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The Dipole Observed in the COBE DMR Four-Year Data

C. H. Lineweaver1,2, L. Tenorio3, G. F. Smoot4, P. Keegstra5, A. J. Banday5,6 & P. Lubin7

ABSTRACT

The largest anisotropy in the cosmic microwave background (CMB) is the ≈ 3 mK

dipole assumed to be due to our velocity with respect to the CMB. Using the four

year data set from all six channels of the COBE Differential Microwave Radiometers

(DMR), we obtain a best-fit dipole amplitude 3.358±0.001±0.023 mK in the direction

(ℓ, b) = (264◦.31±0◦.04±0◦.16, +48◦.05±0◦.02±0◦.09), where the first uncertainties are

statistical and the second include calibration and combined systematic uncertainties.

This measurement is consistent with previous DMR and FIRAS results.

Subject headings: cosmic microwave background — cosmology: observations

1. Introduction

The Sun’s motion with respect to the cosmic microwave background (CMB) is believed to

be responsible for the largest anisotropy seen in the COBE DMR maps: the ≈ 3 mK dipole in

the direction of the constellation Leo. A measurement of this Doppler dipole thus tells us our

velocity with respect to the rest frame of the CMB. A high precision measurement of the dipole

will be used as the primary calibrator for an increasing number of ground, balloon and satellite

anisotropy experiments (Bersanelli et al. 1996). The accurate removal of the Doppler dipole and

Doppler quadrupole from anisotropy maps improves the precision of the anisotropy results. The

CMB dipole is also used to calibrate bulk flow observations which yield independent but much

less precise dipole values. In addition, anisotropy measurements in other background radiations
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will be made in the future and an eventual test of the Doppler origin of the CMB dipole will be

facilitated by a CMB dipole of maximum precision (Lineweaver et al. 1995). In this paper we use

the DMR four-year data to determine the precise direction and the amplitude of the observed

dipole. The largest source of directional error (aliasing of CMB power combined with instrument

noise) has been reduced by using relatively small Galactic plane cuts.

In Section 2 we discuss the data analysis and in Section 3 we discuss contamination from

Galactic emission as well as other factors contributing to the error budget. In Section 4 we present

our results. We then discuss and compare our results to FIRAS and other reported DMR dipole

results.

2. Data Analysis

The four year DMR data set and its systematic errors and calibration procedures are described

in Kogut et al. (1996b). There are 2 independent channels at each of the 3 frequencies 31.5, 53

and 90 GHz. We base our results on all six DMR channels since the less sensitive 31 GHz channels

provide useful information on the frequency dependence of Galactic contamination.

We use three methods to obtain the CMB dipole amplitude and direction. These methods

differ in the form of the input data but all of them are least-squares fits of the data to the

coefficients of a spherical harmonic decomposition of the sky: T (θ, φ) =
∑

ℓm aℓmYℓm(θ, φ), where

the Yℓm are real-valued spherical harmonics as described in Smoot et al. (1991) and the dipole

vector is ~D =
√

3/4π(−a1,1,−a−1,1, a1,0). To obtain the dipole we minimize the three quantities:

∑

i

{Ti −
ℓmax
∑

ℓ=0

+ℓ
∑

m=−ℓ

aℓmYℓm(i) }2/σ2
i (1)

∑

t

{∆T (t) −
ℓmax
∑

ℓ=0

+ℓ
∑

m=−ℓ

aℓm[Yℓm(t+) − Yℓm(t−)] }2/σ2
t (2)

∑

i,j>i

{∆Tij −
ℓmax
∑

ℓ=0

+ℓ
∑

m=−ℓ

aℓm[Yℓm(i) − Yℓm(j)] }2/σ2
ij (3)

where Ti is a pixelized DMR temperature map, ∆T (t) is a single DMR differential measurement

and Yℓm(t+) and Yℓm(t−) are the spherical harmonics evaluated in the pointing directions of the

DMR “+” and “−” horns respectively, at time t. The pixel-pair data, ∆Tij, is the average over all

single measurements ∆T (t) where the antennas are pointing at pixels i and j. The denominators

are the variances of the input data. Thus, with method 1, the sum is over all map pixels, with

method 2, the sum is over all the time-ordered data (with no pixelization) and in method 3 the

sum is over all pixel-pairs. The three methods are consistent and agree to within the relatively

small noise-only error bars for each channel. We use the difference between the non-pixelized
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method and the mean of the two pixelized methods to estimate and correct for the smoothing due

to data pixelization. We adopt the mean of these three methods and include the difference in the

combined systematic uncertainty. We correct for beam smoothing by multiplying the amplitude

by the factor 1.005 (Wright et al. 1994).

