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ABSTRACT

Although the cubic T 3 “small universe” has been ruled out by COBE/DMR results

as an interesting cosmological model, we still have the possibility of living in a universe

with a more anisotropic topology such as a rectangular T 3 “small universe” with one or

two of its dimensions significantly smaller than the present horizon (which we refer to

as T 1- and T 2-models, respectively). In order to rule out these anisotropic topologies

as well, we apply a new data analysis method that searches for the specific kind of

symmetries that these models should produce. We find that the 4 year COBE/DMR

data set a lower limit on the smallest cell size for T 1- and T 2-models of 3000h−1Mpc, at

95% confidence, for a scale invariant power spectrum (n=1). These results imply that

all toroidal universes (cubes and rectangles) are ruled out as interesting cosmological

models.

Subject headings: cosmic microwave background, large-scale structure of universe.
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1. INTRODUCTION

In the past few years, mainly after the discovery of CMB anisotropies by COBE/DMR (Smoot

et al. 1992), the study of the topology of the universe has become an important problem for

cosmologists and some hypotheses, such as the “small universe” model (see e.g. Ellis and Schreiber

1986), have received considerable attention. From the theoretical point of view, it is possible to have

quantum creation of the universe with a multiply-connected topology (Zel’dovich and Starobinsky

1984). From the observational side, this model has been used to explain the “observed” periodicity

in the distributions of quasars (Fang and Sato 1985) and galaxies (Broadhurst et al. 1990).

Almost all work on “small universes” has been limited to the case where the spatial sections

form a rectangular basic cell with sides Lx, Ly, Lz and with opposite faces topologically connected, a

topology known as toroidal. The three-dimensional cubic torus T 3 is the simplest model among all

possible multiply-connected topologies, in which all three sides have the same size L ≡ Lx = Ly =

Lz. In spite of the fact that cubic T 3-model has been ruled out by COBE results (Sokolov 1993;

Starobinsky 1993, hereafter S93; Stevens et al. 1993; Jing and Fang 1994; de Oliveira-Costa and

Smoot 1995, hereafter dOCS95), the possibility that we live in a universe with a more anisotropic

topology, such as a rectangular torus T 3, is an open problem that has not been ruled out yet.

For instance, if the toroidal model is not a cube, but a rectangle with sides Lx 6= Ly 6= Lz and

with one or two of its dimensions significantly smaller than the horizon RH (≡ 2cH−1
0 ), this small

rectangular universe cannot be completely excluded by any of the previous analyses: constraints

from the DMR data merely require that at least one of the sides of the cell be larger than RH .

As pointed out by S93 and Fang (1993), if the rectangular T 3-universe has one of the cell sizes

smaller than the horizon and the other two cell sizes are of the order of or larger than the horizon

(for instance, Lx ≪ RH and Ly, Lz ∼> RH), the large scale CMB pattern shows the existence of a

symmetry plane, and if it has two cell sizes smaller than the horizon and the third cell size is of the

order of or larger than the horizon (for instance, Lx, Ly ≪ RH and Lz ∼> RH), the CMB pattern

shows the existence of a symmetry axis. We call the former case a T 1-model because the spatial

topology of the universe becomes just T 1 in the limit Ly, Lz → ∞ with Lx being fixed. The later
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case is denoted a T 2-model for the same reason (the corresponding limit is Lz → ∞ with Lx, Ly

being fixed). It is clear (and our calculations confirm it) that dependence of CMB fluctuations on

any cell size is very small once it exceeds the horizon. In previous work (dOCS95), we computed

the full covariance matrix for all multipole components and used a χ2-technique to place a lower

limit on the cell size L of the cubic T 3-models. However, we cannot apply this same approach to

study the T 1- and T 2-universes. As we explain in the next section, the observed power spectrum

of these models depends not only on the cell size but also strongly on the cell orientation relative

to the Galaxy cut.

Our goal is to show that the COBE/DMR maps have the ability to discriminate and rule

out T 1- and T 2-models. We use a different approach to study these models in which we constrain

their sizes by looking for the symmetries that they would produce in the CMB, obtaining strong

constraints from the 4 year COBE/DMR data.

