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ABSTRACT

The cosmic microwave background (CMB) is a unique probe of cosmological param-

eters and conditions. There is a connection between anisotropy in the CMB and the

topology of the Universe. Adopting a universe with the topology of a 3-Torus, or a

universe where only harmonics of the fundamental mode are allowed, and using 2-years

of COBE/DMR data, we obtain constraints on the topology of the Universe. Previous

work constrained the topology using the slope information and the correlation function

of the CMB. We obtain more accurate results by using all multipole moments, avoiding

approximations by computing their full covariance matrix. We obtain the best fit for

a cubic toroidal universe of scale 7200h−1Mpc for n = 1. The data set a lower limit

on the cell size of 4320h−1Mpc at 95% confidence and 5880h−1Mpc at 68% confidence.

These results show that the most probable cell size would be around 1.2 times larger

than the horizon scale, implying that the 3-Torus topology is no longer an interesting

cosmological model.

Subject headings: cosmic microwave background, large-scale structure of universe.
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1. INTRODUCTION

One of the basic assumptions in modern cosmology, the Cosmological Principle, is that on

large-scale average our Universe is spatially homogeneous and isotropic. The apparent isotropy on

large scales is normally explained as a consequence of spatial homogeneity, in turn understood as a

natural result of an “inflationary” period of the early universe (see e.g. Kolb and Turner, 1990). An

alternative approach to explaining the apparent homogeneity is to assume an expanding universe

with small and finite space sections with a non-trivial topology (Ellis and Schreiber, 1986), the

“small universe” model.

The “small universe”, as its name suggests, should be small enough that we have had time to see

the universe around us many times since the decoupling time. The topology of the spatial sections

can be quite complicated (Ellis, 1971); however, it is possible to obtain small universe models

that reproduce a Friedmann-Lemâıtre model by choosing certain simple geometries. For example,

choosing a rectangular basic cell with sides Lx, Ly and Lz and with opposite faces topologically

connected, we obtain a toroidal topology for the small universe known as T 3. The never-ending

repetition of this T 3 basic cell should reproduce, at least locally, the Friedmann-Lemâıtre universe

model with zero curvature.

The small universe model has received considerable attention in the past few years, since the

topology of the Universe is becoming an important problem for cosmologists. From the theoretical

point of view, it is possible to have quantum creation of the Universe with a nontrivial topology, i.e.,

a multiply-connected topology (Zel’dovich and Starobinsky, 1984). From the observational side,

this model has been used to explain “observed” periodicity in the distributions of quasars (Fang

and Sato, 1985) and galaxies (Broadhurst et al., 1990).

There are four known approaches for placing lower limits on the cell size of the T 3 model.

The first two methods constrain the parameter R, an average length scale of the small universe,

defined as R = (LxLyLz)
1/3. The third and fourth methods constrain the parameter L/y, the

ratio between the cell size L, here defined as L = Lx = Ly = Lz, and radius of the decoupling
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sphere y, where y = 2cH−1
o . The first method constrains R assuming that it is larger than any

distinguishable structure. Using this method, Fairall (1985) suggests that R > 500Mpc. The

second method constrains R based on “observed” periodicity in quasar redshifts. Attempting to

identify opposite pairs of quasars, Fang and Liu (1988) suggested that R > 400h−1Mpc and using

quasar redshift periodicity, Fang and Sato (1985) suggested R > 600h−1Mpc. The third and fourth

methods constrain L/y using the CMB. With the third method, Stevens et al. (1993) obtain the

constraint L/y = 0.8 using the slope information from the 1st year of COBE/DMR data (Smoot

et al., 1992) while, with the fourth method, Jing and Fang (1994) obtain a best fit L/y ≈ 1.2 using

the correlation function from the 2-year COBE/DMR data.

As pointed out by Zel’dovich (1973), the power spectrum of density perturbations is continuous

(i.e., all wave numbers are possible) if the Universe has a Euclidean topology, and discrete (i.e., only

some wave numbers are possible) if the topology has finite space sections. Many years later these

ideas were related with the expected CMB power spectrum (Fang and Mo, 1987; Sokolov, 1993;

Starobinsky, 1993), mainly after the quadrupole component had been detected by COBE/DMR.

