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Abstract

Low amplitude (linear regime) cosmic density fluctuations lead to

spatial variations in the locally measurable value of H0 (denoted as HL),

δH ≡ (HL − H0)/H0, which are of order 3 − 6% (95% confidence interval) in a

sphere of 200 h−1Mpc in diameter, and of order 1−2% in a sphere of 400 h−1Mpc

in diameter, for three currently viable structure formation models (tilted CDM,

ΛCDM, and open CDM) as normalized by the 4 year COBE DMR data.

However, the true matter distribution power spectrum may differ from any

of the currently viable models. For example, it may contain sharp features

which have escaped detection so far. The measured CMB dipole velocity

(the Galaxy’s peculiar velocity with respect to the CMB rest frame) provides

additional constraints on the probability distribution of δH that supplement

our limited knowledge of the power spectrum. For a matter power spectrum

which consists of the smooth power spectrum of a viable cosmological model

plus a delta-function bump, we find that given the CMB dipole velocity, the
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95% CL upper limit of |δH | increases approximately by a factor of two, but the

probability distribution of δH is non-Gaussian, with increased probability at

small δH compared to Gaussian. Abandoning model power spectra entirely, we

find that the observed CMB dipole velocity alone provides a very robust limit,
√

〈δ2
H〉R < 10.5 h−1Mpc/R at 95% CL, in a sphere of radius R, for an arbitrary

power spectrum.

Thus, variations between currently available local measures of H0 and its

true global value of a few to several percent are to be expected and differences

as large as 10% are possible based on our current knowledge of the CMB

anisotropies.
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1. Introduction

In the standard gravitational instability scenario (Peebles 1980, Peebles 1993) for

cosmic structure formation, linear growth of density fluctuations is produced by, and

produces, spatial variations of the expansion rate. In this rather generic scenario, such

variations are the inevitable implication of the extremely large scale structures which have

been detected in the galaxy distribution, primarily via redshift surveys (e.g., DaCosta et al.

1994, Lauer & Postman 1994, Lin et. al. 1996, Tadros & Efstathiou 1996).

The connection of such expansion rate variations, which are often thought of as

peculiar velocity fields, to the large scale density distribution is of direct interest (Strauss &

Willick 1995) but is also potentially important as a source of systematic error in attempts

to measure Hubble’s constant H0, the overall mean expansion rate of the Universe. In

particular, if the expansion rate is correctly measured in a local volume which is not

sufficiently large compared to the biggest significant cosmic structures, the strong possibility

of a difference between it and the true cosmic value of H0 must be considered.

This potential problem has long been known in principle, was emphasized in the

context of modern structure formation models by Turner, Ostriker, & Cen (1992) and

has subsequently been considered by several authors (Wu et al. 1995, Nakamura et al.

1995, Nakao et al. 1995, Shi, Widrow, & Dursi 1996, Wu et al. 1996, Shi & Turner 1997).

The issue is of greater interest than ever at present for two reasons: First, measurements of

H0 by conventional distance ladder techniques have improved dramatically and now achieve

credible precisions of order 10 to 20 percent. It follows that a systematic difference between

local and global expansion rates of a comparable fractional size are important sources of

error. Second, there is suggestive, though not yet compelling, evidence that direct physical

methods for measuring H0 on extremely large scales (out to redshifts of order unity)

(Birkinshaw, Hughes, & Arnaud 1991, Jones et al. 1993, Schechter et al. 1997, Kundic et
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al. 1997) give a somewhat smaller value than the best distance ladder determinations which

apply out to redshifts of a tenth or less (Graham et al. 1997, Tonry et al. 1997, Eastman,

Schmidt & Kirshner 1996).

In this paper we attempt to exploit our best and most direct empirical information

about large scale (linear) cosmic density fluctuations, namely observed anisotropies in the

cosmic microwave background (CMB), in order to predict and/or constrain the expected

resulting variations in the expansion rate. Specifically, we study these intrinsic fluctuations,

δH ≡ (HL−H0)/H0, where HL is the local measure of H0, in terms of the matter distribution

power spectrum P (k). (Note that although galaxies are biased tracers of the mass density

field, on the large scales which are of interest to this paper − 100 Mpc or larger, linear

biasing is a reasonable assumption for conventional structure formation scenarios.)

