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ABSTRACT

We report the first detection of interstellar hydrogen fluoride. Using the

Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO),

we have detected the 121.6973 µm J = 2 − 1 line of HF in absorption toward

the far-infrared continuum source Sagittarius B2. The detection is statistically

significant at the 13 σ level. On the basis of our model for the excitation of

HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a hydrogen

fluoride abundance of ∼ 3 × 10−10 relative to H2. If the elemental abundance of

fluorine in Sgr B2 is the same as that in the solar system, then HF accounts

for ∼ 2% of the total number of fluorine nuclei. We expect hydrogen fluoride

to be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is

formed rapidly in exothermic reactions of atomic fluorine with either water or

molecular hydrogen; thus the measured HF abundance suggests a substantial
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depletion of fluorine onto dust grains. Similar conclusions regarding depletion

have previously been reached for the case of chlorine in dense interstellar clouds.

We also find evidence at a lower level of statistical significance (∼ 5 σ) for an

emission feature at the expected position of the 432 − 423 121.7219 µm line of

water. The emission line equivalent width of 0.5 nm for the water feature is

consistent with the water abundance of 5 × 10−6 relative to H2 that has been

inferred previously from observations of the hot core of Sgr B2.

1. Introduction

Molecules are a ubiquitous component of the dense interstellar medium. To date,

about one hundred distinct species have been detected in the interstellar gas (Ohishi 1997);

they range from simple diatomic molecules to complex species containing as many as

thirteen atoms. The wide variety of interstellar molecules demonstrates the thermodynamic

tendency of most elements to form molecules under the conditions present in the dense

interstellar medium. Although most of the interstellar molecules that have been detected

previously contain elements1 of cosmic abundance greater than 10−5, a few molecules

containing elements of lower abundance have also been detected. For example, chlorine,

with a solar system abundance of only 2×10−7 relative to hydrogen (Anders & Grevesse

1989), was detected more than a decade ago in the form of hydrogen chloride (Blake, Keene

& Phillips 1985).

Recent estimates (Neufeld & Green 1994; Schilke, Phillips & Wang 1995; Zmuidzinas et

al. 1995a) of the HCl abundances implied by observations of the HCl J = 1 − 0 line toward

Sgr B2 (Zmuidzinas et al. 1995a) and the Orion Molecular Cloud 1 (Blake et al. 1985;

Schilke et al. 1995) have yielded results for n(HCl)/n(H2) in the range 0.3 – 2 ×10−9. If the

elemental abundance of chlorine in these sources is the same as that in the solar system,

then HCl accounts for only 0.1 − 0.7% of the total number of chlorine nuclei. Theoretical

models for the chemistry of chlorine-bearing molecules (Schilke et al. 1995) predict that

HCl will account for ∼ 30% of gas-phase chlorine. Thus the observed abundance of HCl

can only be understood if the chlorine depletion in the dense ISM is large. The required

depletion factors of >
∼ 102 greatly exceed the values inferred for the diffuse ISM from UV

absorption line studies (e.g. Harris, Gry, & Bromage 1984 ).

Prior to the observations reported in this Letter, HCl was the only known interstellar

1viz. hydrogen, oxygen, carbon, nitrogen, sulphur and silicon
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molecule containing a halogen element2. Motivated by the earlier observations of HCl, by

the fact that the solar system abundance of fluorine lies only a factor of 6 below that of

chlorine (Anders & Grevesse 1989), and by the large H–F bond strength which suggests that

hydrogen fluoride is likely to be a major reservoir of gas-phase fluorine, we have undertaken

a search for interstellar hydrogen fluoride toward the strong far-infrared continuum source

Sgr B2. Such a search would provide a unique probe of the chemistry of interstellar

fluorine and of the fluorine depletion in the dense interstellar medium. Because of its large

rotational constant – the largest of any diatomic molecule other than molecular hydrogen or

HeH+ – HF possesses a rotational spectrum that lies entirely shortward of the atmospheric

windows within which most molecules show a rotational spectrum. Observations of HF

rotational transitions are therefore possible only from airplane or space-based observatories.

We have made use of the Long Wavelength Spectrometer (LWS; Clegg et al. 1996) on

board the Infrared Space Observatory (ISO; Kessler et al. 1996) to search for hydrogen

fluoride. The J = 1− 0 transition of HF lies longward of the wavelength range to which the

photoconductive detectors used in LWS are sensitive, so we have carried out observations

of the J = 2 − 1 line at 121.6973 µm. These observations are described in §2 below.

