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Gaussian Statistics of the Cosmic Microwave Background:Correlation of Temperature ExtremaIn the COBE 1 DMR Two-Year Sky MapsA. Kogut2;3, A.J. Banday4, C.L. Bennett5, G. Hinshaw2,P.M. Lubin6, and G.F. Smoot7COBE Preprint 94-15Submitted to The Astrophysical Journal LettersAugust 18, 1994ABSTRACTWe use the two-point correlation function of the extrema points (peaks and valleys)in the COBE Di�erential Microwave Radiometers (DMR) 2-year sky maps as atest for non-Gaussian temperature distribution in the cosmic microwave backgroundanisotropy. A maximum likelihood analysis compares the DMR data to n = 1 toymodels whose random-phase spherical harmonic components a`m are drawn fromeither Gaussian, �2, or log-normal parent populations. The likelihood of the 53 GHz(A+B)/2 data is greatest for the exact Gaussian model. All non-Gaussian modelstested are ruled out at 90% con�dence, limited by type II errors in the statisticalinference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.Subject headings: cosmic microwave background | methods:statistical1 The National Aeronautics and Space Administration/Goddard Space Flight Center(NASA/GSFC) is responsible for the design, development, and operation of the Cosmic BackgroundExplorer (COBE). Scienti�c guidance is provided by the COBE Science Working Group. GSFC isalso responsible for the development of analysis software and for the production of the mission datasets.2 Hughes STX Corporation, Laboratory for Astronomy and Solar Physics, Code 685,NASA/GSFC, Greenbelt MD 207713 E-mail: kogut@stars.gsfc.nasa.gov4 Universities Space Research Association, Laboratory for Astronomy and Solar Physics, Code685.9, NASA/GSFC, Greenbelt MD 207715 Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Code 685,Greenbelt MD 207716 UCSB Physics Department, Santa Barbara CA 931067 LBL, SSL, & CfPA, Bldg 50-351, University of California, Berkeley CA 947201



1. IntroductionThe angular distribution of the cosmic microwave background (CMB) probes thedistribution of mass and energy in the early universe and provides a means to testcompeting models of structure formation. One such test is whether or not thedistribution of CMB anisotropies follows Gaussian statistics. In most in
ationarymodels, the large-scale CMB anisotropy results from quantum 
uctuations and followtheir Gaussian statistics. Competing models (topological defects, axions, late phasetransitions) generally involve higher-order correlations and produce non-Gaussiandistributions. Attempts to di�erentiate Gaussian from non-Gaussian distributions onlarge angular scales are complicated by the tendency of any distribution to approachGaussian when averaged over a su�ciently large area (the central limit theorem) andby our inability to measure more than one sample (our observable universe) of thetheoretical parent distribution (\cosmic variance").Several authors (Hinshaw et al. 1994, Smoot et al. 1994, Luo 1994) have testedthe �rst-year anisotropy maps from the COBE DMR experiment and �nd excellentstatistical agreement with the hypothesis that the observed temperature 
uctuationsre
ect random-phase Gaussian initial perturbations. However, since no competingmodels are examined, the compatibility with non-Gaussian models is not tested. Inthis Letter we employ the 2-point correlation function of extrema points to comparethe 2-year DMR maps to a set of broadly applicable toy models employing bothGaussian and non-Gaussian statistics. Simulations employing inputs with knowndistributions indicate that this statistic can successfully distinguish Gaussian fromnon-Gaussian toy models with about 90% con�dence, even at 10� angular resolution,and provide impetus for more computer-intensive studies of speci�c non-Gaussiancosmological models.2. AnalysisWe test for Gaussian statistics using the set of extrema points in the temperature�eld T (�; �), de�ned as those points for which rT = 0. For a pixelized map, thisreduces to the collection of pixels hotter or colder than all of their nearest neighbors.Specifying pixels hotter than their neighbors produces a set of \hot spots" or \peaks",while specifying colder pixels produces \cold spots" or \valleys". An additional dataselection may be performed, requiring jT j to be greater than some threshold �, usuallyexpressed in terms of the standard deviation � of the temperature �eld.The 2-point correlation function of the extrema pixels provides a compactdescription of the data, Cext(�) = Pi;j wiwjTiTjPi;j wiwj ;where w is some weighting factor and the sum runs over all pixel pairs fi; jgseparated by angle �. We consider three applications of the extrema correlation2