3. Analysis of Galactic Plane Cuts

3.1. Galactic Contamination

We estimate the influence of Galactic emission on the measurement by solving for the dipoles

in equations (1), (2), and (3) for a series of Galactic plane latitude cuts. The dipole amplitude and

direction results from each channel and each Galactic plane cut are shown in Figure 1. Galactic

emission produces a dipole which pulls the solutions towards it. This is easily seen in Figure 1

from the locations of the 0◦ and 5◦ cut solutions relative to the cluster of higher cut results on

the right. Since the Galactic dipole vector is nearly orthogonal to the CMB dipole vector, it is

almost maximally effective in influencing the CMB dipole direction and almost minimally effective

in influencing the CMB dipole amplitude. We can get a rough estimate of the Galactic dipoles

by noting that the 0◦ cut solutions for 31, 53 and 90 GHz are displaced from the direction of our

best-fit CMB dipole by angles αν ≈ (5◦, 1◦, 0◦.5) respectively. Thus the ratios of the Galactic

dipoles to the CMB dipole are
DGal,ν

DCMB
≈ sin(αν) ≈ (9%, 2%, 1%). In Figure 1, the general increase

of the dipole amplitudes seen in the top panel as the Galactic cut increases from 0◦ to 5◦ to 10◦

can be explained by the fact that the Galactic dipole vector contains a component in the direction

opposite to the CMB dipole (the Galactic center is ≈ 94◦ away) and thus reduces the total dipole

in the maps. A rough estimate of this effect on the dipole solutions D is in good agreement with

the plot: ∆Dν ∼ sin(4◦ ) sin(αν)D ∼ (20µK, 5µK, 2µK) for 31, 53 and 90 GHz respectively.

Figure 1 clearly shows the influence of the Galaxy for the 0◦ and 5◦ cuts as well as the relative

agreement of the independent channel results for both amplitude and direction. It is also apparent

that to first approximation a 10◦ cut is sufficient to remove the effect of the Galaxy on the direction

of the best-fit dipole; increases of the cut from 10◦ to 15◦ and so on, do not push the directions

away from the Galactic center or in any other particular direction. The results tend to cluster

together. The directional precision of the various channels and Galactic cuts is seen to be ∼ 0◦.3

and it is perhaps reassuring to note that at the bottom and the top of the cluster are the least

sensitive 31A and 31B solutions.

Figure 2 minimizes the confusion of taking a closer look at the cluster of points in Figure 1.

It analyzes the directional changes of the dipoles in the bottom panel of Figure 1. For example

consider the 31A results. The angular difference between the 5◦ and 10◦ cut solutions is a vector

of length ≈ 1◦ starting from the 5◦ cut on the left and extending to the 10◦ cut on the right.
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Averaging this vector with the analogous vector from 31B, we obtain the long thin line that runs

across most of the lower panel in Figure 2. The size of this angular deviation (≈ 1◦ ), is plotted as

the triangular point in the 5-10 bin of the top panel. An analogous procedure was followed for all

channels and Galactic cuts. Figure 2 is thus a spectral analysis of the angular deviations from one

Galactic plane cut to another.

Galactic emission significant enough to affect the dipole results will tend to pull the three

channels in approximately the same direction and favor a spectral behavior typical of synchrotron

or free-free emission. In the top panel, the two reference lines originating on the 31 GHz point

in the 0-5 and 5-10 bins indicate this expected spectral behavior for synchrotron radiation (thin)

and free-free emission (thick). The results in the 0-5 and 5-10 bins are obviously from Galactic

emission. The directions in these bins are also strongly correlated. The absence of this spectral

and directional behavior for the bins 10-15 and larger is evidence that the Galaxy is no longer

the major contributor to the directional uncertainty of the dipole. Although the 20-25 bin seems

indicative of the spectral behavior of Galactic emission, the incoherent directional behavior is

inconsistent with a common spatial origin for the supposed source.