Our results are presented in §3, and discussed in §4. The detection of hydrogen fluoride

reported here marks the first discovery of an interstellar molecule containing the element

fluorine and the first time that a new astrophysical molecule has been identified by means

of observations in the far-infrared (30 – 300 µm) spectral region.

2. Observations and data reduction

Using the LWS of ISO in Fabry-Perot mode at a resolving power λ/∆λ of 9600, we

observed the J = 2 − 1 line of HF toward the source Sgr B2 on 1997 March 28th. The

rest frequency of the line is 2 463 428.11 ± 0.21 MHz (Nolt et al. 1987), corresponding to a

vacuum wavelength of 121.6973 µm. Unlike HCl, HF shows no electric quadrupole hyperfine

structure, and the magnetic hyperfine splitting is far smaller than the intrinsic width of any

astrophysical absorption line. The ISO beam, of approximate diameter 70′′ FWHM, was

centered midway between Sgr B2(M) and Sgr B2(N), at coordinates α = 17h 47m 20.0s,

δ = −28◦ 22′ 41.3′′ (J2000). The observation, which covered the wavelength range 121.63 –

121.80 µm, was carried out in fast scanning mode with 8 spectral samples per resolution

element. The total integration time was 2549 seconds.

2Note, however, that NaCl, KCl, AlCl, and AlF have been detected in the circumstellar envelope of

IRC+10216 (Cernicharo & Guélin 1987; Ziurys, Apponi & Phillips 1994), and that HF lines have been

widely observed in the spectra of cool stars (e.g. Jorissen, Smith & Lambert 1992).
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The initial data reduction was carried out with version 6.1 of the ISO pipeline software.

The ISAP software package was then used to remove bad data points, to co-add the

individual spectral scans, and to derive estimates of the likely statistical error for each flux

measurement from the variance of the individual scans. The resultant spectrum showed

a continuum flux level that varied by ∼ 13% over the narrow wavelength range covered.

This behavior, which has been widely observed in LWS Fabry-Perot spectra, is caused by

the grating that is used as an order sorter for the Fabry-Perot etalon. Due to errors in

the grating setting, the grating wavelength is sometimes offset slightly from the central

wavelength of the Fabry-Perot scan, thereby superimposing an asymmetric envelope on the

measured spectrum and compromising the absolute flux calibration. That envelope was

fit with a second order polynomial, and the absolute flux calibration was obtained from a

spectrum taken in the grating mode of LWS immediately after the Fabry-Perot scan.

3. Results

Figure 1 shows the LWS spectrum observed toward Sgr B2, normalized with respect

to the measured continuum flux of 4.8 × 104 Jy. We used a χ2 analysis to fit the observed

spectrum and assess the statistical significance of lines that we detected. Our analysis

makes the implicit assumption that the errors in the fluxes measured at each spectral

point are Gaussian and independent. We approximated the spectral response function of

the Fabry-Perot instrument as a Lorentzian with a width corresponding to the nominal

resolving power λ/∆λ of 9600 (Trams, Clegg & Swinyard 1996); and we assumed that

the astrophysical absorption feature was narrow compared to the instrumental profile, as

suggested by the intrinsic line widths measured for HCl (Zmuidzinas et al. 1995a).

Fitting a single absorption feature to the spectrum, and with a quadratic fit to

continuum as described in §2 above, we obtained an absorption line equivalent width of

1.0 nm and a central LSR velocity of 67 km s−1 for the 121.6973 µm HF line. The measured

LSR velocity is in excellent agreement with the centroid velocity observed by Zmuidzinas

et al. (1995a) for the HCl J = 1 − 0 line in Sgr B2. Our detection of an absorption feature

is statistically significant at the 13 σ level.

In addition to the absorption feature that we attribute to HF, we find evidence at

a lower level of statistical significance (∼ 5 σ) for an emission feature near the expected

position (for vLSR = 67 km s−1) of the 432 − 423 line of water, which has a rest wavelength

of 121.7219 µm (Toth 1991). The emission line equivalent width is 0.5 nm. With the water

emission line included in the fit, the reduced χ2 is 0.98 (with 108 degrees of freedom).
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4. Discussion

Our identification of the absorption feature in Figure 1 with HF J = 2 − 1 is based

upon (1) the excellent agreement of the observed line position with the expected position of

the HF line; and (2) the absence of any other astrophysically plausible candidate in available

line catalogues. Notwithstanding these considerations, the detection of additional HF

lines would be desirable as a confirmation of this identification. Unfortunately, according

to the excitation model discussed below, we do not expect absorption lines higher than

