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In the context of inflationary scenarios, the observed large angle anisotropy of the Cosmic Mi-
crowave Background (CMB) temperature is believed to probe the primordial metric perturbations
from inflation. Although the perturbations from inflation are expected to be gaussian random
fields, there remains the possibility that nonlinear processes at later epochs induce “secondary”
non-gaussian features in the corresponding CMB anisotropy maps. The non-gaussianity induced by
nonlinear gravitational instability of scalar (density) perturbations has been investigated in existing
literature. In this paper, we highlight another source of non-gaussianity arising out of higher order
scattering of CMB photons off the metric perturbations. We provide a simple and elegant formal-
ism for deriving the CMB temperature fluctuations arising due to the Sachs-Wolfe effect beyond the
linear order. In particular, we derive the expression for the second order CMB temperature fluctu-
ations. The multiple scattering effect pointed out in this paper leads to the possibility that tensor
metric perturbation, i.e., gravity waves (GW) which do not exhibit gravitational instability can still
contribute to the skewness in the CMB anisotropy maps. We find that in a flat Ω = 1 universe, the
skewness in CMB contributed by gravity waves via multiple scattering effect is comparable to that
from the gravitational instability of scalar perturbations for equal contribution of the gravity waves
and scalar perturbations to the total rms CMB anisotropy. The secondary skewness is found to be
smaller than the cosmic variance leading to the conclusion that inflationary scenarios do predict that
the observed CMB anisotropy should be statistically consistent with a gaussian random distribution.

98.80.-k, 98.70Vc, 04.30-w, 04.30Nk, 98.80Bp,

I. INTRODUCTION

Since its discovery by Penzias and Wilson [1], the Cosmic Microwave Background (CMB) has proved to be an
extremely significant observational guide in our quest towards understanding the universe. The detection of tiny
anisotropies in the CMB by the COBE - DMR group [2] was an important milestone in the study of the universe and
the understanding the large structure that we see around us. The COBE detection has opened up a fresh avenue of
investigation and has been followed by a host of new developments both on the observational and theoretical fronts [3].

The idea of incorporating an inflationary phase in the early universe [4] has gained wide acceptance in the last decade
and is perhaps the most prevalent scenario within which one attempts to understand the universe. It was realised soon
after the notion of an inflationary scenario was put forward that besides resolving some long standing problems of the
Big-Bang model of cosmology, inflationary models also predict the form of the power spectrum of the primordial scalar
metric fluctuations which could seed the formation of the large scale structures observed in the present universe [5]. In
fact, both gravity waves (GW), i.e., tensor metric fluctuations [6], as well as adiabatic density perturbations (related
to the scalar metric fluctuations) arise as natural consequences of the inflationary scenario, due to the superadiabatic
amplification of zero-point quantum fluctuations occurring during inflation. As gravity waves [7] and scalar density
perturbations enter the horizon, they induce distortions in the cosmic microwave background (CMB) through the
Sachs-Wolfe effect [8]. The relative contribution of the gravity waves and the adiabatic perturbations is linked to
the specific model of inflation [9]. The spectral index of the power spectrum of initial perturbations can be inferred
directly from the CMB anisotropy measurements.
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The measurements of the power spectrum of CMB temperature fluctuations have till date been found to be consistent
with inflationary scenarios of the early universe. In particular, the spectral index inferred from the COBE - 4year data
(see for eg. [10]) is consistent with the near scale-invariant spectrum of fluctuations generically predicted by inflationary
scenarios. Another generic prediction of inflation is that the metric perturbations generated are gaussian random
fields. At the linear order, the CMB anisotropy produced would reflect the gaussian nature of initial perturbations.
However, one cannot apriori deny the possibility that non-linear corrections to the growth of perturbations and to the
Sachs-Wolfe effect could induce some non-gaussian features in the CMB even for gaussian initial metric perturbations.

