Far Infra-Red Survey (FIRS), a balloon-borne survey experiment with a 3.8◦ beam.

They obtain n = 1.0+1.1
−1.0 which is consistent with the value in this paper. From the slope of

their likelihood contours in the Q − n plane, we derive an ℓeff = 6.6 for their n = 1 amplitude

determination, giving the FIRS point on Figure 4.

7. Conclusions

The Hauser-Peebles method of analyzing angular power spectra has been applied to the DMR

maps. While the best fit to the observed power spectrum has n = 1.25+0.4
−0.45, this deviation from
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the n = 1 case is not statistically significant. To obtain a more accurate determination of n we

need to compare the COBE DMR amplitude with ground-based and balloon-based experiments

at smaller angular scales, which are sensitive to higher ℓ’s than COBE.

The ULISSE and Tenerife experiments (Watson et al. 1992) with beam sizes near 6◦ and

chopper throws of 6− 8◦ give upper limits in the ℓeff ≈ 15 range which support n < 1.5. The new

Tenerife results (Hancock et al. 1994) at the same angular scale as Watson et al. give a central

value that is slightly above the earlier upper limit. Both are plotted in Figure 4.

The calculations of Kamionkowski & Spergel (1994) suggest that for open Universes with

Ω ≈ 0.1 the power at low ℓ’s will be depressed relative to the n = 1 flat Universe prediction. This

prediction is consistent with the data presented here, but fluctuations due to cosmic variance at

low ℓ’s are as large as the difference between the open Universe model and the scale-invariant flat

Universe n = 1 model.

The string model prediction given by Bennett, Stebbins & Boucher (1992b) also has lower

power at small ℓ’s, and is thus consistent with the COBE angular power spectrum, but a cutoff at

higher ℓ is needed. Reionization of the Universe at redshift z will hide structures on scales smaller

than 60◦/
√

1 + z and provide the needed cutoff, but z >

∼ 100 is required to have a substantial optical

depth with the baryon abundance derived from Big Bang nucleosynthesis (Walker et al. 1991).

But reionization will not “smear out” the edges produced by strings seen at smaller redshifts.

Thus, unlike most scientific models which can only be falsified, the string model can be verified by

finding “the edge”, which will remain infinitely sharp even with reionization. The sharp edges in

the ∆T maps produced by nearby strings limits the slope of the cutoff to ℓ−1 relative to an n = 1

spectrum. Graham et al. (1994) find that the SP91 data is significantly non-Gaussian, which

suggests that an edge may have been found. If true, this would increase the discrepancy among

the degree-scale experiments, since the presence of an edge would increase the variance, but SP91

has the smallest variance of the four degree-scale experiments.

This expected increase in the variance due to non-Gaussian features is clearly present in the

20 GHz OVRO and RING experiments which have the same angular scale. The RING experiment

covered a larger region, and was contaminated by discrete sources whose existence was verified by

the VLA. The 170 GHz MSAM experiment also saw what appeared to be discrete sources, and

these were not included in the analysis. There is no sensitive, higher angular resolution telescope

to verify that the large deflections seen by MSAM are indeed point sources. Thus it is possible

that the large deflections are true cosmic ∆T ’s. The open circles above the MSAM data points in

Figure 4 show the increased power that results if these data are not excluded in the analysis.

The bulk flow data of Bertschinger et al. (1990) (at ℓeff ≈ 102) require n ≈ 1 to agree with

COBE (Wright et al. 1992), while the larger bulk flow on larger scales seen by Lauer & Postman

(1992) requires n ≈ 2.9 to agree with COBE, if we assume that the reported bulk flow represents

the RMS velocity on this scale.