Our goal is to place new and accurate limits on the cell size of a small universe using the

harmonic decomposition technique to obtain the data power spectrum (Górski, 1994) and likelihood

technique (Bunn and Sugiyama, 1994) to constrain L/y. The method that we use to constrain the

parameter L/y is quite different from previous work. The method adopted by Stevens et al. (1993)

constrains the cell size based in the power spectrum of the CMB; they graphically compare the

power spectrum of the standard model with the power spectrum expected for the small universe,

normalizing to the l = 20 component. Jing and Fang (1994) adopt a different approach: they

constrain the cell size using the correlation function of the CMB and making the approximation

that bins of the correlation function are uncorrelated. Our analysis, however, is exact. We compute

the full covariance matrix for all multipole components and use this covariance matrix to make a χ2

fit of the power spectrum extracted from the 2 years of COBE/DMR data to the power spectrum

expected for a small universe with different cell sizes L. For simplicity, we limit our calculation

to the case of a T 3 cubic universe. We present, in the next sections, a description of the power
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spectrum expected in a T 3 cubic universe model and the likelihood technique used to constrain

L/y.

2. POWER SPECTRUM OF THE T 3
UNIVERSE MODEL

If the density fluctuations are adiabatic and the Universe is spatially flat, the Sachs-Wolfe

fluctuations in the CMB are given by

δT

T
(θ, φ) = −

1

2

H2
o

c2

∑

k

δk
k2

eik·x (1)

(Peebles, 1982), where x is a vector with length y ≡ 2cH−1
o that is pointed in the direction of

observation (θ, φ), Ho is the Hubble constant (written here as 100h km/s/Mpc) and δk is the

density fluctuation in Fourier space with the sum taken over all wave numbers k.

It is customary to expand the CMB anisotropy in spherical harmonics

δT

T
(θ, φ) =

∞∑

l=0

l∑

m=−l

almYlm(x̂), (2)

where alm are the spherical harmonic coefficients and x̂ is the unit vector in direction x. The

coefficients alm are given by

alm = −2πil
H2

o

c2

∑

k

δk
k2

jl(ky)Y ∗

lm(k̂), (3)

where jl are spherical Bessel functions of order l. If we assume that the CMB anisotropy is a

Gaussian random field, the coefficients alm are independent Gaussian random variables with zero

mean and variance

〈|alm|2〉 = 16π
∑

k

|δk|
2

(ky)4
j2
l (ky) (4)

(Fang and Mo, 1987; Stevens et al., 1993). Assuming a power-law power spectrum with shape

P (k) = |δk|
2 = Akn, where A is the amplitude of scalar perturbations and n the spectral index, it

is possible to perform the sum in (4), replacing it by an integral, and to obtain

〈|alm|2〉 = C2

Γ(9−n
2

)

Γ(3+n
2

)

Γ(l + n−1

2
)

Γ(l + 5−n
2

)
(5)
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(see e.g. Bond and Efsthatiou, 1987). In the literature, the average over the canonical ensemble of

universes 〈|alm|2〉 is usually denoted by

Cl ≡ 〈|alm|2〉, (6)

where the power spectrum Cl is related to the rms temperature fluctuation by 〈|δT/T |2rms〉 ≡

∑
l(2l + 1)Cl/4π.

Note that in a Euclidean topology the Sachs-Wolfe spectrum Cl is an integral over the power

spectrum; however, in the T 3 universe this is not the case. In this model, only wave numbers that

are harmonics of the cell size are allowed. We have a discrete k spectrum

k
2 =

3∑

i=1

(
2π

Li

)2

p2
i (7)

(Sokolov, 1993), where L1, L2 and L3 are the dimensions of the cell and pi are integers. For

simplicity, assuming L = Lx = Ly = Lz and the same power-law power spectrum cited before, eq.

