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ABSTRACT

The angular power spectrum estimator developed by Peebles (1973) and

Hauser & Peebles (1973) has been modified and applied to the 4 year maps

produced by the COBE DMR. The power spectrum of the observed sky has

been compared to the power spectra of a large number of simulated random

skies produced with noise equal to the observed noise and primordial density

fluctuation power spectra of power law form, with P (k) ∝ kn. The best fitting

value of the spectral index in the range of spatial scales corresponding to spherical

harmonic indices 3 ≤ ℓ ∼< 30 is an apparent spectral index napp = 1.13+0.3
−0.4 which

is consistent with the Harrison-Zel’dovich primordial spectral index npri = 1

The best fitting amplitude for napp = 1 is 〈Q2
RMS〉

0.5 = 18 µK.
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1. Introduction

The spatial power spectrum of primordial density perturbations, P (k) where k is the

spatial wavenumber, provides evidence about processes occurring very early in the history

of the Universe. In the first moments after the Big Bang, the horizon scale ct corresponds to

a current scale that is much smaller than galaxies, so the assumption of a scale free form for

P (k) on large scales is natural, which implies a power law P (k) ∝ kn. The Poisson equation

∇2φ = 4πGρ implies that |φ(k)|2 ∝ P (k)/k4, and hence that the potential fluctuations

on scale λ ∝ 1/k are ∆φ2 ∝ |φ(k)|2k3 ∝ kn−1. Harrison (1970), Zel’dovich (1972), and

Peebles & Yu (1970) all pointed out that the absence of tiny black holes implies that

the limit as k → ∞ of ∆φ must be small, so n ∼< 1, while the large-scale homogeneity

implied by the near isotropy of the Cosmic Microwave Background Radiation (CMBR)

requires that the limit as k → 0 of ∆φ must be small, so n ∼> 1. Thus the prediction

of a Harrison-Zel’dovich or n = 1 form for P (k) by an analysis that excludes all other

possibilities is an old one. This particular scale-free power law is scale-invariant because the

perturbations in the metric (or gravitational potential) are independent of the scale. The

inflationary scenario (Starobinsky 1980; Guth 1981) proposes a tremendous expansion

of the Universe (by a factor ∼> 1030) during the inflationary epoch, which can convert

quantum mechanical fluctuations on a microscopic scale during the inflationary epoch

into Gpc-scale structure now. To the extent that conditions were relatively stable during

the small part of the inflationary epoch which produced the Mpc to Gpc structures we

now study, an almost scale-invariant spectrum is produced (Bardeen, Steinhardt & Turner

1983). Bond & Efstathiou (1987) show that the expected variance of the coefficients aℓm

in a spherical harmonic expansion of the CMBR temperature given a power law power

spectrum P (k) ∝ kn is < a2
ℓm > ∝ Γ[ℓ+(n− 1)/2]/Γ[ℓ+(5−n)/2] for ℓ < 40. Thus a study

of the angular power spectrum of the CMBR can be used to place limits on the spectral

index n and test the inflationary prediction of a spectrum close to the Harrison-Zel’dovich
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spectrum with n = 1.

The angular power spectrum contains the same information as the angular correlation

function, but in a form that simplifies the visualization of fits for the spectral index n.

Furthermore, the off-diagonal elements of the covariance matrix have a smaller effect for

the power spectrum than for the correlation function. However, with partial sky coverage

the multipole estimates in the power spectrum are correlated, and this covariance must be

considered when analyzing either the correlation function or the power spectrum.

The power spectrum of a function mapped over the entire sphere can be derived easily

from its expansion into spherical harmonics, but for a function known only over part of the

sphere this procedure fails. Wright et al. (1994) have modified a power spectral estimator

from Peebles (1973) and Hauser & Peebles (1973) that allows for partial coverage and

applied this estimator to the DMR maps of CMBR anisotropy. We report here on the

application of these statistics to the DMR maps based on all 4 years of data (Bennett et al.