2. SYMMETRIES IN THE CMB DUE TO TOPOLOGY

If the density fluctuations are adiabatic and the Universe is spatially flat, the Sachs-Wolfe

fluctuations in the CMB are given by

δT

T
(θ, φ) = −1

2

H2
0

c2

∑

k

δk
k2

eik·r (1)

(Peebles, 1982), where r is the vector with length RH ≡ 2cH−1
0 that points in the direction of

observation (θ, φ), H0 is the Hubble constant (written here as 100h km s−1 Mpc−1) and δk is the

density fluctuation in Fourier space, with the sum taken over all wave numbers k. Here we neglect

the difference between the horizon surface and the surface of the last scattering, which is justified

for l < 30.

It is customary to expand the CMB fluctuations in spherical harmonics

δT

T
(θ, φ) =

∞∑

l=0

l∑

m=−l

almYlm(r̂), (2)
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where alm are the spherical harmonic coefficients and r̂ is the unit vector in direction r. The

coefficients alm are given by

alm = −2πil
H2

0

c2

∑

k

δk
k2

jl(kRH)Y ∗

lm(k̂), (3)

where jl are spherical Bessel functions of order l. If we assume that the CMB fluctuations δT/T

are a Gaussian random field, the coefficients alm are Gaussian random variables with zero mean

and covariance matrix

〈a∗lmal′m′〉 ∝
∑

k

|δk|2
k4

jl(kRH)jl′(kRH)Ylm(k̂)Y ∗

l′m′(k̂). (4)

In a Euclidean topology the universe is isotropic, the sum in (4) is replaced by an integral and the

power spectrum Cl is related to the coefficients alm by

〈a∗lmal′m′〉 ≡ Clδll′δmm′ (5)

(see e.g. Bond and Efsthatiou 1987). However, in a toroidal universe this is not the case. In this

model, only wave numbers that are harmonics of the cell size are allowed. We have a discrete k

spectrum

k =
2π

RH

(
px

Rx
,

py

Ry
,

pz

Rz

)

(6)

(Zel’dovich 1973; Fang and Houjun 1987), where px, py and pz are integers and Rx ≡ Lx/RH ,

Ry ≡ Ly/RH and Rz ≡ Lz/RH .

In previous work (dOCS95), we set limits on the cubic T 3-models assuming that, for a given

cell size, the quantity Ĉl ≡ 1
2l+1

∑ |alm|2 was fairly independent of the cell orientation, even with

a 20◦ Galaxy cut. In other words, if Ĉl is almost independent of the cell orientation, we can make

the approximation that all cell orientations for that given cell size can be simultaneously ruled out

by a χ2-test on the Ĉl coefficients and, in that way, test our model just considering changes in

the cell size L. However, in the case of more strongly anisotropic cell configurations such as T 1-

and T 2-models, the quantity Ĉl does depend on the cell orientation and the χ2-test on the power

spectrum cannot be used anymore. If we try to apply the power spectrum method to these models,
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it will require testing a six parameter family of models with three parameters corresponding to the

cell orientation in addition to the cell sizes Lx, Ly and Lz.

In order to illustrate these anisotropic cell configurations, we plot a realization of two extreme

cases: a T 1-universe (Figure 1A, upper left) with dimensions (Rx, Ry, Rz) = (3,3,0.3) and a T 2-

universe (Figure 1B, upper right) with dimensions (Rx, Ry, Rz) = (0.3,0.3,3). Both models are

plotted in galactic coordinates and have a scale invariant power spectrum (n=1). From equations

(1) and (6), we see that when one of the cell sizes is smaller than the horizon (T 1-models), the

temperatures δT/T are almost independent of this coordinate. For instance if Rz ≪1, the values

of δT/T are almost independent of the z-coordinate, i.e., the values of δT/T are symmetric about

the plane formed by the x and y-axes. This happens because of the factor δk/k2 in equation (1). If

we assume a power-law power spectrum with n=1, the r.m.s. value of this factor scales as k−3/2, so

that most of the contribution to the sum comes from small k-values. If Rz ≪1, the term pz/Rz in

equation (6) will be much greater than unity when pz 6= 0, so the term with pz = 0 will dominate

the sum. Since this term is independent of the z-coordinate, the entire sum will be approximatelly

independent of z. In the same way, if two cell sizes are smaller than the horizon (T 2-models), the

temperatures δT/T are aproximately independent of these coordinates. For instance if Rx, Ry ≪1,

the values of δT/T are almost independent of both x and y, i.e., the values of δT/T are almost

constant along rings around the z-axis.

The results above remain valid for a much broader range of n-values (actually, n < 3). Thus,

the following analysis is applicable in any other large scale CMB experiment as well as one-degree

CMB experiments. Although the existence of these symmetry patterns in the large scale fluctuations

δT/T do not depend on the assumptions of gaussian statistics and absence of correlation between

multipoles (see S93), we use both of these standard assumptions in this analysis.