The experiments at ≈ 1◦ scale offer the possibility of a better determination of the primordial
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power spectrum index n, but the model-dependent effects of the wing of the Doppler peak at

ℓ ≈ 200 must be allowed for. Even in the large angle region ℓ < 30 small model-dependent

corrections must be made. In Figure 4, the upper Cold Dark Matter (CDM) curve has a primordial

spectral index npri = 0.96, but an apparent index napp = 1.1. Since the spectral index 1.25+0.4
−0.45

found in this paper is an apparent index, the COBE power spectrum is consistent with the

prediction from inflation and CDM or Mixed Dark Matter models that napp ≈ 1.1. On the other

hand, vacuum-dominated models such as the Holtzman (1989) model with ΩB = 0.02, h = 1,

ΩCDM = 0.18, and Ωvac = 0.8 will give napp = 0.9 for npri = 1.0 (Kofman & Starobinski 1985),

which deviates by slightly less than 1σ from the COBE value. We have found the values of the

primordial spectral index npri that will connect the COBE NG amplitude and ℓeff found earlier

with the degree-scale experiments using the scalar transfer function from Crittenden et al. (1993).

We have ignored the tensor transfer function because the current accuracy in determining n is not

sufficient to fix the tensor to scalar ratio, and because the excess quadrupole predicted by the

tensor transfer function is not seen in the COBE power spectrum. The South Pole experiment of

Schuster et al. (1993) at ℓ ≈ 44 requires npri ≈ 0.48 ± 0.34 to agree with COBE. The Saskatoon

experiment of Wollack et al. (1993) at ℓ ≈ 55 requires npri ≈ 1.04± 0.29 to agree with COBE. The

PYTHON experiment of Dragovan et al. (1994) at ℓ ≈ 71 requires npri ≈ 1.58 ± 0.22 to match

COBE. The ARGO experiment of de Bernardis et al. (1994) at ℓ ≈ 75 requires npri ≈ 1.10 ± 0.16

to match COBE. The weighted mean of these values is npri = 1.15 ± 0.11. Unfortunately χ2 = 8.0

with 3 degrees of freedom when comparing these four values of npri with this weighted mean,

indicating that these four experiments are mutually inconsistent. If we allow for this discrepancy

by scaling the error on npri, we get a value npri = 1.15 ± 0.2 ± 0.1 from this comparison of COBE

with the degree-scale experiments, where the second error bar is contribution of the uncertainty of

the COBE NG amplitude to npri. Thus this comparison of COBE with degree-scale experiments

gives a more precise value the primordial spectral index that is still consistent with inflation.

With more data from COBE (4 years are recorded) the large angular scale amplitude will become

more and more certain. The ℓeff associated with this amplitude will shift to larger values ≈ 10.

Reliable, consistent determinations of δT on scales ℓeff ≈ 50 will be needed to compare with the

large-scale ∆T . With only two years of data, the COBE DMR large scale amplitude has relative

errors that are two times smaller than the errors of the current degree-scale experiments. Thus

the degree-scale experiments need to be extended to a sky coverage that is 10 times higher than

their current coverage to match the expected COBE uncertainty with four years of data, or else

achieve an equivalent increase in accuracy by reduced noise or systematic errors.

We gratefully acknowledge the many people who made this paper possible: the NASA Office

of Space Sciences, the COBE flight operations team, and all of those who helped process and

analyze the data. In particular we thank Tony Banday, Krys Górski, Gary Hinshaw, Charlie

Lineweaver, Mike Hauser, Mike Janssen, Steve Meyer and Rai Weiss for useful comments on the

manuscript.
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T 2
ℓ for output ℓ =

ℓin 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1076 0 214 0 86 0 22 0 7 0 12 0 13 0 7 0 3