1996). Monte Carlo runs have been used to calculate the mean and covariance of the power

spectrum. Fits to estimate 〈Q2
RMS〉

0.5 and n by maximizing the Gaussian approximation

to the likelihood of the angular power spectrum are discussed in this paper. Since we

only consider power law power spectrum fits in this paper, we use Q as a shorthand for

〈Q2
RMS〉

0.5 or Qrms−ps, which is the RMS quadrupole averaged over the whole Universe,

based on a power law fit to many multipoles. 〈Q2
RMS〉

0.5 should not be confused with the

actual quadrupole of the high galactic latitude part of the sky observed from the Sun’s

location within the Universe, which is the QRMS discussed by Bennett et al. (1992).
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2. Estimating the Angular Power Spectrum

Wright et al. (1994) have discussed the modification of the Hauser-Peebles angular

power spectrum estimator for use on CMBR anisotropy maps. To allow for the cutting out

of the galactic plane, new basis functions are defined using a modified inner product:

< fg >=

∑N
j=1 wjfjgj
∑N

j=1 wj

(1)

where j is an index over pixels, and wj is the weight per pixel. In the galactic plane cut,

wj = 0. We have not used weights proportional to the number of observations, so wj = 1

outside of the galactic plane cut. The custom galactic cut used in this paper basically

follows sin |b| = 1/3 with extra cut added in Sco-Oph and Orion (Banday et al. 1996). A

total of 3881 pixels are used, or 63% of the sky.

The modified Hauser-Peebles method in Wright et al. (1994) used basis functions

defined using

Gℓm = Fℓm −
F00 < F00Fℓm >

< F00F00 >
−

1∑

m′=−1

F1m′ < F1m′Fℓm >

< F1m′F1m′ >
(2)

where the Fℓm are real spherical harmonics and the inner product < fg > is defined over the

cut sphere. These functions Gℓm are orthogonal to monopole and dipole terms on the cut

sphere. Call this the MD method since the basis functions are orthogonal to the monopole

and dipole. Let the MDQ method use basis functions orthogonal to the monopole, dipole

and quadrupole:

G′

ℓm = Fℓm −
F00 < F00Fℓm >

< F00F00 >
−

1∑

m′=−1

F1m′ < F1m′Fℓm >

< F1m′F1m′ >
−

2∑

m′=−2

F2m′ < F2m′Fℓm >

< F2m′F2m′ >
. (3)

In this paper we have used the MDQ method so our results for ℓ ≥ 3 are completely

independent of the quadrupole in the map. We have also tabulated the power in ℓ = 2

which is computed with G′

2m’s which are orthogonal to the monopole, dipole, and those

components of the quadrupole which occur earlier in the sequence than m. Because the
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galactic cut used is not a straight |b| cut, the different F2m’s are not quite orthogonal, and

the definition of G′

2m depends slightly on the ordering of the Fℓm’s. We use the ordering

1, cos φ cos 2φ, sin φ, sin 2φ. With these basis functions we compute the power spectrum

estimators

T 2
ℓ

2ℓ + 1
=

∑ℓ
m=−ℓ < G′

ℓmT >2

∑ℓ
m=−ℓ < G′

ℓmG′

ℓm >
(4)

which are quadratic functions of the maps. Note that for full sky coverage, T 2
ℓ is the

variance of the sky in order ℓ, but for partial sky coverage the response of T 2
ℓ to inputs with

ℓ′ 6= ℓ causes T 2
ℓ to be larger than the order ℓ sky variance. Table 1 of Wright et al. (1994)

shows the input-output matrix for a straight 20◦ cut, while Table 1 shows the input-output

matrix for the custom galaxy cut. The jump in Figure 1 at ℓ = 5 for the mean spectrum

of Q = 17 µK, n = 1 inputs is caused by the off-diagonal response to ℓ = 3, while the

off-diagonal response of ℓ = 4 to ℓ = 2 has been zeroed by the MDQ method.