Evidence supporting the idea that Galactic emission is relatively unimportant is provided

by the small differences between the dipole solutions using the “custom” cut (Fig. 1 of Kogut et

al. 1996a) and the straight |b| > 20◦ cut presented here. The differences in amplitude, longitude

and latitude are less than 0.2%, 9%, and 6% of our error bars on these respective quantities.

If plotted in Figure 1, the “custom” cut solutions overlap the |b| > 20◦ points with a barely

distinguishable displacement in the direction of the |b| > 25◦ solutions.

3.2. Higher Multipole CMB Contamination

For the purposes of determining the dipole there are two sources of noise; instrument noise

with a power law spectral index n ≈ 3 and the n ≈ 1 CMB signal. At 10◦ scales the CMB

signal to noise ratio in the maps is ∼ 2 (Bennett et al. 1996). Thus on larger scales the CMB

signal dominates the instrument noise and correspondingly, the uncertainties on the dipole from

the CMB signal are larger than those from the instrument noise. The uncertainties from both

are reduced by lowering the Galactic plane cut. In the 15-20 bin of Figure 2 (and to a lesser

extent in the 10-15 and 25-30 bins) we see a directional and spectral behavior consistent with a

common spatial origin and a CMB spectra (no frequency dependence of the angular deviation).

This suggests that large scale power of the CMB signal is responsible for these displacements

(rather than Galactic emission), and that a smaller (not a larger) cut is called for. This is further

supported by the fact that for |b| >
∼ 20◦, the combined free-free and dust emission from the Galaxy

at 53 and 90 GHz produces only ∼ 10µK rms (Kogut et al. 1996a) while the CMB signal rms is

∼ 35µK (Banday et al. 1996).
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To estimate the uncertainty in the dipole results due to the CMB signal we simulate n = 1.2,

Qrms−PS = 15.3µK CMB skies for 2 ≤ ℓ ≤ 25. We superimpose these maps on a known dipole

and solve for the dipole using a 15◦ Galactic plane cut. No bias is detected and the rms’s of the

results around the input values are 3.3µK in amplitude, 0◦.127 in longitude and 0◦.062 in latitude.

We include these uncertainties in the combined systematics.

Galactic cuts greater than 15◦ are not useful corrections which eliminate more and more

Galactic contamination; they introduce systematic errors associated with large Galactic cuts due

to the increasingly non-orthogonal basis functions Yℓm(θ, φ), over the increasingly limited and

thus noisier input data. For example, simulations with a 25◦ cut yield rms uncertainties due to

the CMB signal ∼ 75% larger than the 15◦ simulations. We conclude that, for the method used

here, the Galactic cuts of 10◦ and 15◦ are the best compromise to minimize the combined effect

of CMB aliasing, Galactic contamination and noise. The high precision of our dipole direction

results depend on this conclusion. Note that this choice for the optimal Galactic cut is smaller

than the ≈ 20◦ cut used when one is trying to compute the correlation function or determine the

ℓ ≥ 2 components of the power spectrum of the CMB signal which are smaller than the dipole by

a factor of ∼ 200. For such determinations, the similar compromise for simultaneously minimizing

Galactic contamination, instrument noise and other procedural/systematic effects demands a

larger cut.

Our results are averages of the 10◦ and 15◦ cuts. We adopt the difference between these two

solutions as the one σ uncertainty related to this Galactic plane cut choice. We include this

uncertainty in the combined systematics, along with the error associated with the aliasing of the

CMB signal and the method difference errors mentioned earlier. In general, CMB aliasing is the

dominant contributor to the directional combined systematics.