Non-zero skewness is a definite signature of non-gaussianity in a distribution. For gaussian initial perturbations
the skewness in the CMB appears only beyond the linear approximation. At the leading order the skewness arises
from two distinct effects. The first effect is that initially gaussian metric perturbations become non-gaussian when
the lowest order nonlinearity becomes important in the course of their evolution due to gravitational instability. The
non-linear component of the metric perturbations are non-gaussian and introduce non-gaussian anisotropies in the
CMB through a linear Sachs-Wolfe relation at the corresponding order. The second effect is that the gaussian metric
perturbations introduce non-gaussian anisotropies in the CMB due to second order (double) scattering of the photon
off the linear order metric perturbations. This arises from the second order terms in the Sachs-Wolfe relation. All
previous discussions of skewness in the CMB, have been limited to the the estimation of only the first effect, i.e.,
nonlinearity (and consequent non-gaussianity) due to gravitational instability [11,12,14]. The tensor component of
metric perturbations (GW) does not exhibit gravitational instability, consequently the possibility of non-gaussianity
in the CMB caused by the GW background has been entirely ignored in previous literature.

In this paper, as an illustration of the second effect, we calculate the CMB skewness produced by a gaussian
stochastic linear gravity wave background generated during inflation. In the context of Ω = 1, flat FRW models, the
magnitude of the effect considered here appears to be comparable to the corresponding estimate of CMB skewness
arising from the gravitational instability of scalar metric perturbations [12].

In §II, we outline the basic formalism involved in estimating the skewness in the CMB and present a very general
approach for obtaining higher order corrections to the Sachs-Wolfe effect for a general cosmological perturbation. In
the following section (§III) we estimate the skewness in the CMB anisotropy that would arise from a inflationary
gravity wave background for a range of values of the spectral index.

II. FORMALISM

In this section, we outline the basic approach and present the derivations of results used in our calculation. The first
part of the section contains a brief discussion of the perturbative approach used in estimating non-gaussianity in the
CMB anisotropy. The second part gives a compact derivation of the CMB anisotropy arising through the Sachs-Wolfe
effect upto second order in the primordial metric fluctuations.

A. Non-gaussianity and Nonlinearity in the CMB anisotropy

It is possible to address non-linear effects in the CMB within a perturbative framework by expanding the temperature
fluctuations, ∆T/T , in orders corresponding to the powers of the initial metric perturbation as :

∆T

T
=

(

∆T

T

)(1)

+

(

∆T

T

)(2)

+

(

∆T

T

)(3)

+ . . . . (1)

Given that the initial metric perturbations from inflation are linear and gaussian, any non-gaussian feature in the
CMB maps can only arise from the higher order temperature anisotropy such as (∆T/T )(2). We shall call this higher
order effect — secondary non-gaussianity. (The term “secondary” is used to denote the effects which take place after
recombination. The effects prior to recombination are “primary”.)

A non-vanishing skewness is a definite signature of non-gaussianity in a distribution. At the linear order, the

mean CMB skewness C
(3)
3 (0) = 〈(∆T (1)/T )3〉 = 0 where 〈〉 denotes averaging with respect to different realizations of

stochastic space-time metric perturbations of the FRW cosmological model which produce ∆T/T . Substituting the
expansion (1) into the expression C3(0) = 〈(∆T/T )3〉, it is clear that the leading order (in powers of the initial linear
metric perturbations) contribution is at the fourth order,

C
(4)
3 (0) = 3

〈(

∆T

T

)(1)(
∆T

T

)(1)(
∆T

T

)(2) 〉

. (2)
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(In this paper, we deal only with C
(4)
3 (0), and hence the superscript denoting the order has been dropped in the rest of

the text). It is clear from the above expression that the mean skewness depends not only on the magnitude of ∆T (2)/T
but also on the extent of correlation of this term with the linear order terms, ∆T (1)/T . For example, in the case of
scalar perturbations the second order terms which arise due to the non-linear evolution of density perturbations grows
linearly with the expansion of the universe and can attain values ∆T (2)/T ≈ 0.1 ∆T (1)/T at late times [15]. However,
in a flat Ω = 1 universe, the linear order term contributes only close to the surface of recombination (η ≈ ηrec)
and the second order term attains its largest value only at late times (η ≈ η0). Consequently in the final result for
the mean skewness, the decay of correlation between the linear and the second order term over this large physical
separation (≈ ηo) along the line of sight attenuates the effect of the growth of the second order term, leading to a very
modest value for C3(0) [12]. It was also pointed out in the same paper that the mean skewness which arises due to
weakly non-linear density perturbations is expected to be somewhat larger in models where the linear gravitational
potential changes at late times leading to a significant linear order integrated Sachs-Wolfe contribution at late times
(eg. CDM+Λ, Ω 6= 1 models).