(4) can be written as

〈|alm|2〉 =
16πA

yn

∑

px

∑

py

∑

pz

(
L

2πyp

)4−n

j2
l

(
2πyp

L

)
, (8)

where p2 = p2
x + p2

y + p2
z. According to (8), the lth multipole of the CMB temperature is function

of the ratio L/y. This shows that the more multipole components we use in our fit, the stronger

our constraints on the cell size will be. However, we cannot use an infinite number of multipole

components. The maximum number of multipole components, lmax, will be limited by two things:

the limit where the map is noise dominated and the limit where we can truncate the Fourier series

without compromising the harmonic decomposition technique (see Górski, 1994).

Using eq. (8), we calculated the expected power spectrum for a T 3 universe with different cell

sizes L/y from 0.1 to 3.0, n = 1 and lmax = 30, where lmax = 30 is the limit at which we truncate

our data power spectrum. In Figure 1, we plot l(l + 1)Cl versus l and normalize all values to the

last multipole component l = 30. Note that for very small cells (L ≪ y), the low order multipoles

are suppressed. The power spectrum for small cells (as L/y = 0.1, 0.5 or 1.0) shows the presence of

“bumps” that disappear as the cell size increases (L/y ∼> 1.5). The power spectrum finally becomes
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flat for large cell sizes (L/y ∼> 3.0). These “bumps” can be explained if we remember that only the

harmonics of the cell size are allowed to be part of the sum in (8). When the cell size is small there

are fewer modes of resonance, and no modes larger than the cell size appear in the sum in (8). As

the cell size increases, the sum approaches an integral and the T 3 power spectrum becomes flat.

We restrict our analysis to n = 1. This assumption, however, does not weaken our results,

since the T 3 model with other n-values tends to fit the data as poorly as with n = 1. For instance,

we obtain the maximum likelihood at the same ratio L/y for n = 1 and n = 1.5. This happens

because the “bumps”, and not the overall slope, are responsible for the disagreement between the

model and the data.

3. DATA ANALYSIS

Each DMR sky map is composed of 6144 pixels and each pixel i contains a measurement of

the sky temperature at position xi. Considering that the temperatures are smoothed by the DMR

beam and contaminated with noise, the sky temperatures are described by

(
δT

T

)

i
=

∑

lm

almBlYlm(x̂i) + ni, (9)

where Bl is the DMR beam pattern and ni is the noise in pixel i. We use the values of Bl given by

Wright et al. (1994a), which describes the actual beam pattern of the DMR horns, an imperfect

gaussian beam. We model the quantities ni in (9) as Gaussian random variables with mean 〈ni〉 = 0

and variance 〈ninj〉 = σ2
i δij , assuming uncorrelated pixel noise (Lineweaver et al., 1994).

When we have all sky coverage, the alm coefficients are given by

alm =

∫

4π

(
δT

T

)
Y ∗

lm(x̂)dΩ. (10)

In the real sky maps, we do not have all sky coverage. Because of the uncertainty in Galaxy

emission, we are forced to remove all pixels between 20◦ below and above the Galaxy plane. This

cut represents a loss of almost 34% of all sky pixels and destroys the orthogonality of the spherical

harmonics. Replacing the integral in (10) by a sum over the number of pixels that remain in the
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sky map after the Galaxy cut, Npix, we define a new set of coefficients by

blm ≡ w

Npix∑

i=1

(
δT

T

)

i
Y ∗

lm(x̂i), (11)

where the normalization is chosen to be w ≡ 4π/Npix. Substituting (9) into (11), we obtain

blm =
∑

l1m1

al1m1
Bl1Wll1mm1

+ w

Npix∑

i=1

niY
∗

lm(x̂i), (12)

with covariance

〈blmb∗l′m′〉 =
∑

l1m1

Wll1mm1
Wl′l1m′m1

Cl1B
2
l1

+ w2

Npix∑

i=1

σ2
i Y

∗

lm(x̂i)Yl′m′(x̂i), (13)

where

Wll1mm1
≡ w

Npix∑

i=1

Y ∗

lm(x̂i)Yl1m1
(x̂i). (14)

Defining our multipole estimates as

CDMR
l ≡

1

2l + 1

∑

m

blmb∗lm, (15)

their expectation values are simply

〈CDMR
l 〉 ≡

1

2l + 1

∑

m

〈blmb∗lm〉 (16)

and their covariance matrix M is given by

Mll′ ≡
2

(2l + 1)(2l′ + 1)

∑

mm′

〈blmb∗l′m′〉2. (17)

The CDMR
l coefficients are not good estimates of the true multipole moments Cl. However, they

are useful for constraining our cosmological parameters.