In fact, we present here three separate calculations of this sort, proceeding from the

one which gives the strongest result but which is most model dependent to the one which

is weakest but most robust (model independent). First, we simply base our input P (k)

on standard structure formation models in terms of its shape and use CMB observations

only to set the overall normalization or amplitude. Here, our results agree with recent

work by Shi & Turner (1997). Second, we consider an input P (k) with a shape and

amplitude constrained by CMB fluctuations; for some scales (k values) P (k) is effectively

directly observed, but we allow for the possibility of strong features on those scales not

directly sampled by currently available data by imposing limits based on the CMB dipole

(the Galaxy’s peculiar velocity with respect to the CMB rest frame). Third, we impose

no constraints at all on the input P (k) (which does not even appear explicitly in this

calculation) other than that it be Gaussian and not violate the aforesaid CMB dipole

constraint.

Section 2 contains general expressions for δH and related variables. In Section 3, we
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compute δH for matter power spectra given by three viable cosmological models which

are normalized by the 4 year COBE DMR data and satisfy constraints from large scale

structure data. In Section 4, we study the effects of unexpected features in P (k) which may

boost δH by adding a delta-function bump to a smooth matter power spectrum given by a

viable cosmological model. In Section 5, we apply Bayesian statistics to derive robust upper

limits on δH and related variables, using the CMB dipole velocity of v=627 km/s (Kogut et

al. 1993, Fixsen et al. 1994); these upper limits are independent of the actual form of the

matter power spectrum. Section 6 contains discussions and a summary.

2. General Expressions

For an observer at ri who measures the Hubble’s constant by summing over the radial

recession velocity divided by distance of N objects located at rj, (j = 1, 2, ..., N) (Turner,

Ostriker, & Cen 1992)

δH(ri) ≡
H(ri) − H0

H0
=

1

N

∑

j 6=i

vj · (rj − ri)

H0|rj − ri|2
. (1)

To find δH for a sphere of radius R centered around x, we write (Shi, Widrow, & Dursi

1996)

δH(x)R =
∫

d3y
v(y)

H0
· y − x

|y − x|2 W (y − x), (2)

where W (y − x) is the top hat window function with radius R,

W (y − x) =











(4πR3/3)−1, |y − x| ≤ R

0, |y − x| > R
(3)

In linear perturbation theory (Peebles 1993, 1980), the Fourier component of

v(y) = (2π)−3
∫

d3kvk exp(−ik · y) is

vk =
Ω0.60

0 H0

ik
δk k̂, (4)
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for an open or flat universe. δk is the Fourier component of the density fluctuation. Hence

δH(x)R =
Ω0.60

0

(2π)3

∫

d3k δk L(kR) e−ik·x, (5)

where

L(x) =
3

x3

(

sin x −
∫ x

0
dy

sin y

y

)

. (6)

Note that L(x → 0) = −1/3, and L(x) < 0, as expected; overdensities (δk > 0) lead to

infall, which leads to the underestimate of the Hubble’s constant (δH < 0).

δH is a Gaussian random variable, with mean 0 and variance

〈δ2
H〉R =

Ω1.20
0

2π2R2

∫ ∞

0
dk P (k) [(kR)L(kR)]2 . (7)

The power spectrum P (k) = |δk|2. The variance of density fluctuations in a sphere of radius

R is
〈(

δρ

ρ

)2〉

R

=
1

2π2R2

∫ ∞

0
dk P (k)

{

(kR)

[

3j1(kR)

kR

]}2

. (8)

Clearly, the fluctuations in the measured expansion rate stem directly from the fluctuations

in matter density.

We can define ΩL ≡ 8πGρL/(3H2
L). To lowest order in δρ/ρ and δH ,

δΩ ≡ (ΩL − Ω0)/Ω0 = δρ/ρ − 2δH . We find

〈δ2
Ω〉R =

1

2π2R2

∫ ∞

0
dk P (k)

{

(kR)

[

3j1(kR)

kR
− 2Ω0.60

0 L(kR)

]}2

. (9)

Note that the fluctuations in ΩL are contributed additively by δρ/ρ and δH (L(x) < 0).