Even in a flat Ω = 1 universe, contribution to linear order integrated Sachs-Wolfe effect comes from inflationary
tensor perturbations (gravity waves). Consequently, one expects that the correlation between the linear and second
order terms is not attenuated in this case leading to larger values of C3(0). The second order ∆T (2)/T in the case
of gravity waves comes only from double scattering since GW do not exhibit any gravitational instability. Scalar
perturbations also give rise to second order anisotropy through double scattering. However, for flat, Ω = 1 models the
contribution to the mean skewness is expected to be even smaller than that from gravitational instability considered
in [12]. This can be seen from the fact that ∆T (2)/T from double scattering too has contributions only at late times
implying attenuated correlation with the linear term contribution close to the surface of recombination.

B. Second order CMB anisotropy from the Sachs-Wolfe effect

In a perfectly isotropic universe the CMB would have the same temperature in all directions on the celestial sphere.
If, however, the cosmological metric is perturbed, the temperature observed today fluctuates over the celestial sphere.

The dominant contribution at large angular scales (θ > 1◦) to the observed temperature fluctuations comes from
the change in the frequency of any CMB photon as it travels from the surface of last scattering to us 1. In the case of
an isotropic universe, the overall increase in the scale factor a(η0)/a(ηrec) redshifts the entire Planckian distribution
of photons leading to a Planckian distribution at a lower temperature given Trec/T0 = a(η0)/a(ηrec). The presence of
the perturbations hab(η,x), produces an additional change in the frequency and direction (momentum) of a photon
as it moves in and out of the fluctuating metric perturbations.

We consider the trajectory of a photon (or ray) in a perturbed flat FRW universe and work in a synchronous
coordinate system where the line element is of the form

ds2 = a(η)2
[

−dη2 + (δab + hab (η, x)) dxadxb
]

. (3)

In the above, hab = h
(1)
ab (∼ ǫ) + h

(2)
ab (∼ ǫ2) is the metric perturbation, and ǫ ≪ 1 is a small number characterizing the

amplitude of deviations from the unperturbed background FRW universe.
The photon trajectory can be obtained by perturbatively solving the eikonal equation for the phase S(x, η). The

eikonal equation for a photon propagating in a spacetime with metric, gµν , is

∂S

∂xµ

∂S

∂xν
gµν = 0 , (4)

(analogous to the Hamilton-Jacobi equation for a massive particle). The frequency and the direction of the photon
can be obtained from the phase S(x, η) using

ω(x, η) = −
1

a(η)

∂

∂η
S(x, η), ka(x, η) = ∇aS(x, η) . (5)

Retaining terms to order ǫ2 when inverting the metric given by the line element in equation.(3), the eikonal
equation (6) becomes

1 We assume instantaneous recombination which is an excellent approximation to standard recombination for calculating the
CMB anisotropy at large angular scales (θ > 1◦).
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−

(

∂

∂η
S

)2

+ (δab − h(1)ab
− h(2)ab

+ h(1)a

ch(1)cb
)∇aS∇bS = 0 . (6)

where we use the background spatial metric δab to raise and lower the spatial indices. The phase S(x, η) can be
expressed in a perturbative expansion in powers of ǫ, as

S = S(0) + S(1)(∼ ǫ) + S(2)(∼ ǫ2) . (7)

and substituting the above in equation (6) we obtain the zeroth order equation

−

(

∂

∂η
S(0)

)2

+ ∇aS(0)∇aS(0) = 0 , (8)

the first order equation

−
∂

∂η
S(0) ∂

∂η
S(1) + ∇aS(0)∇aS(1) =

1

2
h(1)ab

∇aS(0)∇bS
(0) , (9)

and the second order equation

−
∂

∂η
S(0) ∂

∂η
S(2) + ∇aS(0)∇aS(2) =

1

2

(

∂

∂η
S(1)

)2

−
1

2
∇aS(1)∇aS(1) + h(1)ab

∇aS(1)∇bS
(0)

+
1

2

[

h(2)ab
− h(1)ac

h(1)b

c

]

∇aS(0)∇bS
(0) . (10)

The solutions to these equations correspond to a family of rays (or null geodesics) in a perturbed FRW universe.
The solution to the zeroth order solution is

S(0)(x, η) = kaxa − η + C . (11)

This corresponds to a family of trajectories for the photons with frequency 1/a(η) moving in the k direction. In
figure 1, we show some of these trajectories for the case where k is along the x axis (the y direction has not been
shown). The observer O sits at the origin of the spatial coordinate system and measures the frequency of the photons
at the present epoch η0. Using λ as a parameter along the rays, this family of rays can be expressed as

x(λ) = kλ + X (12)

and

η(λ) = λ + ηin (13)

with the condition that X is perpendicular to k. Here different values of (ηin,X) correspond to different rays and
(η0, 0) corresponds to the ray that the observer O sees at present traveling in the k direction .