This method computes the power spectrum, a quadratic function of the map, which

includes contributions from both the true sky signal and from instrument noise. We remove

the contribution of the instrument noise by subtracting the power spectrum of a noise only

map. This difference map can be constructed by subtracting the two maps made from the

A and B sides of the DMR instruments: D = (A − B)/2. The sum map containing the

real signal is S = (A + B)/2. When we compute the quadratic power spectrum, we use

the value S2 − D2 = A × B, the power spectra reported here are the cross power spectra

between the A and B sides of the DMR instrument.

We have computed the power spectrum of the internal linear combination “free-free

free” no galaxy (NG) map (Wright et al. 1994), TNG = −0.4512T31 + 1.2737T53 + 0.3125T90,

and the close to maximum signal-to-noise ratio maps based on 0.6T53/0.931 + 0.4T90/0.815.

The denominators in the latter expression convert the Rayleigh-Jeans differential

temperatures T53 and T90 into thermodynamic ∆T ’s, but this conversion is included in the
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coefficients for TNG. This process can also be applied to compute the cross power spectrum

of the 53 GHz and 90 GHz maps by letting S = (53 + 90) and D = (53 − 90), after both

maps have been converted into thermodynamic brightness temperature differences. Figure

1 shows the resulting power spectra for the three map combinations.

We have binned the power spectra in quasi-logarithmic bins in ℓ in order to minimize

the increasing noise-to-signal ratio as ℓ gets large. Figure 2 and Table 2 show these binned

power spectral estimates.

3. Monte Carlo Simulations

In order to calibrate and test these methods for biases, it is necessary to simulate both

the cosmic variance, which gives a random map with random spherical harmonic amplitudes

chosen from a Gaussian distribution with a variance determined from the chosen Qin and

nin, and the experimental variance, which gives the 360 million noise values needed per

year. While programs to simulate the DMR time-ordered data do exist, we have not worked

at this level of detail. Instead, we have used simulations that start with the maps.

The effect of noise on the map production process can be simulated using

Tn = σ1A
−0.5U (5)

where σ1 is the noise in one observation, U is an uncorrelated vector of unit variance zero

mean Gaussian random variables, and A is the matrix with diagonal elements Aii equal

to the number of times the ith pixel was observed, and off-diagonal elements −Aij equal

to the number of times the ith pixel was referenced to the jth pixel. Even though A is

singular, Wright et al. (1994) give a rapidly convergent series technique for generating noise

maps. Thus each noise map depends on 6144 independent Gaussian unit variance random

variables and the parameter σ1.
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The signal map that is added to the noise maps to give the “observed” maps is

generated using independent Gaussian random amplitudes with variances given by Bond &

Efstathiou (1987) for ℓ < 40. The simulations done here included ℓ’s up to 39, so the signal

map depends on 1600 Gaussian independent unit variance random variables and the two

parameters Qin and nin.

4. Maximum Likelihood Estimation

Using the Monte Carlo’s, we find the mean power spectrum T 2
ℓ (Qin, nin), and

the covariance matrix C(Qin, nin)ℓℓ′ = 〈(T 2
ℓ − T 2

ℓ )(T 2
ℓ′ − T 2

ℓ )〉. For the actual power

spectrum T 2
ℓ from the real sky or a Monte Carlo simulation, define the deviation vector

eℓ = T 2
ℓ − T 2

ℓ (Qin, nin) and the χ2 statistic χ2 = eT C−1e. All of the fits in this paper are

based on the range ℓ = ℓmin . . . ℓmax with ℓmin = 3 and ℓmax = 30. C is thus a 28 × 28

matrix. Ignoring the quadrupole is reasonable because the galactic corrections are largest

for ℓ = 2, and the maximum order used is set by the DMR beam-size of 7◦ and the increased

computer time required to analyze more orders. Since the magnitude of the covariance

matrix gets larger rapidly when Qin increases there is a bias toward large values of Q when

minimizing χ2. One can allow for this by minimizing −2 ln(L) instead of χ2, where L is the

Gaussian approximation to the likelihood:

− 2 ln(L) = χ2 + ln(det(C)) + const. (6)

For any given power spectrum, we can adjust Qin and nin until −2 ln L is minimized.

