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ABSTRACT

We generalize the mean field magnetic dynamo to include local evolution of the

mean vorticity in addition to the mean magnetic field. The coupled equations exhibit

a general mean field dynamo instability that enables the transfer of turbulent energy

to the magnetic field and vorticity on larger scales. The growth of the vorticity and

magnetic field both require helical turbulence which can be supplied by an underlying

global rotation. The dynamo coefficients are derived including the backreaction from

the mean magnetic field to lowest order. We find that a mean vorticity field can actually

seed exponential growth of mean magnetic field from only a small scale seed magnetic

field, without the need for a seed mean magnetic field. The equations decouple when

the fluctuating velocity and magnetic field cross-correlations vanish, resulting in the

separate mean field magnetic and mean field vorticity dynamo equations.

Subject Headings: magnetic fields: MHD; instabilities; accretion disks; sun: magnetic fields; galaxies:
jets.
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1. Introduction

The mean-field magnetic dynamo (MFMD)
has been a standard framework for understand-
ing the origin of large scale magnetic fields (B-
fields) in planets stars and galaxies (Moffatt
1978, Parker 1979, Ruzmaikin et al. 1988, Beck
et al. 1996). In this mechanism, a large scale seed
field grows exponentially at the expense of small
scale turbulent energy. This can be distinguished
from fast dynamo turbulent amplification of B-
fields (e.g. Parker 1979), which occurs on the
scale of the input turbulence. Many systems
such as planetary and solar spots (Peter 1996),
and accretion and galactic disks (Abramowicz
1992, Kitchatinov et al. 1994a) also show evi-
dence for large scale vortex structures. Jets may
also be related. In the absence of B-fields, the
mean vorticity equation is similar to the mean
magnetic induction equation (Kitchatinov et al.
1994a) and can allow mean field vorticity dy-
namo (MFVD) growth. When the mutual cou-
pling of vorticity and B-field is considered, the
mean quantity whose time evolution is of inter-
est has 6 components: 3 components each for the
mean B-field and mean vorticity. Growth arises
in this coupled mean field dynamo (CMFD).

We first derive the equations for mean and
fluctuating quantities and show that the evolu-
tion equations for the mean vorticity and B-field
are non-trivial only when the turbulence is at
least weakly inhomogeneous and anisotropic. By
expanding the turbulent quantities to first order
in the time-varying mean velocity and mean B-
field, we derive the initial mutual dynamo growth
for several sets of initial conditions. When cross-
correlations between turbulent velocities and tur-
bulent B-fields vanish, mutual field growth is de-
scribed by decoupled MFVD and MFMD equa-
tions. However, when the cross correlations do
not vanish, the time evolution of the mean fields
is coupled. As a result, we find that a seed mean
vorticity and small scale B-field can allow growth
of the mean B-field even when the latter is ini-

tially zero, in contrast to the decoupled theory.

We include the mean B-field backreaction on
the velocity flows to lowest order, thus deriving
corrections to the kinematic magnetic and vor-
ticity dynamo coefficients. However, we do not
compute these corrections to higher order, nor
do we purport to offer a fully developed non-
linear theory of MHD turbulence. We make ex-
plicit assumptions/approximations, but empha-
size that none of these are beyond those used
in standard mean-field dynamo treatments. (In
many treatments, the same approximations are
imposed without explanation.) We are aware
of the controversies of the non-linear backreac-
tion (e.g. Piddington 1981, Kulsrud & Ander-
son 1982, Field & Blackman, 1996, Cattaneo
1994, Pouquet et al. 1976, Blackman 1996, Bran-
denburg 1996, Subramanian 1997), but inasmuch
as the “α2”(e.g. Moffatt 1978) or “α − Ω” (e.g.
Parker 1979) dynamos are at least a framework
for the study of B-field generation and compar-
ison with observations, so too is the more gen-
eralized treatment of the vorticity-magnetic field
dynamo developed herein.