The likelihood and the χ2 are, respectively, defined by

− 2 lnL = χ2 + ln |M| (18)

and

χ2 ≡ C
T
M

−1
C, (19)
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where C
T and C are lmax-dimensional row and column vectors with entries Cl = ĈDMR

l −〈CDMR
l 〉

and M is the covariance matrix as described in (17) with dimensions lmax x lmax. Here ĈDMR
l

denotes the CDMR
l -coefficients actually extracted from the data.

Because the perturbations depend on an unknown constant A, the power spectrum normaliza-

tion, we have to constrain two parameters at once. In practice, this calculation is done by fixing

the ratio L/y and changing the normalization by a small factor. We multiply the first term on the

right side of (13) by this factor and calculate a new covariance matrix. Repeating this procedure for

each cell size, we finally get a likelihood grid that constrains the ratio L/y and the normalization

parameter.

4. RESULTS

In Figure 2, we show the angular power spectrum ĈDMR
l extracted from the data. We use a

2-year combined 53 plus 90 GHz map, with Galaxy cut of 20◦, monopole and dipole removed. We

plot l(l + 1)ĈDMR
l versus l from l = 2 to l = 30, with bias (〈CDMR

l 〉 − Cl) removed and error bars

given by the diagonal terms of the covariance matrix M . In computing the bias and error bars,

we assume eq. (5) with n = 1. The shape of this power spectrum and its multipole values are

consistent with values reported by Wright et al. (1994b), and for l > 15 the power spectrum is

basically dominated by noise.

We computed the likelihood function L(L/y, σ7◦), using it to constrain the ratio L/y and the

normalization σ7◦ , where σ7◦ is the rms variance at 7◦. For the data set described above, we found

the maximum likelihood at (L/y, σ7◦) = (1.2, 37.4µK). In Figure 3, we plot the likelihood function

L(L/y, σ7◦). Notice that the likelihoods cannot be normalized because they do not converge to

zero for very large cell sizes, i.e., the volume under the likelihood function is infinite. Since the

likelihoods are not zero for very large cell sizes, we could naively consider that the probability of

the universe being small is essentially zero. However, this conclusion is clearly exaggerated and

based on the fact that we multiplied our likelihoods by a uniform prior, and there is nothing special



– 10 –

about adopting a uniform prior. In order to obtain rigorous confidence limits for our analysis, we

replace the maximum likelihood fit by a minimum χ2 fit.

We compute the chi-squared function χ2(L/y, σ7◦) and use it to constrain the ratio L/y and

the normalization σ7◦ . In Figure 4, we plot the probability that the T 3 model is consistent with the

data as a function of the ratio L/y and the normalization σ7◦ (bottom). Confidence limits of 68%,

95% and 99.7% are shown in the contour plot (top). We found the highest consistency probability

(minimum χ2) at (L/y, σ7◦) = (1.2, 49.7µK), represented by a cross in the contour plot. Removing

the quadrupole, we obtained similar results, see Table 1 for the lower limits on cell sizes. We obtain

the constraint L/y = 1.2+∞

−0.48 at 95% confidence. We cannot place an upper limit on the cell size:

all large cells are equally probable.

5. CONCLUSIONS

The strong constraint from our analysis comes from the predicted power spectrum of the T 3

universe; see Figure 1. According to this plot, a reduction in the cell size to values below the

horizon scale should suppress the quadrupole and low multipole anisotropies, while the suppression

is negligible if the cell is very large, at least, larger than the horizon. It is possible to notice these

properties in Figures 3 and 4: both favor large cell sizes. The observed presence of the quadrupole

and other low order anisotropies automatically constrains our cell to be very large. In other words,

even before making the χ2 fit, we expect to obtain very large cells.