J = 2 − 1 to be strong enough to be detected by the ISO spectrometers. Furthermore, the

J = 1 − 0 transition near 243.2 µm lies longward of the spectral region that is observable

with the photoconductive detectors used in LWS. Fortunately, the Earth’s atmosphere

permits observations of HF J = 1 − 0 from airplane altitude: that line, with a large

predicted equivalent width ∼ 18 nm, will therefore be a prime target for observations

with instrumentation for longer wavelengths that has been proposed for the Stratospheric

Observatory of Infrared Astronomy (SOFIA). Observations of HF J = 1 − 0 will also be

possible with instrumentation proposed for the Far Infrared and Submillimetre Telescope

(FIRST).

In deriving a hydrogen fluoride abundance from the observed equivalent width of the

J = 2 − 1 line, we have made use of an excitation model to determine the fractional level

populations as a function of position within the source. Our model is essentially identical

to that used by Zmuidzinas et al. (1995a) to model the excitation of HCl in Sgr B2. The

temperature and H2 density in the source are assumed to vary with the radial coordinate

r = rpc pc according to

T = 40 r−1/2
pc K,

n(H2)/cm−3 = 8.6 × 104 r−2
pc + 2.2 × 103.

For an assumed dust opacity that varies with wavelength as λ−1.5, these temperature and

density profiles yield a predicted dust continuum spectrum that is in excellent agreement

with the observations. Because of the large dipole moment (1.826 Debye; Muenter 1972)

and large rotational constant (20.54 cm−1) of the HF molecule, the critical density at

which collisional processes become important in the excitation of HF J = 1 is very much

larger (∼ 109 cm−3) than the density of the gas (n[H2] ∼ 105 cm−3) that we sampled

in our observations of Sgr B2. Thus the excitation of HF is dominated by the effects

of radiative pumping by dust continuum radiation. The radiative transfer was treated

using the method of accelerated lambda iteration (Rybicki & Hummer 1991), and the line

equivalent width obtained as a function of the HF abundance. In the absence of available

collisional data for HF, we adopted as the rate coefficients for collisional de-excitation

those computed previously for the de-excitation of HCl by He (Neufeld & Green 1994);
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fortunately, because radiative pumping dominates the excitation of HF in Sgr B2, our

results are almost entirely independent of the assumed collisional rate coefficients. On the

basis of this model, we found that the observed equivalent width of 1.0 nm corresponds to

an abundance n(HF)/n(H2) ∼ 3 × 10−10. The predicted equivalent width shows a nearly

linear dependence on the assumed HF abundance (equivalent width ∝ abundance0.85) for

abundances in the range 1 − 6 × 10−10. Figure 2 shows the fractional level populations in

J = 0, 1, 2 and 3 as a function of radial coordinate for a hydrogen fluoride abundance of

3 × 10−10. Observations of the J = 2 − 1 absorption line sample the region exterior to an

effective photosphere at rpc ∼ 0.6.

We also modeled the excitation of the H2O 432−423 line that is evident in the spectrum

at a lower level of statistical significance. For the case of water, an excitation model

had previously been developed to account for the observed strengths (Zmuidzinas 1995b;

Gensheimer, Mauersberger & Wilson 1996) of the 414 − 321 and 313 − 202 emission lines of

H18
2 O and the 110 − 101 absorption line of H18

2 O toward Sgr B2. The temperature and H2

density profiles assumed in that model were identical to those adopted for the HF and HCl

excitation models. To fit the measured fluxes of all three lines, a variable water abundance

must be assumed, with a smaller water abundance n(H16
2 O)/n(H2) = 3.3×10−7 in the cooler

outer parts of the source (T < 90 K; rpc > 0.2), and a larger water abundance of 5× 10−6 in

the warmer inner regions (i.e. the “hot core” with T ≥ 90 K; rpc < 0.2). A variation in the

water abundance of this nature could be explained by the vaporization of water ice from

grain mantles in the warmer parts of the source. Water abundances >
∼ 10−5 have previously

inferred from observations of H18
2 O and H16

2 O in other warm dense molecular regions (Jacq

et al. 1988; Cernicharo et al. 1994; Gensheimer et al. 1996; van Dishoeck & Helmich 1996).