The analysis of T 1- and T 2-models is not an easy task, since there are infinitely many combi-

nations of different cell sizes and cell orientations. In order to keep our analysis simple, we wish

to adopt a statistic that is independent of cell orientation. In addition, we want a statistic that is

precisely sensitive to the type of symmetries that small universes produce, so that it can rule out
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as many false models as possible. Finally, we would like to have a statistic that is easy to compute

and that produces results that are easy to interpret. Having these criteria in mind, we choose a

statistic in which we calculate the function S(n̂i) defined by

S(n̂i) ≡
1

Npix

Npix∑

j=1

[ δTT (n̂j) − δT
T (n̂ij)]

2

σ(n̂j)2 + σ(n̂ij)2
, (7)

where Npix is the number of pixels that remain in the map after the Galaxy cut have taken place,

n̂ij denotes the reflection of n̂j in the plane whose normal is n̂i, i.e.,

n̂ij = n̂j − 2(n̂i · n̂j)n̂i (8)

and σ(n̂j) and σ(n̂ij) are the r.m.s. errors associated with the pixels in the directions n̂j and n̂ij .

S(n̂i) is a measure of how much reflection symmetry there is in the mirror plane perpendicular to

n̂i. The more perfect the symmetry is, the smaller S(n̂i) will be. When we calculate S(n̂i) for all

6144 pixels at the positions n̂i, we obtain a sky map that we refer to as an S-map. This sky map

is a useful visualization tool and gives intuitive understanding of how the statistic S(n̂i) works.

In order to better understand S(n̂i), we first consider the simple model of a T 1-universe

with Rz ≪1. For this specific model, the values of δT/T are almost independent of the z-

coordinate, so we have almost perfect mirror symmetry about the xy-plane or, in spherical co-

ordinates, δT/T (θ, φ) ≈ δT/T (π − θ, φ). When n̂i points in the direction of the smallest cell size

(i.e., z-direction), we have S(n̂i) ≈ 1; otherwise, S(n̂i) > 1. An S-map for a T 1-model (Rx, Ry, Rz)

= (3,3,0.3) can be seen in Figure 1C (lower left). Notice in this plot that the direction in which

the cell is smallest can be easily identified by two “dark spots” at n̂i ≈ ẑ and n̂i ≈ −ẑ. For

T 2-models, the only difference will be that in the place of the two “dark spots”, we have a “dark

ring” structure in the plane formed by the two small directions. See Figure 1D (lower right), an

S-map of the T 2-model (Rx, Ry, Rz) = (0.3,0.3,3).

From these two S-maps, we can infer two important properties: first, the direction in which

the S-map takes its minimum value, denoted S◦, is the direction in which the universe is small. For

a large universe such as (3,3,3), the S◦-directions obtained from different realizations are randomly

distributed in the sky. Secondly, the distribution of S◦-values changes with the cell size, i.e., as the
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universe becomes smaller, the values of S◦ decrease. From the definition of the S-map, it is easy

to see that the value of S◦ is independent of the cell orientation. In other words, if we rotate the

cell, we will just be rotating the S-map, leaving its minimum value S◦ unchanged.

A value of S◦ from a particular realization of a stochastic cosmological perturbation differs

from the expectation value 〈S◦〉 due to cosmic variance. This comes from the non-symmetric part

of δT/T fluctuations produced by perturbation modes with px + py + pz 6= 0. For these modes,

the main contribution to S(n̂i) in (7) is made by the terms in the sum for which n̂j and n̂ij are

widely separated, so that we can neglect their cross-correlation. Since S ≈ 1
σ2

〈(
δT
T

)2
〉

ns
, where

〈(
δT
T

)2
〉1/2

ns
is the r.m.s. value of the non-symmetric part of δT/T and σ is the r.m.s. noise,

we have that the cosmic variance is ∆S ≡
√
〈S2〉 − 〈S〉2 ≈ 1

σ2

√
2

2l+1

〈(
δT
T

)2
〉

ns
≈ 0.2S. Here

l ≈ 15 is the characteristic multipole for COBE data (the inverse angular correlation radius) and
〈(

δT
T

)2
〉1/2

ns
≤ σ7◦ . We shall confirm this rough estimate in more details below; see the behavior

of curves for the cumulative probability distribution of S◦ in Figure 2.