function: peak-peak (autocorrelation of just the peaks or just the valleys), peak-valley(cross-correlation of the peak pixels with the valley pixels), and combined extrema(autocorrelation of all extrema points without regard for their second derivative).Bond & Efstathiou (1987) provide analytic approximations for these functions forrandom Gaussian �elds but do not explicitly include the e�ects of instrument noisesuperposed on the CMB. Since the correlation properties of the non-uniform noisein the DMR maps are di�erent from the underlying CMB temperature �eld, we useMonte Carlo techniques instead to derive the mean extrema correlation function andcovariance as a function of the threshold �.We analyze the extrema correlation functions of the 2-year COBE DMR maps(Bennett et al. 1994) and compare the sensitive 53 GHz (A+B)/2 sum maps and(A-B)/2 di�erence maps to Monte Carlo simulations of scale-invariant (n = 1) CMBanisotropy superposed with instrument noise. We generate each CMB realizationusing a spherical harmonic decomposition T (�; �) = P`m a`mY`m(�; �) in whichthe harmonic coe�cients a`m are random variables with zero mean and `-dependentvariance ha2̀mi = (Qrms�PS)2 4�5 �[l + (n� 1)=2] �[(9� n)=2]�[l+ (5 � n)=2]�[(3 + n)=2](Bond & Efstathiou 1987). The coe�cients a`m are drawn from parent populationswith either Gaussian, log-normal, or �2N (N = 1, 5, or 15 degrees of freedom)distributions, normalized to the mean and variances above. A non-Gaussianamplitude distribution for the a`m while retaining random phases provides a simplemodi�cation to the standard Gaussian model of CMB anisotropy. Although thenon-Gaussian amplitude distributions tested here are skew-positive, the resulting skymaps are the convolution of the a`m with the spherical harmonics Y`m and are thuscharacterized by a negative kurtosis in the distribution of temperatures T (e.g., higher\wings" than a Gaussian distribution). We test the sensitivity of our results to thetransformation a`m ! �a`m and �nd no di�erence using either de�nition.The coe�cients a`m de�ne toy models to which speci�c models of structureformation may be compared (e.g. Weinberg & Cole 1992). Cosmological models withrare high-amplitude peaks, typi�ed by topological defect models such as strings ortexture, can be compared to the log-normal or �21 distributions that tend to producesuch features. The log-normal distribution is the most strongly non-Gaussian, whilethe �2N models provide a smooth transition from strongly non-Gaussian (N=1) tonearly Gaussian (N=15). The models tested are not an exhaustive set of non-Gaussian models but are a computationally simple test of the power of variousstatistics on large angular scales.We generate 1000 n = 1 full-sky realizations for each CMB model. To eachCMB realization we add a realization of instrument noise de�ned by the level andpattern of noise in the DMR 2-year 53A and 53B channels (Bennett et al. 1994),then combine the channels to form (A+B)/2 sum maps and (A-B)/2 di�erence maps.We do not include Galactic emission or systematic uncertainties since these are smallcompared to the noise (Bennett et al. 1992, Kogut et al. 1992, Bennett et al. 1994).3