Substituting the first order solution in equation (9), we rewrite the LHS as a derivative along the zeroth order
trajectory, i.e., with respect to the parameter λ as

d

dλ
S(1)(x(λ), η(λ)) =

1

2
h(1)

ab(x(λ), η(λ))kakb (14)

which can be easily integrated to obtain the first order solution,

S(1)(η(λ1), x(λ1)) =
1

2

∫ λ1

0

h
(1)
ab (η(λ), x(λ))kakbdλ . (15)

The frequency of the photon is given by the time derivative of S(1) given by equation (15). At the point A (refer
to figure 1) the time derivative is the ∆η → 0 limit of

S(B) − S(A)

∆η
(16)

where ∆η is the difference in η between the points B and A.
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The point A lies on the trajectory x = kλ, η = λ + η0 and it corresponds to a value λ1 for the parameter λ. The
point B lies on a different trajectory x = kλ, η = λ + η0 + ∆η and it corresponds to the same value of the parameter
i.e., λ1. We then have

S(B) − S(A) =
1

2

∫ λ1

0

[

h
(1)
ab (η(λ) + ∆η, x(λ)) − h

(1)
ab (η(λ), x(λ))

]

kakbdλ (17)

which leads to

∂

∂η
S(1)(η(λ1), x(λ1)) =

1

2

∫ λ1

0

∂

∂η
h

(1)
ab (λ)kakbdλ . (18)

Similarly, in the direction parallel to k (the x-axis in fig.1), the spatial derivative is given by limit

S(C) − S(A)

∆x
(19)

where ∆x is the difference in x between the points C and A. C lies on a trajectory x = kλ, η = λ + η0 − ∆x and it
corresponds to the value of the parameter λ1 + ∆x. We obtain

S(C) − S(A) =
1

2

∫ λ1+∆x

0

h
(1)
ab (η(λ) − ∆x, x(λ))kakbdλ −

1

2

∫ λ1

0

h
(1)
ab (η(λ), x(λ))kakbdλ , (20)

and the spatial derivative in the direction parallel to k reads

∇cS
(1)(η(λ1), x(λ1)) =

kc

2

[

h
(1)
ab (x(λ1), η(λ1))k

akb −

∫ λ1

0

∂

∂η
h

(1)
ab (λ)kakbdλ

]

. (21)

In the direction perpendicular to k we have

∇cS
(1)(x(λ1), η(λ1)) =

1

2

∫ λ1

0

∇ch
(1)
ab (λ)kakbdλ . (22)

Substituting the derivatives of S(1) in the second order equation (10) and using ∇⊥a = ∇a − kakb∇b to denote the
spatial derivative in the direction perpendicular to k we obtain

S(2)(x, η) =

∫ λ1

0

dλ

{

3

8
h(1)

ab(λ)kakbh(1)
cd(λ)kckd −

1

4
h(1)

ab(λ)kakb

∫ λ

0

∂

∂η
h(1)

ij(λ
′

)kikjdλ
′

+
1

2

[

h(2)ij
(λ) − h(1)il

(λ)h(1)j

l (λ)
]

kikj +
1

2
h(1)ab

(λ)ka

∫ λ

0

∇⊥bh
(1)

ij(λ
′

)kikjdλ
′

−
1

2

[(

1

2

∫ λ

0

∇⊥ah(1)
ij(λ

′

)kikjdλ
′

)(

1

2

∫ λ

0

∇⊥
ah(1)

lm(λ
′

)klkmdλ
′

)] }

. (23)

The perturbative solution for S(x, η) can now be used to obtain the frequency of a photon at any point along
its trajectory. Although we are interested in a photon that leaves the last scattering surface at ηrec and reaches the
observer at η0, it is convenient to consider a photon traveling backwards in time from the observer to the last scattering
surface. Keeping terms upto order ǫ2 we find that the photon that is observed at the frequency ωo = 1/a(ηo) left the
last scattering surface with the frequency,