This gives us the maximum likelihood fit of a power law power spectrum to the given

power spectrum. We have called the values of Q and n that maximize the likelihood for

the observed power spectrum QML and nML since these are maximum likelihood values.

The maximum likelihood technique gives an asymptotically unbiased determination of the
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amplitude Q and index n, but only as the observed solid angle goes to infinity. Since we

are limited to about 8 sr of sky, asymptotically unbiased means biased in practice, both for

the quadratic statistics considered here and for linear statistics used by Górski et al. (1994)

and Bond (1995). Our use of a Gaussian approximation to the likelihood for our quadratic

statistics can introduce additional errors. We use our Monte Carlo simulations to calibrate

our statistical methods to avoid biased final answers.

Our kth Monte Carlo run depends on a set of random variables {Zk} (with 1600 +

12288 elements for a cross-analysis needing two noise maps) having a known distribution,

and the three parameters Qin, nin and σ1. σ1 can be determined with great precision using

the time-ordered data. Hence one needs to run many Monte Carlo simulations with several

different values for Qin and nin and compare the fitted values QML,k and nML,k to the

fitted values for the real data, QML,obs and nML,obs. For the kth realization {Zk}, the fitted

values QML,k and nML,k are a continuous function of the input parameters Qin and nin,

and one can choose values Qin = Qmatch,k and nin = nmatch,k such that QML,k = QML,obs

and nML,k = nML,obs. By choosing many different realizations of {Zk}, one creates many

different (Qmatch, nmatch) pairs. Figure 3 shows this cloud of points for the 2 year 53 × 90

cross-power spectrum, along with contours of −2 ln L. The spectral index we give is

the median of the set of nmatch’s, and the 16%-tile to 84%-tile range in nmatch defines

the ±1σ range. The value 1.13+0.3
−0.4 given in the Abstract is the weighted mean of these

determinations, but we have not reduced the error because the cosmic variance is common

to all three maps.

The value of 〈Q2
RMS〉

0.5 can be found by doing a one parameter maximum likelihood

fit for QML with n fixed at 1. After using the Monte Carlo runs to debias the maximum

likelihood results, we get the values shown in Table 3. We can also find the best fit values of

Q for other values of n. The best fit Q values for n forced to be 1.25 are smaller than those
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for n forced to be 1 by an amount that allows us to estimate the effective wavenumber of

our amplitude determination. We find that ℓeff = 7.9 for the 53+90 A×B case and 7.3 for

the 53× 90 case. In Figure 3 we have chosen to plot the amplitude at ℓ = 7 which is closest

to the effective wavenumber in order to minimize the correlation between the amplitude

and the spectral index.

5. Discussion

The angular power spectrum of the four year COBE DMR maps has been calculated,

and it is very consistent with a Harrison-Zel’dovich primordial spectrum npri = 1, especially

after the small correction for the “toe” of the Doppler peak which gives an expected

apparent index of napp ≈ 1.1 for Ω = 1 CDM models. Models with a cosmological constant

(ΛCDM) predict a smaller napp ≈ 0.75 (Kofman & Starobinsky 1985) that is still consistent

with the COBE DMR observations. The amplitude derived from this analysis is in between

the 〈Q2
RMS〉

0.5 = 17 µK derived from the first year maps and the 〈Q2
RMS〉

0.5 = 19 µK derived

from the two year maps (Wright et al. 1994). The amplitude from the no galaxy map is

consistent with but now slightly higher than the amplitude derived from the 53 and 90

GHz maps, indicating that galactic contamination is not a major problem with the chosen

galactic cut.

We are grateful for the efforts of the COBE team and the support of the Office of

Space Sciences at NASA. Charley Lineweaver provided helpful comments on an early draft

of this paper.
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Table 1. 103× the mean over m of the power spectra of Fℓ′m for the custom galaxy cut.