We smooth the maps with a 7� Gaussian full width at half maximum (FWHM)as a compromise between suppressing noise and removing power at small scales,resulting in an e�ective smoothing on the sky of 10�. We reject pixels with Galacticlatitude jbj<20�, remove �tted monopole and dipole temperatures from the survivingpixels, and determine the standard deviation �. A nearest-neighbor algorithm thenforms the collection of extrema pixels at thresholds � = [0; 1; 2]�; these pixels ateach threshold are then used to generate the peak-peak, peak-valley, and combinedextrema correlation functions using unit weighting and 2.�6 bins in the separationangle �. Since, by de�nition, two peaks can not be adjacent, we ignore the bin atzero separation and the �rst non-zero bin in all subsequent analysis. Analysis showsthat the results are dominated by the �rst few remaining bins; consequently, we speedprocessing by truncating the correlation function at separation � = 60�.The correlation functions at thresholds � = [0; 1; 2]� de�ne a vector D, whichwe use to compare the DMR data to Monte Carlo simulations via a Gaussianapproximation to the likelihoodL(Qrms�PS ;�) = (2�)�k=2 exp(�12�2)qdet(M)where �2 = Pij (Di � hDii) (M�1)ij (Dj � hDji), hDi is the simulation mean, andM is the covariance matrix between the k bins of the vector D. The likelihood Lis a function of two parameters: the continuous variable Qrms�PS representing thenormalization and the discrete variable � representing the 5 a`m toy models. Since thecovariance matrixM depends strongly on these parameters, a simple �2 minimizationapproach fails. We evaluate the likelihood L in the 2-dimensional parameter spacefor values of Qrms�PS spanning the range [0, 30] �K and search for the maximum inthe resulting distribution.3. Results and DiscussionFigure 1 shows the likelihood of the 2-year 53 GHz (A+B)/2 maps for both theGaussian and the non-Gaussian models derived from the autocorrelation function ofall extrema pixels. The likelihood function is greatest for the exact Gaussian model,with relative likelihoods for the non-Gaussian models � 0:05. Restricting the analysisto the n = 1 Gaussian models yields a maximum likelihood normalization for the 53GHz (A+B)/2 maps of Qrms�PS = 18:1� 1:9 �K, in agreement with other estimatesof Qrms�PS using the 2-year COBE data (Wright et al. 1994, G�orski et al. 1994,Bennett et al. 1994, Banday et al. 1994). The width of a distribution in Qrms�PS issimilar for all models. The likelihood function of the (A-B)/2 di�erence maps peaksat Qrms�PS = 0 with no signi�cant preference between models. Similar results occurfor the peak-peak and peak-valley correlation functions.The small likelihoods in Figure 1 for the non-Gaussian toy models given theDMR data would seem to rule out these models at high statistical con�dence (>99%).4



However, formal identi�cation of con�dence intervals relies heavily on assumptionsof the statistical distributions in the analysis (e.g. that the residuals D � hDi aremultivariate normal) which are not always realized in practice. Furthermore, sincethe parameter � represents a collection of discrete models instead of a continuousvariable, we can not integrate over � to derive con�dence intervals in the usual way.We resolve these problems, assign formal con�dence intervals, and test for statisticalbias using a Monte Carlo approach.We use the same machinery (likelihood analysis of the extrema correlationfunction) to generate the likelihood L(Qrms�PS ;�) for 5000 simulated skies withQrms�PS=18 �K, 1000 realizations for each of the 5 toy models. For each realizationwe determine the maximum likelihood L(�) evaluated at each model, and studythe resulting distribution of likelihood maxima. Table 1 shows the percentage ofsimulations with maximum likelihood falling under each model. When the input isknown to be Gaussian (column 2), 61% of the simulations correctly identify the exactGaussian as the \best" model, with the remainder incorrectly allocated among thenon-Gaussian models (a type I error). When the input is one of the non-Gaussiantoy models instead (columns 3{6), that model is correctly identi�ed in a similarfraction of the realizations with the caveat that the �21 and log-normal distributionsare nearly degenerate, so their contributions should be added in each column. Thereis no evidence for any statistical bias favoring one particular model. We may thusquantify the con�dence intervals in terms of type II error (accepting a hypothesiswhen it is false): given that the DMR likelihood is greatest for the Gaussian model,how con�dent are we that the CMB is not in fact a realization of one of the non-Gaussian toy models? From the �rst row of Table 1 (Gaussian model received highestlikelihood) we see that the probability of obtaining this result is three times larger fora Gaussian CMB than for any of the non-Gaussian toy models. We may thus rejectthe non-Gaussian toy models at 75% con�dence.A more powerful test uses additional information from the likelihooddistribution. We have examined the sub-set of simulations for which the best �ttedmodel was not, in fact, the correct input, and found that the likelihoods in thesecases did not strongly select against the rejected models. The DMR likelihood doesnot show this pattern: the second-best likelihood (for the �215 model) is only 0.08.Table 2 shows the percentage of simulations meeting 2 conditions: that the likelihoodpeaks in a selected output model (as in Table 1), and that the next-best likelihood besmaller than 0.08. We recover the same overall pattern as Table 1: the most probableoutcome is to recover the input model correctly, but the fraction of both type I errors(columns) and type II errors (rows) is reduced. The probability of obtaining a resultsimilar to the DMR likelihood is approximately ten times greater for the GaussianCMB model than the non-Gaussian toy models, allowing us to reject these models at90% con�dence.The topological quantity known as the genus has also been proposed as a testfor non-Gaussian statistics in the CMB (Gott et al. 1990). Smoot et al. (1994) showthat the genus of the �rst-year DMR maps is consistent with random-phase Gaussian5