ωe =
1

a(ηe)

[

1 −
∂

∂η
S(1)(xe, ηe) −

∂

∂η
S(2)(xe, ηe)

]

. (24)

Invert the above relation we find that a photon which left the last scattering surface with the frequency ωo = 1/a(ηe)
will have frequency

ωo =
1

a(ηo)

[

1 +
∂

∂η
S(1)(xe, ηe) +

∂

∂η
S(2)(xe, ηe) + (

∂

∂η
S(1)(xe, ηe))

2

]

, (25)
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when it reaches the observer. This relates the observed frequency to the emitted frequency and the metric perturba-
tions. Using equations (24) and (25) we obtain expressions for the fractional change in the frequency of the observed
photon relative to the frequency that would be observed if the universe were unperturbed. Since the CMB photons
have a Planckian distribution, (frequency independent) fractional changes in frequency translates to fluctuations in
the temperature characterizing the distribution. At the linear order we recover the familiar (linear order) Sachs Wolfe
effect

∆T (1)

T
= −

1

2

∫ η0

ηrec

∂

∂η
h

(1)
ab (x(λ), η(λ))kakbdλ . (26)

At the second order the expression for fractional change in CMB temperature reads

∆T (2)

T
=

∫ ηrec

η0

dλ

{

3

4
h(1)

ab(λ)kakb ∂

∂η
h(1)

cd(λ)kckd

−
1

4

∂

∂η
h(1)

ab(λ)kakb

∫ λ

ηo

∂

∂η
h(1)

ij(λ
′

)kikjdλ
′

−
1

4
h(1)

ab(λ)kakb

∫ λ

ηo

∂2

∂η2
h(1)

ij(λ
′

)kikjdλ
′

+
1

2

[

∂

∂η
h(2)ij

(λ) − 2h(1)il
(λ)

∂

∂η
h(1)j

l (λ)

]

kikj

+
1

2

[

∂

∂η
h(1)ab

(λ)ka

∫ λ

ηo

∇⊥bh
(1)

ij(λ
′

)kikjdλ
′

+ h(1)ab
(λ)ka

∫ λ

ηo

∂

∂η
∇⊥ah(1)

ij(λ
′

)kikjdλ
′

]

−

[(

1

2

∫ λ

ηo

∂

∂η
∇⊥ah(1)

ij(λ
′

)kikjdλ
′

)(

1

2

∫ λ

ηo

∇⊥
bh(1)

lm,(λ
′

)klkmdλ
′

)] }

+

[

1

2

∫ η0

ηrec

∂

∂η
h(1)

ij(λ)kikjdλ

]2

. (27)

The expression for ∆T (2)/T has been independently obtained by other methods [17,16].
The ∆T/T calculated here is the fractional increment (or decrement) with respect to the CMB temperature that

would be observed in a homogeneous and isotropic universe. In practice an observer would measure the fluctuations in
the CMB temperature from different directions in the sky and in order to relate our calculation with what is observed
we have to remove any monopole component in the angular distribution of the calculated ∆T/T . In addition, the
dipole component of ∆T/T is usually interpreted as arising from the observers peculiar motion and this is removed
before relating the observed ∆T/T to the primordial fluctuations.

In most previous work on second order CMB anisotropy, only the term depending on h(2) arising from nonlinear
gravitational instability of scalar density perturbations in the above expression for ∆T (2)/T has been considered. The
nongaussianity from the h(2) term in ∆T (2)/T for Ω = 1 models has been considered in reference [12,14]. The h(2)

term in ∆T (2)/T for Ω < 1 models has been calculated in reference [18] to calculate the fourth order corrections to
the power spectrum of CMB anisotropies.