In summary, our statistic S◦ has all the properties that we desire: it quantifies the “smallness”

of a sky map in a single number, it is independent of the cell orientation, and it is easy to work

with and to interpret.

From here on, we will present our results in terms of the cell sizes Rx, Ry and Rz, usually sorted

as Rx ≤ Ry ≤ Rz. We remind the reader that the results are identical for all six permutations of

Rx, Ry and Rz.

3. DATA ANALYSIS

We rewrite the exponential in equation (1) as

eik·r = cosk · r + i sin k · r = cos(2πγ) + i sin(2πγ), (9)

where k is given by (6), r is the vector with lenght RH ≡ 2cH−1
0 and γ =

(
px

Rx
x + py

Ry
y + pz

Rz
z
)
. If

the density fluctuation in Fourier space δk has random phases, we have δk = N(g1 + ig2), so that
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〈|δk|2〉 = 〈|g1 +ig2|2N2〉 = 2N2, where N is a constant and g1 and g2 are two independent Gaussian

random variables with zero mean and unit variance. Assuming a power law power spectrum with

shape P (k) ≡ 〈|δk|2〉 = Akn, where A is the amplitude of scalar perturbations and n the spectral

index, we have N =
√

A
2 kn/2, so that the r.m.s. of the term δk/k2 in (1) is given by

〈|δk|2〉1/2

k2
∝ α

n−4

4 , (10)

where α ≡
(

px

Rx

)2
+
(

py

Ry

)2
+
(

pz

Rz

)2
∝ k2. Substituting (9) and (10) into (1), we can construct

simulated skies by calculating

δT

T
(θ, φ) ∝

∑

px,py,pz

[g1 cos(2πγ) + g2 sin(2πγ)] α
n−4

4 . (11)

Since the cubic T 3 case has already been ruled out as an interesting cosmological model (see

e.g. dOCS95), we restrict our analysis here to the T 1 and T 2 cases for n=1. This is a two parameter

family of models specified by Rx and Ry, with Rz = ∞. For numerical convenience, we set Rz=3

instead, as this is found to give virtually the same results as Rz = ∞. We adopt n=1, as we found

that “small universe” models with different n-values are even more inconsistent with the observed

data.

The large scale fluctuations observed on the celestial sphere by a CMB experiment can be

modeled as being the fluctuations given in (11) multiplied by an experimental beam function

e−(RHθk⊥)2/2, (12)

where k⊥ is the length of the k-component perpendicular to the line of sight and θ is the width of

the Gaussian beam given by θ = FWHM/
√

8 ln 2 ≈ 0.43 FWHM, where FWHM is the full width

of the beam at its half maximum. We make the approximation that the sky area covered by the

beam is flat (this is equivalent to smoothing in the plane perpendicular to the line of sight r̂). Since

k⊥ ≡ |r̂× k̂|, we have that k2
⊥

= k2 − (r̂ · k̂)2. We use FWHM = 7◦ in our simulations, which is the

FWHM of the COBE/DMR beam.

In the real sky map, we do not have complete sky coverage. Because of the uncertainty in

Galaxy emission, we are forced to remove all pixels less than 20◦ below and above the Galaxy plane,
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which represents a loss of almost 34% of all pixels. However, performing Monte Carlo simulations

with and without the Galaxy cut, we find that the Galaxy cut does not change the final distribution

of S◦ much. Due to the smaller data sample, the Galaxy cut weakens the lower limit on the cell

size slightly (see e.g. Scott et al. 1994).

We model the noise ni at each pixel i as independent Gaussian random variables with mean

〈ni〉 =0 and variance 〈ninj〉 = σijδij (Lineweaver et al. 1994), and add it to the temperature values

given by (11). The level of noise in the DMR maps is a source of serious concern in our analysis:

high levels of noise can make it impossible to discriminate between the different topological models.

In order to reduce the noise and increase the signal-to-noise ratio in the simulated skies and real

data, we smooth both once more by 7◦ before calculating S-map, which corresponds to a total

smearing of
√

(7◦)2 + (7◦)2 ≈ 10◦.

We generate our simulated skies as standard DMR maps with 6144 pixels for n=1, with a

Galaxy cut of 20◦, FWHM = 7◦, the monopole and dipole removed, add noise and normalize to

σ7◦ = 34.98µK (the r.m.s. value at 7◦ extracted from our DMR map, a 4 year combined 53 plus

90 GHz map with monopole and dipole removed). Fixing a cell size, we construct a simulated sky

according to (11), we smooth this once more by 7◦ and use the statistic defined in (7) to obtain

an S-map from which we extract its minimum value S◦. Repeating this procedure 1000 times,

we obtain the probability distribution of S◦ for that fixed cell size. When we repeat this same

procedure for different cell sizes, we are able to construct Figure 2.