models. We have performed a likelihood analysis of the genus of the 2-year DMRmaps compared to the same set of non-Gaussian toy models used for the extremacorrelation analysis above. Although the genus likelihood is also greatest for theexact Gaussian model, the ability to reject the non-Gaussian models is weaker, withmaximum likelihood Max(L) � 0.3 for the log-normal and �21 models using the genuscompared to Max(L) � 0.05 using the extrema correlation function. The genus ofthe 2-year DMR maps will be discussed in greater detail in a future paper.Both the genus and the extrema correlation function show the 2-year DMRdata to be consistent with the hypothesis of random-phase Gaussian statistics, andinconsistent at the 90% con�dence level with random-phase toy models with non-Gaussian distributions of the spherical harmonic coe�cients a`m. The ability to rejectnon-Gaussian models is limited by type II errors and re
ects the generally larger roleof cosmic variance in the non-Gaussian toy models tested in this paper. Althoughthe statistical power of these tests is not overwhelming, it does demonstrate thatlarge-beam experiments can probe the statistical distribution of CMB anisotropy.Physically motivated non-Gaussian models (e.g. topological defects) have strongphase correlations as well, which would be expected to increase the statistical powerof these tests. There is thus an incentive to pursue further tests of speci�c modelsusing the COBE DMR data.We gratefully acknowledge the dedicated e�orts of those responsible for theCOBE DMR data. C. Lineweaver and L. Tenorio provided helpful discussion ofstatistical techniques. COBE is supported by the O�ce of Space Sciences of NASAHeadquarters. ReferencesBanday, A.J., et al. 1994, ApJ, submittedBennett, C.L., et al. 1994, ApJ, in pressBennett, C.L., et al. 1992, ApJ, 396, L7Bond, J.R. & Efstathiou, G. 1987, MNRAS, 226, 655Hinshaw, G., et al. 1994, ApJ, 431, 1G�orski K.M., Hinshaw, G., Banday, A.J., Bennett, C.L., Wright, E.L., Kogut, A.,Smoot, G.F., and Lubin, P. 1994, ApJ, 430, L89Gott, J.R., Park, C., Juszkiewicz, R., Bies, W.E., Bennett, D.P., Bouchet, F.R., andStebbins, A. 1990, ApJ, 352, 1Kogut, A., et al. 1992, ApJ, 401, 1Luo, X. 1994, Phys. Rev. D, 49, 3810Smoot, G.F., Tenorio, L., Banday, A.J., Kogut, A., Wright, E.L., Hinshaw, G., andBennett, C.L. 1994, ApJ, in pressWeinberg, D.H. & Cole, S. 1992, MNRAS, 259, 652Wright, E.L., Smoot, G.F., Bennett, C.L., and Lubin, P.M. 1994, ApJ, in press6



Table 1: Percentage of Simulations From Single TestFitted Input ModelaModel Gaussian �215 �25 �21 Log-NormalGaussian 61 21 20 23 24�215 16 56 21 21 23�25 11 11 44 15 18�21 5 6 7 28 15Log-Normal 7 6 8 13 20a Percentage of 1000 simulations of each input model whose likelihood maxima fallsunder each output model.
Table 2: Percentage of Simulations From Double TestFitted Input ModelaModel Gaussian �215 �25 �21 Log-NormalGaussian 20 2 2 3 4�215 1 16 1 3 3�25 1 1 10 1 2�21 2 2 3 15 8Log-Normal 4 4 5 7 13a Percentage of 1000 simulations of each input model whose likelihood maxima fallsunder each output model, and whose next-best likelihood is less than 0.08.7



Figure 1: Likelihood function of the 2-year DMR 53 GHz (A+B)/2 extremacorrelation function for Gaussian and non-Gaussian toy models.8