III. SKEWNESS FROM GRAVITY WAVE

Gravitational waves can be decomposed into two polarization states denoted by + and ×, and the metric pertur-
bation corresponding to a gravitational wave with wavelength 2π

q
traveling in the z direction can be written as

hẑ
ab(η,x) = eiqzhq(η)

[

a+
q e+

ab + a×

q e×ab

] AG(q)

q
3

2

(28)

where the quantity A2
G(q)/q3 is the power spectrum of the GW perturbations. The temporal evolution of the modes

of the gravity waves in a Ω = 1, matter dominated FRW universe is given by

hq(η) =
3

qη
j1(qη) , (29)
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where j1 denotes the spherical Bessel function of order one. In eqn. (28), the aα
q s are the complex amplitudes of the

two polarization states (henceforth denoted by the superscript α) and eα
ab are the usual basis tensors for the traceless

metric perturbations.
A gravity wave in any arbitrary direction n̂ can be obtained by rotating the coordinate system (or equivalently the

wave traveling in the z direction) so that the wave travels in the required direction. Denoting the rotation by R(n̂)ab,
we can express a gravitational wave traveling in the n̂ direction as hn̂

ab = Rc
a(n̂)Rd

b (n̂)hẑ
ab.

Thus we can write metric perturbations corresponding to an isotropic stochastic background GW as

ĥab(η,x) =

∫

dqdΩn̂

(2π)3
q

1

2 hq(η)eiqxRac(n̂)Rdb(n̂)[a+
q

e+
cd + a×

q
e×cd]AG(q) . (30)

In the above, aα
q

are independent random variables which satisfy the relation

< aα
q
aβ ∗

q
′ >= δ3(q − q

′

)δαβ . (31)

where the angular bracket denotes an ensemble average over different realizations of the stochastic GW background.
We substitute the expression (30) for the GW metric perturbation in equations (26) and (27) to calculate the

temperature fluctuation in the CMB at the first and second orders, respectively. At the linear order, the ∆T/T
produced by gravity waves has no monopole or dipole component, but at the second order there is a monopole
component which has to be removed. To keep the algebra at a manageable level we use the ensemble average of
∆T (2)/T instead of the angular average of ∆T (2)/T to estimate the monopole component and we subtract this
contribution from the second order temperature fluctuation predicted by equation (27). We next use this to calculate
the skewness.

At the leading order the skewness is given by

C3(0) ≡

〈(

∆T

T

)3〉

= 3

〈(

∆T (1)

T

)2(
∆T (2)

T

)〉

, (32)

and substituting for expressions for ∆T (1)/T and ∆T (2)/T we obtain

C3(0) =
35

25π10

∫ ηrec

ηo

dλ1

∫ ηrec

ηo

dλ2

∫ ηrec

ηo

dλ3

∫

∞

0

dq1

q1

∫

∞

0

dq2

q2
A2

G(q1)A
2
G(q2)

j1(q1λ3)

q1λ3

j2(q1λ1)

λ1

j2(q2λ3)

λ3

j2(q2λ2)

λ2

[

(

3π

8

)2
J3(q1(λ3 − λ1))

(q1(λ3 − λ1))2
J3(q1(λ3 − λ2))

(q1(λ3 − λ2))2
−

j2(q1(λ3 − λ1))

(q1(λ3 − λ1))2
j2(q1(λ3 − λ2))

(q1(λ3 − λ2))2

]

−
35

25π10

∫ ηrec

ηo

dλ1

∫ ηrec

ηo

dλ2

∫ ηrec

ηo

dλ3

∫ η0

λ3

dλ4

∫

∞

0

dq1

q1

∫

∞

0

dq2

q2
A2

G(q1)A
2
G(q2)

j2(q1(λ3 − λ1))

(q1(λ3 − λ1))2
j2(q2(λ4 − λ2))

(q2(λ4 − λ2))2

j2(q1λ1)

λ1

j2(q2λ2)

λ2

[

j2(q1λ3)

λ3

j2(q2λ4)

λ4
+

j1(q1λ3)

q1λ3

q2

λ4

(

4
j2(q2λ4)

λ4
− j1(q2λ4)

)]

+
35

25π10

[
∫ ηrec

ηo

dλ1

∫ ηrec

ηo

dλ2

∫

∞

0

dq

q
A2

G(q)
j2(q(λ2 − λ1))

(q(λ2 − λ1))2
j2(qλ1)

λ1

j2(q1λ2)

λ2

]2

+ 6C2
2 (0) , (33)

where jn and Jn denote spherical and ordinary Bessel functions of order n, respectively. In the case of matter
dominated Ω0 = 1 models with three relativistic species of neutrinos, ηrec = η0/49.6. The final results are however
completley insensitive to the exact value of ηrec. It is interesting to note that none of the terms in equation (27) which
have spatial derivatives in direction perpendicular to k contribute to the skewness.