ΩL = 8πGρL/(3H2
L) is related but not identical to the locally measured Ω (by counting

matter or dynamical methods).

The variance of peculiar velocity v and bulk flow velocity vR (variance of peculiar

velocity in a sphere of radius R) also depend on P (k),

〈v2〉 =
Ω1.20

0 H2
0

2π2

∫ ∞

0
dk P (k),

〈v2〉R =
Ω1.20

0 H2
0

2π2

∫ ∞

0
dk P (k)

[

3j1(kR)

kR

]2

. (10)
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Note that 〈δ2
H〉R, 〈(δρ/ρ)2〉R, 〈δ2

Ω〉R, and 〈v2〉R are all proportional to integrals over

P (k) multiplied by a window function W (kR); Fig.1 shows these window functions. Note

that the window function of 〈δ2
H〉R is somewhat similar to that of 〈(δρ/ρ)2〉R and 〈δ2

Ω〉R,

but very different from that of 〈v2
R〉. Also, 〈δ2

H〉R, 〈(δρ/ρ)2〉R, and 〈δ2
Ω〉R all decrease much

faster with R (the radius of the observed volume) than 〈v2
R〉 (note that we have factored

1/R2 out of the integrals for 〈δ2
H〉R, 〈(δρ/ρ)2〉R, and 〈δ2

Ω〉R), while 〈v2〉 is independent of the

size of the observed volume.

Even though δH is caused by the presence of non-zero peculiar velocities [see Eq.(1)],

it has only weak correlations with the measures of the peculiar velocity field.

3. Theoretical Power Spectra with CMB Normalization

Let us consider cosmological structure formation models which simultaneously satisfy

constraints from the observed LCRS power spectrum (Lin et. al. 1996), the Hubble’s

constant range of 0.5 <∼ h <∼ 0.8, cluster abundance results, and the reasonable assumption

that LCRS galaxies are approximately unbiased on large scales relative to the mass

normalization provided by the 4 year COBE DMR data. Following Lin et. al. 1996, we

assume that in the linear regime

Pgalaxy,redshift space(k) ≃ b2



1 +
2

3

Ω
4/7
0

b
+

1

5

Ω
8/7
0

b2



 Pmass,real space,linear(k). (11)

Three viable models are: (1) TCDM: Ω0 = 1, n = 0.7, h = 0.5, Ωb = 0.05, b = 1.3; (2)

ΛCDM: Ω0 = 0.5 = ΩΛ, n = 1, h = 0.5, Ωbh
2 = 0.015, b = 0.9; (3) OCDM: Ω0 = 0.5, n = 1,

h = 0.65, Ωbh
2 = 0.015, b = 0.9.

The power spectrum of a model is given by

P (k)

h−3Mpc3 = P0

(

k

Mpc−1h

)n

T 2(q), (12)
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where P0 ≡ 2π2 (105δhor · 90)
2 · 3000n−1. The 4 year COBE DMR data give (Bunn & White

1997)

105δhor =











1.94 Ω−0.785−0.05 lnΩ0

0 exp[−0.95 (n − 1) − 0.169 (n − 1)2], Ω = 1;

1.95 Ω−0.35−0.19 lnΩ0

0 , Ω < 1, n = 1.
(13)

T (q) is the CDM transfer function, given by (Bardeen et. al. 1986)

T (q) =
ln(1 + 2.34 q)

2.34 q

[

1 + 3.89 q + (16.1 q)2 + (5.46 q)3 + (6.71 q)4
]−1/4

, (14)

where q = k/(hΓ), Γ is the shape parameter. We use (Hu & Sugiyama 1996)

Γ = Ω0h α1/2Θ−2
2.7, (15)

where Θ2.7 = 2.726K/2.7K, and

α = a
−Ωb/Ω0

1 a
−(Ωb/Ω0)3

2 ,

a1 = (46.9 Ω0h
2)0.670

[

1 + (32.1 Ω0h
2)−0.532

]

,

a2 = (12.0 Ω0h
2)0.424

[

1 + (45.0 Ω0h
2)−0.582

]

. (16)

For the three models considered, Γ = 0.467 (TCDM), 0.223 (ΛCDM), and 0.299 (OCDM)

respectively.