ℓ′ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1087 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1016 0 275 1 84 1 21 1 15 1 16 1 12 1 7 1 5

4 150 0 930 0 295 1 81 1 20 1 17 1 17 1 12 1 7 1

5 0 197 1 1067 0 182 1 63 1 15 1 7 1 9 1 8 1 5

6 35 0 251 0 1051 1 179 1 57 1 12 1 6 1 9 1 7 1

7 0 46 1 138 0 1103 1 167 1 58 1 15 1 7 1 8 1 7

8 6 0 55 0 143 1 1100 1 166 1 57 1 14 1 7 1 8 1

9 0 9 1 38 0 132 1 1105 1 164 1 58 1 15 1 7 1 7

10 3 0 11 0 37 0 134 1 1102 1 165 1 58 1 15 1 6 1

11 0 5 1 7 0 38 0 135 1 1104 1 161 1 56 1 14 1 6

12 3 0 8 0 6 0 39 0 139 1 1100 1 162 1 55 1 14 1

13 0 5 0 3 0 8 0 41 0 138 1 1103 1 158 1 54 1 14

14 2 0 7 0 3 0 9 0 42 0 140 1 1102 1 158 1 54 1

15 0 3 0 3 0 4 0 9 0 41 0 138 1 1105 1 157 1 53

16 1 0 4 0 4 0 4 0 9 0 42 0 139 1 1104 1 156 1

17 0 2 0 3 0 4 0 4 0 9 0 42 0 139 1 1105 1 155

18 1 0 2 0 3 0 4 0 4 0 9 0 42 0 139 1 1105 1

19 0 1 0 1 0 3 0 4 0 4 0 10 0 42 0 139 1 1105
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Table 2. Binned power spectra of the 4 yr DMR Maps.

ℓ Range ℓeff NG A × B 53 × 90 53 + 90 A × B

2 2.1 0.08 ± 0.68 0.16 ± 0.65 0.15 ± 0.60

3 3.1 0.76 ± 0.70 0.99 ± 0.59 0.90 ± 0.57

4 4.1 1.65 ± 0.76 1.51 ± 0.57 1.52 ± 0.56

5-6 4.6 1.62 ± 0.51 1.40 ± 0.35 1.30 ± 0.34

7-9 6.3 1.71 ± 0.52 0.85 ± 0.29 0.94 ± 0.28

10-13 8.9 −0.02 ± 0.79 0.78 ± 0.33 1.19 ± 0.30

14-19 11.5 1.50 ± 1.42 1.75 ± 0.46 1.52 ± 0.40

20-30 13.2 0.37 ± 4.81 0.57 ± 1.39 0.02 ± 1.08

Note. — All values have been normalized to the mean for

Q = 17 µK, n = 1 Monte Carlo runs.

Table 3. Power Law Fits to 4 year DMR map power spectra.

Maps napp 〈Q2
RMS〉

0.5 at napp = 1, [µK]

53+90 A×B 1.17+0.34
−0.41 17.9+1.6

−1.6

53×90 1.02+0.44
−0.47 17.3+1.6

−2.1

NG A×B 1.22+0.60
−0.71 19.6+2.9

−2.6
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Fig. 1.— Cross power spectra for the 53+90 A × B, 53 × 90 and NG A × B maps. T 2
ℓ

measures the variance of the sky due to order ℓ harmonics for full sky coverage, but partial

sky coverage changes the expected value slightly as seen in the curves showing the average

power spectrum of Q = 17 µK, n = 1 models in the cut sky. Values are shifted upward by

400 for NG and 900 for 53 × 90, as shown by the horizontal lines marking zero power.

Fig. 2.— Binned cross power spectra for the 53+90 A × B, 53 × 90 and NG A × B maps,

normalized to the mean power spectrum of Q = 17 µK, n = 1 simulations, plotted on a

logarithmic scale. ℓeff is the effective wavenumber of the bin for n = 1. The thin curves

show a CDM model with npri = 0.96 including the effect of gravitational waves derived from

Crittenden et al. (1993).

Fig. 3.— Each point is an input parameter set that is consistent with the real 4 year 53×90

DMR data for a given realization of the random cosmic and radiometer variance processes.

The amplitude is specified using the RMS ∆T due to ℓ = 7 spherical harmonics because ℓeff

for this fit is 7.3. The likelihood contours are at ∆(−2 ln L) = 1, 4 and 9.
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