4. Results

Table 1 lists the weighted average of the 10◦and 15◦Galactic cut results and the uncertainties for

each channel. Taking the weighted average of all six channels we obtain a best-fit dipole amplitude

3.358 ± 0.001 ± 0.023 mK in the direction (ℓ, b) = (264◦.31 ± 0◦.04 ± 0◦.16, +48◦.05± 0◦.02 ± 0◦.09),

where the first uncertainties are statistical and the second are estimations of the combined

systematics. In celestial coordinates the direction is (α, δ) = (11h 11m 57s ± 23s,−7◦.22 ± 0◦.08)

(J2000). The uncertainty in the dipole amplitude is dominated by the absolute calibration of the

DMR instrument (Kogut et al. 1996b). This is easily seen in Figure 1 by comparing the large

error bars on our final result (far right) with the noise-only error bars on the channel results. The

calibration uncertainty plays no role in the directional uncertainty for the same reason that the

directions of vectors ~x and a~x (where a is any positive constant) are the same. The uncertainty in

the direction is dominated by the combined systematic effects discussed above.
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Under the assumption that the Doppler effect is responsible for the entire CMB dipole,

the velocity of the Sun with respect to the rest frame of the CMB is v⊙ = 369.0 ± 2.5

km/s, which corresponds to the dimensionless velocity β = v⊙/c = 1.231 ± 0.008 × 10−3.

The associated rms Doppler quadrupole8 is Qrms = 1.23 ± 0.02 µK with components

[Q1, Q2, Q3, Q4, Q5] = [0.91 ± 0.02,−0.20 ± 0.01,−2.05 ± 0.03,−0.91 ± 0.02, 0.18 ± 0.01]µK.

5. Summary and Discussion

We have used the DMR four-year data set to obtain a best-fit CMB dipole amplitude

3.358 ± 0.023 mK and direction (ℓ, b) = (264◦.31 ± 0◦.17, +48◦.05 ± 0◦.10). Figure 3 displays the

main results of this paper and compares them with other COBE results: the DMR first year

(Kogut et al. 1993), the DMR first two years (Bennett et al. 1994), the FIRAS (Fixsen et al. 1994,

Fixsen et al. 1996) dipole results and a pixel-based likelihood analysis of the DMR four-year data

(Bennett et al. 1996).

Although the results are consistent, our independent analysis differs from the Bennett et

al. (1996) analysis in many detailed ways. The most important difference is our strategy for

removing the Galactic foreground; we have examined the dipole results as a function of Galactic

plane cut and frequency and find that Galactic contamination of the dipole is not important for

Galactic cuts as low as 10◦ or 15◦. The largest source of directional error, aliasing of CMB power

combined with instrument noise, can be reduced by using these smaller Galactic plane cuts. The

result is substantially smaller errors on the dipole direction.

The good agreement of the DMR and FIRAS dipole results is further evidence that the

systematic uncertainties of these two COBE instruments are fairly well understood.

We acknowledge the constructive comments of the anonymous referee. We also gratefully

acknowledge NASA for funding the COBE satellite and data processing and the many people

responsible for the high quality of the COBE DMR data. C.H.L. acknowledges support from

the French Ministère des Affaires Etrangères. L.T. was partially supported by grant DGICYT

PB94-0364.

8 Q2
rms = 4

15
[ 3
4
Q2

1 + Q2
2 + Q2

3 + Q2
4 + Q2

5] where the components are defined by To
β2

2
(2cos2θ − (2/3)) =

Q1(3sin2b−1)/2+Q2sin2b cosℓ+Q3sin2b sinℓ+Q4cos
2b cos2ℓ+Q5cos

2b sin2ℓ, where To is the mean CMB

temperature and θ is the angle between the dipole direction and the direction of observation: (ℓ, b).
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Table I: Channel Dipole Results

Channel Amplitude Galactic Longitude Galactic Latitude
(µK)a (degrees) (degrees)

31A
Mean................ 3366 264.50 47.83
Total Error......... 85 0.22 0.23
Noise............... 7 0.14 0.09
Calibration......... 84 0.00 0.00
Combined Systematics 10 0.16 0.21

31B
Mean................ 3346 264.46 48.25
Total Error......... 77 0.30 0.24
Noise............... 9 0.23 0.12
Calibration......... 76 0.00 0.00
Combined Systematics 4 0.20 0.20