Figs.2-5 show 〈δ2
H〉R, 〈(δρ/ρ)2〉R, 〈δ2

Ω〉R, and 〈v2〉R, as functions of R, for the three

models (TCDM, ΛCDM, and OCDM). Figure 2 indicates, for example, that a perfect

measurement of the local expansion rate in a sphere of diameter 20,000 km/s (200 h−1Mpc)

would provide a 95 percent confidence interval determination of the global value of H0 with

a width of 3 to 6 percent, depending on the adopted structure formation model.

4. Smooth Power Spectra with a Feature on Unobserved Scales

The COBE observations of CMB fluctuations on scales larger than 7o(Bennett et

al. 1996) directly probe the potential fluctuations on scales larger than 300 h−1 Mpc. It
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is possible to smoothly connect the COBE measurements to observations of large scale

structure. In fact, there is a family of cold dark matter models (tilted CDM, open CDM,

Lambda-dominated CDM, mixed dark matter) that are consistent with both measurements

of large-scale structure on scales of ∼ 1 − 60 Mpc and CMB observations on large scales

(Ratra et al. 1997, Bunn & White 1997).

There are, however, a number of observations that suggest that the amplitude of

fluctuations on the 60 − 300 h−1 Mpc scale exceeds that predicted by CDM models or

by smooth interpolations between the scales probed by galaxy surveys and the COBE

observations: Lauer & Postman (1994) measure much larger bulk flows than predicted

by standard cosmological models (Strauss et al. 1995); deep pencil beam surveys detect

excess power on scale of ∼ 100/h Mpc (Broadhurst et al. 1990, Cohen et al. 1996);

two-dimensional measures of the power spectrum in the Las Campanes redshift survey also

find excess power on the 100/h Mpc scale (Landy et al. 1996); and K-band galaxy counts

can be interpreted as indicating a very large scale local underdensity region (Phillips &

Turner 1998). If the ratio of the baryon density to the closure density, Ωbh
2, is close to

the low value suggested by the D/H measurements of Songaila, Wampler & Cowie (1997),

then recent CMB measurements on the 1-2 degree scale (Netterfield et al. 1997) would also

imply excess power near the 100/h Mpc scale. Shi et al. (1996) have used the degree scale

CMB measurement to constrain a possible feature in P (k) beyond about 100 Mpc scale;

however, even if Ωbh
2 is large, it is difficult to use CMB observations to place an upper

limit on density fluctuations on this scale as CMB fluctuations on scales smaller than that

probed by COBE may have been suppressed by reionization of the intergalactic medium at

z > 20.

These observations suggest that P (k) is not smooth, but may have some feature on

the 60− 300 h−1 Mpc scale. There are several interesting physical processes acting on these
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scales because of the horizon size at the matter-radiation transition and at baryon-photon

decoupling, so it is quite possible that there is new physics acting on these scales. Since

we are trying to constrain the uncertainties in the Hubble’s constant due to large scale

structure, we will study the possibility of excess power by adding a delta-function bump to

a smooth matter power spectrum P0(k) given by a viable cosmological model. Let us write

P (k) = P0(k) + Aδ(k − k0), (17)

We take P0(k) given by the tilted CDM model (TCDM) as a convenient smooth functional

form, with n = 0.7, Ω0=1, Ωb = 0.05, and h = 0.5. Since
∫∞
0 dk P0(k) = 828.808 h−2Mpc2,

and Ã = Ω1.20
0 H2

0/(2π2) [
∫∞
0 dk P0(k) + A] is less than (1831 km/s)2 at 95% CL (see the

following section for more details), we find that A/(2π2) ≤ 293.3 h−2Mpc2 at 95% CL.