We numerically evaluated the above expression to compute the skewness for different spectral indices of GW power
spectrum. A dimensionless skewness parameter S3 can be constructed by dividing the skewness, C3(0) by the square
of the variance, C2(0). The variance of ∆T/T that arises due to relic gravity waves from inflation is given by

C2(0) =
32

23π5

∫ ηrec

ηo

dλ1

∫ ηrec

ηo

dλ2

∫ ∞

0

dq

q
A2

G(q)
j2(q(λ2 − λ1))

(q(λ2 − λ1))2
j2(qλ1)

λ1

j2(q1λ2)

λ2
. (34)

The power spectrum of the initial gravitational wave perturbation is assumed to be a scale-free power law, A2
G(k) =

A knT , where nT = 0 corresponds to a scale-invariant spectrum. Power law models of inflation produce gravity waves
with nT < 0. We compute the CMB skewness for a broad range in nT (−0.5 ≤ nT ≤ 0). We find that the value of
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S3 varies from −1.6 to −3.1 for nT varying from the scale invariant spectrum to nT = −0.5. It is interesting to note
that the skewness arising from gravitational instability of scalar perturbations is comparable for the same range of
tilt ( S3 ≈ −2.2 for scale invariant spectrum [12]).

The corresponding observable quantity for the skewness, C3(0) is the all sky-average C̄3(0) =

(4π)−1
∫

(∆T (θ, ϕ)/T )
3
dΩ of one particular realization of the random fluctuations. The value obtained by tak-

ing an angular average over one sky would generally differ from the ensemble average over all realizations by the
(cosmic) variance of the observed skewness, C̄3(0). The skewness originating due to any effect would have an ob-
servable significance if the predicted signal stands above the cosmic variance. This is a fundamental limitation and
a minimal requirement. In practice, a detectable signal has to stand above additional variances such as instrumental
noise, finite beam width of antennas, incomplete sky coverage etc.

The Cosmic variance can be expressed in terms of an angular integral over the cube of the two-point correlation
function, C2(θ) [19]. Assuming a gaussian approximation for the two-point correlation function, we express

C2(θ) = C2(0) exp[−
lc(lc + 1) θ2

2
], C2(0) ≈ 3 × 10−5 (35)

where the cut-off, lc, in the ∆T/T angular spectrum at large values of the spherical harmonic eigenvalue, l (lc ≈
η0/ηrec ∼ 49 for GW). Using equation (35), the Cosmic variance, δS3, for the case of a CMB anisotropy arising from
gravity waves is given by δS3 ≈ 1/(C2(0) lc) ≈ 670. The Cosmic variance for the scalar case is around 5 times smaller
[12]. The Cosmic variance is larger as the power spectrum tilted away (reddened) from scale invariance for both scalar
perturbations and gravity waves. It is clear that in principle the secondary skewness in the CMB for a CDM model
(Ω = 1,Ωb = 0.05 and H0 = 50kms/s/Mpc.) is unobservable since it is below the cosmic variance.

IV. CONCLUSIONS

In this work we study a possible source of secondary non-gaussianity in the CMB and reexamine whether initial
gaussian metric perturbations (as expected from inflation) should lead to a gaussian CMB anisotropy. We point
out that besides nonlinear gravitational instability, secondary non-gaussianity can be induced in the CMB maps due
to multiple scattering of CMB photon off metric perturbations. We develop a general method for calculating CMB
temperature fluctuations beyond the linear order and calculate the expression for CMB temperature fluctuations at
the second order. As an example of skewness from multiple scattering, we estimate the skewness in the CMB that
is expected to arise due to a relic inflationary gravity wave background. We show that the magnitude of the effect
studied here is comparable to the ones considered in existing literature. However, the signal is much smaller than its
cosmic variance and we conclude that gaussian initial perturbation from inflation leads to a gaussian statistics for the
observed temperature fluctuations.
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FIG. 1. A sketch of the unperturbed rays of CMB photons propagating along the x axis is shown (the third spatial dimension
is suppressed). The figure serves as a guide to the arguments used in §II B to compute the temporal and spatial derivatives of
the phase S(η,x). The figure clearly illustrates the distinction between spatial derivative taken along the direction of photon
propagation and spatial derivative taken perpendicular to the direction of photon propagation.
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