3 0 1020 0 232 0 85 0 22 0 10 0 14 0 12 0 7 0

4 123 0 1076 0 153 0 65 0 21 0 7 0 7 0 8 0 7

5 0 161 0 1051 0 154 0 63 0 18 0 5 0 7 0 8 0

6 35 0 107 0 1087 0 142 0 59 0 17 0 5 0 6 0 8

7 0 44 0 116 0 1084 0 139 0 56 0 16 0 5 0 6 0

8 7 0 35 0 109 0 1090 0 136 0 56 0 17 0 5 0 6

9 0 9 0 37 0 110 0 1089 0 135 0 55 0 17 0 5 0

10 2 0 9 0 37 0 110 0 1089 0 134 0 55 0 16 0 5

11 0 4 0 9 0 36 0 111 0 1088 0 134 0 54 0 16 0

12 3 0 2 0 9 0 38 0 112 0 1088 0 132 0 53 0 16

13 0 4 0 2 0 9 0 39 0 114 0 1086 0 131 0 53 0 16

14 2 0 2 0 2 0 10 0 40 0 113 0 1088 0 130 0 52

15 0 3 0 2 0 3 0 10 0 40 0 114 0 1087 0 130 0 51

16 1 0 2 0 3 0 3 0 10 0 40 0 114 0 1088 0 129

17 0 2 0 3 0 3 0 3 0 10 0 41 0 115 0 1088 0 128

18 0 0 2 0 3 0 3 0 3 0 11 0 41 0 115 0 1088

19 0 1 0 2 0 3 0 3 0 3 0 11 0 41 0 115 0 1088

Table 1: Responses T 2
ℓ (out) as a function of ℓin normalized to 1000

Table 1:
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ℓ ℓeff 2 YR 53 2 YR 53+90 2 YR 53×90 2 YR NG 1 YR 53+90

2 2.1 0.59 ±0.47 0.44 ±0.61 0.45 ±0.58 0.17 ±0.49 0.58 ±0.42

3 3.1 1.06 ±0.52 1.04 ±0.60 1.01 ±0.56 0.96 ±0.56 0.90 ±0.50

4 3.3 1.16 ±0.45 1.11 ±0.52 1.12 ±0.48 1.05 ±0.52 1.14 ±0.46

5-6 4.4 1.23 ±0.40 1.21 ±0.40 1.22 ±0.36 1.00 ±0.54 1.06 ±0.42

7-9 6.2 1.03 ±0.43 1.23 ±0.37 1.19 ±0.33 1.26 ±0.63 1.19 ±0.46

10-13 8.7 1.31 ±0.58 1.51 ±0.44 1.15 ±0.41 -0.22 ±1.12 1.41 ±0.71

14-19 10.7 2.61 ±0.91 1.60 ±0.67 1.69 ±0.65 1.90 ±2.34 2.34 ±1.27

20-30 11.8 3.26 ±2.60 -1.14 ±1.98 0.58 ±1.94 -2.54 ±7.83 -0.19 ±3.98

Table 2: Ratio of the binned power spectrum from Equation 9 to a Q = 17 µK, n = 1 model.

ℓ = 2 3 4 5-6 7-9 10-13 14-19 20-30

2 yr NG 55 208 234 319 365 -45 251 -161

Best fit 202 159 170 272 286 229 167 85

Q=17,n=1 316 216 225 318 290 202 132 63

Noise only 1374 1 253 181 -42 -28 -12 -3

1660 11 745 213 -1 238 311

Signal & Noise 24871 2164 669 30 133 171 -186

364 14803 10865 2018 139 226 -1782

3611 -166 13599 18437 2307 -28 -1230

1717 3922 1214 29146 42218 5603 264

828 1426 720 3907 33123 87028 10292

2055 -187 384 1078 3798 53633 241805

1128 776 -354 949 -241 7243 95862

-351 -211 430 -2326 -1799 229 9420 245629

Table 3: Binned Hauser-Peebles power spectrum of the 2 year NG maps, the best fit n = 1.4

model, the nominal Q = 17, n = 1 model, all in µK2; the upper triangle of the covariance matrix

from noise-only Monte Carlo runs, and the lower triangle of the covariance matrix from the best

fit Monte Carlo runs in µK4.
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Method COBE dataset Q? Result Reference

Correlation function 1 year 53×90 N napp = 1.15+0.45
−0.65 Smoot et al. (1992)

COBE:σ8 1 year 53+90 N npri = 1 ± 0.23 Wright et al. (1992)

Genus vs. smoothing 1 year 53 Y napp = 1.7+1.3
−1.1 Smoot et al. (1994)