Calculations show that the delta function spike has the most significant effect on the bulk

flow velocity
√

〈v2〉R.

Now we compute the probability distribution of δH measured in a sphere of radius R,

given the CMB dipole velocity of v=627 km/s. Using the Bayesian theorem, we find

P (δH|v)R =
∑

Ã

P (δH |Ã)RP (Ã|v) ∝
∑

Ã

P (δH |Ã)RP (v|Ã)P (Ã), (18)

where

P (δH |Ã)R =
1

√

2π〈δ2
H〉R

exp

(

− δ2
H(R)

2〈δ2
H〉R

)

. (19)

〈δ2
H〉R is a complicated function of Ã. For the power spectrum of Eq.(17), we have

〈v2〉 = Ã = α1 + α2A,

〈δ2
H〉R = β1(R) + β2(R, k0)A. (20)

We have defined

α1 ≡
Ω1.20

0 H2
0

2π2

∫ ∞

0
dk P0(k), α2 ≡

Ω1.20
0 H2

0

2π2
,
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β1 ≡
Ω1.20

0

2π2R2

∫ ∞

0
dk P0(k) [(kR)L(kR)]2,

β2 ≡
Ω1.20

0

2π2R2
[(k0R)L(k0R)]2. (21)

The parameter A characterizes the departure of the power spectrum from the

underlying smooth power spectrum; we expect the probability of A to decrease with

increasing A. Let us use the prior probability

P (A) =











1/A, A ≥ Ac;

0, A < Ac.
(22)

Ac is a cut-off motivated by physical considerations. We consider two choices for the cut-off

Ac:

(1) Ac = α1/α2 =
∫∞
0 dk P0(k);

(2) Ac = 0.1 α1/α2 = 0.1
∫∞
0 dk P0(k).

The first choice of Ac indicates the reasonable upper limit of Ac, while the second choice

indicates a typical value of Ac of interest.

The probability distribution of δH given the value of v is

P (δH |v)R =
1

N√
2πβ1

∫ xc

0
dx

x

(x + 1)3/2(x + x1)1/2
exp

{

−
[

3v2 x

2α1(x + 1)
+

δ2
H x

2β1(x + x1)

]}

.

(23)

where

xc ≡
α1

α2

1

Ac
, x1 ≡

α1β2

α2β1
, (24)

and

N ≡
∫ xc

0
dx

x1/2

(x + 1)3/2
exp

{

− 3v2 x

2α1(x + 1)

}

(25)

The variance of δH given v = 627 km/s is

〈δ2
H |v〉R =

β1

N
∫ xc

0
dx

x + x1

x1/2(x + 1)3/2
exp

{

− 3v2 x

2α1(x + 1)

}

. (26)
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Figs.6-8 show P (δH |v)R for k0 = 0.01 h Mpc−1 and R = 40, 100, 500 h−1Mpc

respectively. The solid and dashed lines are the distributions given by Eq.(23), with xc = 10

(Ac = 0.1 α1/α2) and xc = 1 (Ac = α1/α2) respectively; the dotted lines are Gaussian

distributions with the same variance [given by Eq.(26)] for xc = 10. Note that P (δH |v)R

becomes increasingly non-Gaussian for increasing R. Table 1 lists the 95% CL upper limits

on |δH |, δ0
H , as well as 2σ ≡ 2

√

〈δ2
H |v〉R, the 95% CL upper limit on δH if its distribution

were Gaussian.

R 40Mpc h−1 100Mpc h−1 500Mpch−1

xc = 10
δ0
H

2σ

0.115

0.120

5.50 × 10−2

6.13 × 10−2

9.44 × 10−3

1.05 × 10−2

xc = 1
δ0
H

2σ

0.135

0.143

8.67 × 10−2

9.56 × 10−2

1.59 × 10−2

1.75 × 10−2

It is not surprising that our results depend on the prior probability P (A) via the cut-off

Ac, since different choices of Ac represent different input of physical information. It is worth

noting that the 95% CL upper limit on |δH | is close to 10% for R ≥ 100 Mpch−1 with

the largest reasonable Ac (when the contribution to the mean square peculiar velocity by

the bump in P (k) is greater or equal to the contribution by the underlying smooth power

spectrum).