We remind the reader that our analysis is for n = 1. We made this assumption because the

results of fitting the T 3 model seem to be relatively insensitive to changes in n and the “bumps”,

not the overall slope, are responsible for the poor fit between the model and the data. In other

words, our results are independent of any particular inflationary model.

From the COBE/DMR data, we obtain the best χ2 fit for a toroidal universe with L/y = 1.2,

which corresponds to a cell size of L = 7200h−1Mpc. A cell size below 72% of the size of the

horizon (L/y < 0.72) is incompatible with the COBE measurements at 95% confidence, and a
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cell size below the size of the horizon (L/y < 0.98) is ruled out at 68% confidence. Since the T 3

topology is interesting if the cell size is considerably smaller than the horizon, this model loses most

of its appeal.
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Table 1: Lower limits on L/y

Confidence Level L/y with C2 L/y without C2

68 % 0.98 0.97

90 % 0.75 0.68

95 % 0.72 0.65

99.7% 0.61 0.60



– 13 –

REFERENCES

Bond, J.R. & Efsthatiou, G. 1987, Mon. Not. R. Astr. Soc., 226:655.

Broadhurst, T.J. et al. 1990, Nature, 343:726.

Bunn, E. & Sugiyama, N. 1994, preprint (astro-ph/9407069).

Ellis, G.F.R. 1971, Gen. Rel. and Grav., 2(1):7.

Ellis, G.F.R. & Schreiber, G. 1986, Phys. Lett. A, 115(3):97.

Fairall, A.P. 1985, Mon. Not. R. Astr. Soc. of South. Africa, 44(11):114.

Fang, L.Z. & Liu, Y.L. 1988, Mod. Phys. Lett. A, 3(13):1221.

Fang, L.Z. & Mo, H. 1987, Mod. Phys. Lett. A, 2(4):229.

Fang, L.Z. & Sato, H. 1985, Gen. Rel. and Grav., 17(11):1117.

Górski, K.M. 1994, Ap. J. Lett., 430:L85.

Jing, Y.P. & Fang, L.Z., 1994, Phy. Rev. Lett., 73(14):1882.

Kolb, E.W. & Turner, M.S. 1990, The Early Universe, Addison-Wesley.

Lineweaver, C. et al. 1994, Ap. J., 436:452.

Peebles, P.J.E. 1982, Ap. J. Lett., 263:L1.

Smoot, G.F. et al. 1992, Ap. J. Lett., 396:L1.

Sokolov, I.Y. 1993, JETP Lett., 57(10):617.

Starobinsky, A.A. 1993, JETP Lett., 57(10):622.

Stevens, D. et al. 1993, Phys. Rev. Lett., 71(1):20.

Wright, E.L. et al. 1994a, Ap. J., 420:1.

Wright, E.L. et al. 1994b, Ap. J., 436:433.

Zel’dovich, Ya B. 1973, Comm. Astrophys. Space Sci., 5(6):169.

Zel’dovich, Ya B. and Starobinsky, A.A. 1984, Sov. Astron. Lett., 10(3):135.

http://lanl.arXiv.org/abs/astro-ph/9407069


– 14 –

FIGURE CAPTIONS

Figure 1: Expected power spectrum for the T 3 universe model with n = 1 for different cell sizes

with L/y from 0.1 to 3.0.

Figure 2: Power spectrum of the 2-year combined 53+90 GHz COBE/DMR data with bias removed

and the error bars given by the diagonal terms of the covariance matrix M .

Figure 3: The likelihood function L(L/y, σ7◦) for the T 3 universe model with n = 1.

Figure 4: The probability that the T 3 model is consistent with the data is plotted as a function of

the ratio L/y and the normalization σ7◦ (bottom). Confidence limits of 68%, 95% and 99.7% are

shown in the contour plot (top). We found the highest consistency probability (minimum χ2) at

L/y = 1.2, represented by a cross in the contour plot.