RMS vs. smoothing 1 year 53 Y napp = 1.7+0.3
−0.6 Smoot et al. (1994)

Correlation function 2 year 53×90 Y napp = 1.59+0.49
−0.55 Bennett et al. (1994)

Correlation function 2 year 53×90 N napp = 1.21+0.60
−0.55 Bennett et al. (1994)

COBE : 1◦ scale 2 year NG N npri = 1.15 ± 0.2 this paper

Cross power spectrum 1 year (53A+90A)×(53B+90B) N napp = 1.69+0.45
−0.52 this paper

Cross power spectrum 2 year 53A×53B N napp = 1.41+0.75
−1.17 this paper

Cross power spectrum 2 year 53×90 N napp = 1.22+0.42
−0.46 this paper

Cross power spectrum 2 year (53A+90A)×(53B+90B) N napp = 1.32+0.39
−0.45 this paper

Cross power spectrum 2 year (53A+90B)×(53B+90A) N napp = 1.20+0.42
−0.46 this paper

Cross power spectrum 2 year NGA×NGB N napp = 1.41+0.75
−1.17 this paper

Orthonormal functions 2 year 53+90 N napp = 1.02 ± 0.4 Górski et al. (1994)

Table 4: Spectral index determinations
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Fig. 1.— Power spectrum of the 2 year 53+90 DMR maps (points) compared to the mean ±1σ

range of Monte Carlo spectra computed for Harrison-Zeldovich skies with an expected Q = 17 µK.

The lower band is the ±1σ range for noise only Monte Carlos. The lines show the mean power

spectra for Monte Carlo’s with n = −0.5, 0, 0.5, 1, 1.5, 2 & 2.5 all normalized to have the same input

ℓ = 4 amplitude as the Q = 17 H-Z case.
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Fig. 2.— Effective spherical harmonic index ℓeff vs ℓ for the T 2
ℓ statistics with a galactic plane

cut of |b| > 19.5◦ (solid curve and points for the binned statistics), and with no galactic plane cut

(dashed curve). The dotted curve shows ℓeff = ℓ.
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Fig. 3.— Scatter plot showing fitted values for the hexadecupole power and the spectral index n

using 3 ≤ ℓ ≤ 19 for 1000 out of 4000 Monte Carlo skies calculated with 〈Q2
RMS〉0.5 = 17 µK and

n = 1. The big circle is fit to the power spectrum of the 2 year 53+90 GHz maps, the big diamond

is the fit to the mean of the Monte Carlo’s, and the dots are the Monte Carlo’s. The curves show

combinations of n and T 2
4 that give Q = 13, 17 & 22 µK (from top to bottom).
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Fig. 4.— Power spectra normalized to the mean of 17 µK Harrison-Zeldovich Monte Carlo skies.

COBE data points from the 2 year NG DMR maps. Models shown as thin curves: n = 1, Q = 17

µK is the horizontal line, the best fit n = 1.4 power law is the slanted line, & tilted CDM including

the effects of gravitational waves with the long dashed curve showing n = 0.96 (predicted by

φ4 chaotic inflation), and the short dashed curve showing n = 0.85 where the tensor and scalar

quadrupoles are equal (Crittenden et al. 1993). Points with “bent” ends on their error bars are

from other experiments: FIRS (Ganga et al. 1993), (from left to right) ULISSE (de Bernardis et

al. 1992), Tenerife (Watson et al. 1992 and Hancock et al. 1994), the South Pole (Schuster et al.

1993), Saskatoon (Wollack et al.1993), the Python experiment (Dragovan et al. 1994), ARGO (de

Bernardis et al. 1994), MSAM single subtracted (Cheng et al. 1994), MAX (Gunderson et al. (1993)

and Meinhold et al. (1993)), MSAM double subtracted, White dish second harmonic (Tucker et

al. 1993), OVRO (Readhead et al. 1989), OVRO RING (Myers et al. 1993), and the Australia

Telescope (Subrahmayan et al. 1993). The open circles above the MSAM points show the effects

of not removing sources.