Also note that in our Bayesian statistics, the measured CMB dipole velocity of

v = 627 km/s has the effect of distorting the distribution of δH away from Gaussian by

increasing the probability of smaller δH .
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5. A Robust Upper Limit on the Variance of δH

The CMB dipole velocity of v ≡ |v|=627 km/s is the Galaxy’s peculiar velocity

with respect to the CMB rest frame. Note that v has three components which are three

independent Gaussian random variables. In the previous section, it provided us with a

constraint on possible unobserved features in P (k), but we can in fact use it in a more

fundamental way to provide a single integral constraint on P (k) which is related in a simple

way to possible expansion rate variations, as described below. We can infer the distribution

of Ã ≡ 〈v2〉 by using the Bayesian theorem,

P (Ã|v) =
P (v|Ã)P (Ã)

P (v)
∝ P (v|Ã)P (Ã). (27)

P (Ã) is the prior probability of Ã. Since Ã/3 is the variance of the Gaussian variable vx

(x component of v), it is most reasonable to choose P (Ã) = 1/Ã. For diagnostic on the

dependence on the prior, let us write

P (Ã) =











1/Ã, Ã ≥ Ãc;

0, Ã < Ãc.
(28)

Ã
1/2

< Ã
1/2

0 at 95% CL, with Ã
1/2

0 given by

∫ Ã0

0
P (Ã|v) dÃ = 0.95. (29)

Using

P (v|Ã) ∝ v2

Ã
3/2

exp

(

−3v2

2Ã

)

, (30)

we find that Ã
1/2

0 = 1831 km/s for Ã
1/2

c ≤ 200 km/s, and Ã
1/2

0 = 2183 km/s for

Ã
1/2

c = v = 627 km/s. Since Ã
1/2

0 changes by less than 20% for the significant cut-off of

Ã
1/2

c = v, we can take Ã
1/2

c = 0.

Using Eq.(10) and Ã
1/2

0 = 1831 km/s, we find

Ω1.20
0

2π2

∫ ∞

0

dk

h Mpc−1

P (k)

h−3Mpc3 ≤
(

1831 km/s

100 km/s

)2

= 335.3 (31)
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at 95% CL.

Using Eqs.(7), (8), and (9), we obtain at 95% CL

〈δ2
H(R)〉 <

(

10.5 h−1Mpc

R

)2

,

〈(

δρ

ρ

)2

R

〉

< Ω−1.20
0

(

24.0 h−1Mpc

R

)2

,

〈

δ2
Ω(R)

〉

< Ω−1.20
0

(

43.9 h−1Mpc

R

)2

. (32)

We have used [xL(x)]2 ≤ 0.3282, x2(3j1(x)/x)2 ≤ 1.7123, and x2[3j1(x)/x − 2L(x)]2 ≤
5.7579.

This calculation provides us with the most robust results, both in the sense of being

model independent and of relying only on the largest and most observationally secure CMB

anisotropy (the dipole). They are thus also the weakest quantitatively. For example, 10%

variations in the expansion rate are allowed on scales of 20,000 km/s (200 h−1Mpc) in

diameter at 95 percent confidence.

6. Summary

Cosmologists attempt to derive properties of the large-scale structure of space-time

from local observations. These extrapolations rely on the assumption that we are probing

a fair sample of the universe, so that physical quantities measured locally such as the

Hubble’s constant, or the mass-to-light ratio are representative of the universe as a whole.

Large-scale structure generates deviations from the Hubble flow; thus, it is important

that measurements of the Hubble’s constant probe a large enough volume so that the

effects of peculiar motions are small (Turner, Ostriker, & Cen 1992). In this paper, we have

estimated the expected variance in the Hubble’s constant due to large scale structure. We

began by considering currently fashionable models, which are consistent with galaxy surveys
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on small scales and CMB observations on large scales. In these models, measurements of

the Hubble’s constant that are based on galaxies in a sphere of diameter 200 h−1Mpc are

likely to be within 3− 6% (95% confidence interval) of the global value, and of order 1− 2%

in a sphere of 400 h−1Mpc diameter. These limits assume that the current set of large-scale

structure models are good approximation to the primordial power spectrum.