53A
Mean................ 3355 264.28 48.05
Total Error......... 23 0.18 0.10
Noise............... 2 0.07 0.03
Calibration......... 23 0.00 0.00
Combined Systematics 4 0.17 0.09

53B
Mean................ 3364 264.19 48.15
Total Error......... 24 0.17 0.08
Noise............... 2 0.08 0.04
Calibration......... 23 0.00 0.00
Combined Systematics 4 0.15 0.07

90A
Mean................ 3362 264.35 47.96
Total Error......... 67 0.20 0.11
Noise............... 4 0.13 0.07
Calibration......... 67 0.00 0.00
Combined Systematics 3 0.15 0.09

90B
Mean................ 3351 264.26 47.99
Total Error......... 43 0.17 0.09
Noise............... 3 0.10 0.05
Calibration......... 43 0.00 0.00
Combined Systematics 3 0.14 0.07

Total
Mean................ 3358 264.31 48.05
Total Error......... 23 0.17 0.10
Noise............... 1 0.04 0.02
Calibration......... 23 0.00 0.00
Combined Systematics 4 0.16 0.09

a Values are in thermodynamic temperature transformed from antenna temperature by

∆T = ∆Tant(e
x
− 1)2/x2ex where x = hν/kTo, To = 2.73 K. The conversion factors are thus 1.026, 1.074 and 1.227

for 31.5, 53 and 90 GHz respectively.
b see Kogut et al. 1996b, Table 2 for absolute calibration uncertainties.
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Fig. 1.— Dipole amplitudes (top) and directions (bottom). The results for each channel and

Galactic plane cut (from left to right in the top panel), |b| > 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦ are

shown. Channels and cuts are denoted with the same point type and size in both panels. Solutions

for the dipole where no effort has been made to eliminate Galactic emission (i.e., 0◦ Galactic cuts)

are labeled with the channel names 53A, 53B, 90A and 90B. The 31 GHz labels indicate the 5◦

cut solutions since their 0◦ cut solutions are off the plot at longitude ≈ 271◦. For each channel,

the successive Galactic cuts are connected by lines (31: long-dashed, 53: dotted, 90: short-dashed,

average: solid). The direction of the Galactic center is toward higher latitudes for the same reason

that one flies north-west from London to arrive at New York. The latitude and longitude ranges

were chosen to display an approximately square piece of the sky. For each channel, the direction

error bars on the 15◦ Galactic cut solutions are shown. Our final dipole amplitude, including the

calibration uncertainty is the point in the far right of the top panel. The grey box in the bottom

panel denotes the 68% confidence levels of our final dipole direction.
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Fig. 2.— Spectral analysis of the angular deviations of the dipole. The vectors of the angular

separations between the points in Figure 1 are indicated here in the bottom panel while their sizes

are plotted in the top panel. The A and B channels at each frequency, 31.5, 53 and 90, have been

averaged and are represented respectively by triangles, squares, circles (top) and by thin, medium

and thick lines (bottom). In the bottom panel, for ease of comparison, the three vectors in a given

bin originate at the same point. The 0-5 bin is not shown because it is similar to the 5-10 bin

but (as indicated in the top panel) the vectors are approximately five times longer. In the top

panel, the two reference lines originating on the 31 GHz point of the 0-5 and 5-10 bins indicate the

expected spectral behavior if the Galactic emission is pure synchrotron (thin) and pure free-free

(thick). The points chosen as the common origin of the vectors for each bin are the directions of

the channel averages at the smaller of the cuts in each bin pair. The origin latitudes have been

offset by 0.18◦ with respect to each other to avoid confusion.
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Fig. 3.— COBE dipoles. The DMR dipole results: 1Y: (Kogut et al. 1993), 2Y: (Bennett et

al. 1994), 4YB: (Bennett et al. 1996), and 4YL: (this work:), are consistent with each other and

with the FIRAS results F94, F96: (Fixsen et al. 1994, 1996). We have adjusted the published

FIRAS error bars to include CMB aliasing using the 15◦ cut simulation results (Section 3.2).