In Figure 2A (upper plot), we show the cumulative probability distribution of S◦ obtained from

the Monte Carlo simulations for the cell sizes (Rx, Ry, Rz) = (0.5,0.5,3), (0.6,0.6,3), (0.7,0.7,3) and

(3,3,3). The horizontal lines indicate the confidence levels of 95%, 90% and 68% (from top to

bottom). Comparing these curves with the value SDMR
◦ = 2.59 (represented in the plot by the

vertical straight line), where SDMR
◦ is the S◦ value extracted from our data set, we conclude that

T 2-models with smallest cell sizes Rx, Ry ∼<0.5 can be ruled out at 95% confidence. As the second

cell size Ry is increased, the curves shift to the left of the T 2-models and we can rule out T 1-models

for Rx ∼<0.5 at a similar confidence level, see Figure 2B (lower plot). In this plot, we show the
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cumulative probability distribution of S◦ obtained from Monte Carlo simulations for the cell sizes

(Rx, Ry, Rz) = (0.5,3,3), (0.6,3,3), (0.7,3,3) and (3,3,3).

A more complete picture of the cell size limits is obtained when we construct a two-dimensional

grid for different values of the cell sizes (Rx, Ry, Rz) with Rz = 3.0 and 0.2 < Rx, Ry < 3.0 (see

Figure 3). The thin-shaded, thick-shaded and grey regions correspond, respectively, to the models

ruled out at 68%, 90% and 95% confidence. Notice in this plot that all contours are almost L-

shaped, which means that, to a good approximation, the level in which a model (Rx, Ry) is ruled

out depends only on the smallest cell size, Rmin ≡ {Rx, Ry}. We see that Rmin ∼>0.5 at 95%

confidence.

4. CONCLUSIONS

We have shown that the COBE/DMR maps have the ability to discriminate and rule out T 1

and T 2 topological models. We have presented a new statistic to study these anisotropic models

which quantifies the “smallness” of a sky map in a single number, S◦, which is independent of the

cell orientation, is easy to work with and is easy to interpret.

From the COBE/DMR data, we obtain a lower limit for T 1- and T 2-models of Rx ∼>0.5,

which corresponds to a cell size with smallest dimension of L=3000h−1Mpc. This limit is at 95%

confidence and assumes n=1. Since the topology is interesting only if the cell size is considerably

smaller than the horizon, so that it can (at least in principle) be directly observed, these models

lose most of their appeal. Since the cubic T 3 case has already been ruled out as an interesting

cosmological model (see e.g. dOCS95), and T 1- and T 2-models for small cell sizes are ruled out,

this means that all toroidal models (cubes and rectangles) are ruled out as interesting cosmological

models.
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FIGURE CAPTIONS

Figure 1: Simulated sky maps for the T 1- and T 2-models and their S-maps. (A) T 1-model with

dimensions (Rx, Ry, Rz) = (3,3,0.3); (B) T 2-model with dimensions (Rx, Ry, Rz) = (0.3,0.3,3); (C)

S-map of the T 1-model shown in (A); (D) S-map of the T 2-model shown in (B).

Figure 2: Cumulative probability distribution of S◦ for T 1- and T 2-models obtained from Monte

Carlo simulations. (A, upper plot) Simulations for T 2-universes with dimensions (Rx, Ry, Rz) =

(0.5,0.5,3) or dot-dashed line, (0.6,0.6,3) or dashed line, and (0.7,0.7,3) or dotted line. (B, lower

plot) Simulations for T 1-universes with dimensions (Rx, Ry, Rz) = (0.5,3,3) or dot-dashed line,

(0.6,3,3) or dashed line, and (0.7,3,3) or dotted line. In both pictures the model (Rx, Ry, Rz) =

(3,3,3) is represented by a solid line, SDMR
◦ = 2.59 (vertical straight line) and the horizontal solid

lines indicate the confidence levels of 95%, 90% and 68% (from top to bottom).

Figure 3: Grid of cumulative probability distributions of S◦ for T 1- and T 2-models obtained from

Monte Carlo simulations. The thin-shaded, thick-shaded and grey regions correspond, respectively,

to the models ruled out at 68%, 90% and 95% confidence.
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