The CMB dipole velocity (the velocity of the Galaxy with respect to the CMB rest

frame) places a strong constraint on the amplitude of large scale structure. If there were

enormous local void and density fluctuations, as suggested by several authors (Harrison

1993, Wu et al. 1995, Wu et al. 1996), then we would expect that the Galaxy would be

moving with respect to the microwave background rest frame at a velocity much larger

than the meaured value of 627 ± 22 km/s (Kogut et al. 1993, Fixsen et al. 1994). Thus,

the measured CMB dipole velocity can be used to derive strong constraints on density

fluctuations on scales larger than those probed by redshift surveys. We have used these

constraints to calculate the variations in the Hubble’s constant, δH , for power spectra which

have a sharp bump on unobserved scales; we find that the 95% CL upper limit of |δH |
increases approximately by a factor of two.

Finally, we have used the constraints derived from the CMB dipole velocity to place a

robust limit on variations in the Hubble’s constant. With the CMB dipole measurement

alone, we are able to constrain variations in the Hubble’s constant to be less than 10%

on scales of 20,000 km/s (200 h−1Mpc) in diameter at 95 percent confidence. Thus,

measurements of H0 that probe out to this scale are likely to be accurately probing the

global expansion rate of the universe.
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Fig. 1.— Window functions of 〈δ2
H〉R (solid line), 〈(δρ/ρ)2〉R (dotted line), 〈δ2

Ω〉R (short-

dashed line), and 〈v2〉R (long-dashed line).

Fig. 2.— 〈δ2
H〉R as function of R, for the three models (TCDM, ΛCDM, and OCDM).

Fig. 3.— 〈(δρ/ρ)2〉R as function of R, for the three models (TCDM, ΛCDM, and OCDM).

Fig. 4.— 〈δ2
Ω〉R as function of R, for the three models (TCDM, ΛCDM, and OCDM).

Fig. 5.— 〈v2〉R as function of R, for the three models (TCDM, ΛCDM, and OCDM).

Fig. 6.— P (δH|v)R for k0 = 0.01 hMpc−1 and R = 40 h−1Mpc. The solid and dashed lines are

the distributions given by Eq.(23), with xc = 10 (Ac = 0.1 α1/α2) and xc = 1 (Ac = α1/α2)

respectively; the dotted lines are Gaussian distributions with the same variance [given by

Eq.(26)] for xc = 10.

Fig. 7.— Same as Fig.6, for R = 100 h−1Mpc.

Fig. 8.— Same as Fig.6, for R = 500 h−1Mpc.
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Fig. 1.— Window functions of 〈δ2
H〉R (solid line), 〈(δρ/ρ)2〉R (dotted line), 〈δ2

Ω〉R (short-

dashed line), and 〈v2〉R (long-dashed line).
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Fig. 2.— 〈δ2
H〉R as function of R, for the three models (TCDM, ΛCDM, and OCDM).
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Fig. 3.— 〈(δρ/ρ)2〉R as function of R, for the three models (TCDM, ΛCDM, and OCDM).
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Fig. 4.— 〈δ2
Ω〉R as function of R, for the three models (TCDM, ΛCDM, and OCDM).
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Fig. 5.— 〈v2〉R as function of R, for the three models (TCDM, ΛCDM, and OCDM).
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Fig. 6.— P (δH|v)R for k0 = 0.01 hMpc−1 and R = 40 h−1Mpc. The solid and dashed lines are

the distributions given by Eq.(23), with xc = 10 (Ac = 0.1 α1/α2) and xc = 1 (Ac = α1/α2)

respectively; the dotted lines are Gaussian distributions with the same variance [given by

Eq.(26)] for xc = 10.
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Fig. 7.— Same as Fig.6, for R = 100 h−1Mpc.
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Fig. 8.— Same as Fig.6, for R = 500 h−1Mpc.