Without the adjustment of any model parameter, our excitation model for water predicts

that the 432 − 423 line of H16
2 O – which is excited primarily within the hot core where the

assumed water abundance is 5× 10−6 – will be an emission line with an equivalent width of

0.4 nm, in good agreement with the observations.

To interpret our detection of HF, we have constructed a simple model for the

steady-state chemistry of interstellar fluorine. Fluorine is qualitatively different in at least

one important respect from all the other elements3 of which hydrides have been detected in

the interstellar medium: atomic fluorine reacts exothermically with H2 via the reaction

H2 + F → HF + H (R1).

Fluorine also undergoes an exothermic reaction with water:

H2O + F → HF + OH (R2).

3viz. oxygen, carbon, nitrogen, sulphur, silicon and chlorine
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Both reactions have been well-studied in the laboratory, although only at temperatures

greater than 200 K. For reaction (R1), measurements by three independent groups have

yielded results for the rate coefficient at 298 K in the narrow range 2.3− 3.0× 10−11cm3 s−1

(Wurzberg & Houston 1980; Heidner et al. 1980; Stevens, Brune, & Anderson 1989). The

temperature dependence of the measured rate coefficient implied the presence of a relatively

small activation energy barrier that was variously estimated as Ea/k = 595 ± 50, 433 ± 50

and 470 ± 30 K in these three studies. We adopted Atkinson et al.’s (1992) review value

of kH2 = 1.4 × 10−10 exp (−500 K/T ) cm3s−1 for the rate coefficient for (R1). For reaction

(R2), Stevens et al. (1989) obtained a rate coefficient kH2O = (1.6± 0.3)× 10−11cm3s−1 with

no detectable variation over the temperature range 240–373 K; the implied limit on any

activation energy barrier was (−28 ± 42) K. For a water abundance of 3.3 × 10−7, these

rate coefficients imply that reaction (R1) dominates the formation of HF at temperatures
>
∼ 30 K. At the H2 densities present in Sgr B2, both reactions are expected to dominate

ion-neutral reaction networks as a source of HF.

Once formed, HF is destroyed only very slowly. HF is more strongly bound than any of

the species CF, CH, OF, OH, NF, NH, SF, SH, SF+, SiF, SiH, or SiF+: thus reactions of HF

with C, O, N, S, S+, Si, and Si+ are all endothermic. HF has a smaller proton affinity than

H2O, CO or N2: thus reactions with H3O
+, HCO+, and N2H

+ are likewise endothermic.

Destruction of HF takes place slowly by means of cosmic ray induced photodissociation and

as a result of reactions with species of low abundance such as CH, He+, H+
3 , and C+.

Considering these formation and destruction processes for hydrogen fluoride, we find

that over a wide range of densities and temperatures, including those probed by our

observations of HF J = 2 − 1 in Sgr B2, HF accounts for more than 99% of all fluorine

nuclei in the gas-phase. In comparison with the ion-neutral reaction routes responsible

for the formation of other interstellar hydrides, the neutral-neutral reactions (R1) and

(R2) are extremely effective in producing HF. Given (1) our theoretical expectation that

HF is the dominant reservoir of gas phase fluorine along the line-of-sight to Sgr B2, (2)

the assumption that the elemental abundance of F is the same as that measured in the

solar system (3 × 10−8 relative to H; Anders & Grevesse 1989), and (3) the observed HF

abundance of ∼ 3 × 10−10 relative to H2, we conclude that a depletion factor ∼ 50 results

from the depletion of fluorine onto dust grains in Sgr B2. This is somewhat smaller than

the depletion factors inferred by Zmuidzinas et al. (1995a) and Schilke et al. (1995) for

chlorine in Sgr B2 and in OMC-1.
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Figure Captions

Fig. 1 – ISO LWS Fabry-Perot spectrum of the HF J = 2 − 1 line toward Sgr B2. The ISO

beam, of approximate diameter 70′′ FWHM, was centered midway between Sgr B2(M) and

Sgr B2(N), at coordinates α = 17h 47m 20.0s, δ = −28◦ 22′ 41.3′′ (J2000). The flux has

been normalized relative to the continuum flux of 4.8 × 104 Jy. The LSR velocity plotted

on the horizontal axis applies to the HF J = 2 − 1 line at 121.6973 µm (rest wavelength).

The solid line shows the fit obtained from the fitting procedure described in the text. The

location of the H16
2 O 432 − 423 line in that fit is shown for the case vLSR = 67 km s−1.

Fig. 2 – Fractional level populations for rotational states of HF, as a function of radius,

obtained using the excitation model described in the text.