2. Derivation of Coupled Mean-Field Equa-

tions

Consider the Navier-Stokes equation for in-
compressible flows in the presence of B-fields,

∂tv = v × (∇× v) −∇peff + ν∇2v + b · ∇b

+F(x, t) + ∇φ,
(1)

where ν is a constant viscosity, F is a forcing
function, peff ≡ p + b2/2 + v2/2, with p ≡ P/ρ
and b ≡ B/(4πρ)1/2 is the constant density nor-
malized B-field. The ∇φ includes potential forces
such as gravity. The vorticity equation,

∂tω = ∇×(v×ω)+ν∇2
ω+∇×(b·∇b)+∇×F(x, t),

(2)
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where ω ≡ ∇× v, is obtained by taking the curl
of (1). The induction equation for b is

∂tb = ∇× (v × b) + νM∇2b, (3)

where νM is a constant magnetic viscosity.

Next, decompose ω, v, and b into mean (in-
dicated by an overbar or 〈 〉) and fluctuating
(indicated by prime) components v = v̄T + v′,
ω = ω̄T + ω

′ and b = b̄ + b′, respectively with
v̄T = v̄ + v̄c. Here, v̄c is a constant global ve-
locity whose curl is ω̄c, and v̄ and ω̄ are the time
dependent mean components whose spatial scales
of variation are smaller spatial than that of ω̄c.
The ω̄c supplies helicity to the turbulence and
ensures that any growth of ω̄ represents a trans-
fer of angular momentum from the turbulence.
(Alternatively, the helicity could be supplied by
F(x, t).)

We assume that derivatives with respect to
x or t obey ∂t,x〈XiXj〉 = 〈∂t,x(XiXj)〉 and
〈X̄iX

′
j〉 = 0 (Reynolds relations (Rädler 1980)),

where Xi = X̄i + X ′
i are components of vec-

tor functions of x and t. For statistical ensem-
ble means, these hold when the correlation time
scales are short relative to the variation times of
mean quantities. For the spatial mean, defined
by 〈Xi(x, t)〉 = |ζ|−3

∫

x+L
x−L Xi(s, t)d

3s, the rela-
tions hold when the averaging is taken over a
large enough scale, such that l ≪ |ζ| ≪ L, where
L ∼ b̄/∇b̄, and ℓ ∼ b′/∇b′ ∼ v′/∇v′.

Subtracting the mean of (1) from itself, and
assuming ∇φ′ = 0, gives

dtv
′ = 〈v′ · ∇v′〉 − v′ · ∇v′ − v̄ · ∇v′ − v′ · ∇v̄T−

∇p′ −∇b′2/2 + ∇〈b′2〉/2 −∇(b′ · b̄) + b′ · ∇b′−
〈b′ · ∇b′〉 + b′ · ∇b̄ + b̄ · ∇b′ + F′(x, t) + ν∇2v′,

(4)

where dt ≡ ∂t + v̄c · ∇. The average of (2) is

dtω̄ = ∇× 〈v′ × ω
′〉 + ν∇2

ω̄T + ∇× 〈b′ · ∇b′〉+
ω̄c · ∇v̄ + ω̄ · ∇v̄c + ω̄c · ∇v̄c,

(5)

where we have neglected terms second order in
time-varying mean quantities. Subtracting (5)
from (2) gives

dtω
′ = ω

′ · ∇v̄T − v̄ · ω′ + ω̄T · ∇v′ − v′ · ∇ω
′

−v′ · ∇ω̄T + ω
′ · ∇v′ −∇× 〈v′ × ω

′〉 + ν∇2ω′+
∇× (b′ · ∇b̄) + ∇× (b̄ · ∇b′) + ∇× (b′ · ∇b′)−
∇× 〈b′ · ∇b′〉 + ∇× F′(x, t).

(6)

Similarly, the equation for the mean B-field, de-
rived by averaging (3) is

dtb̄ = ∇× 〈v′ × b′〉 + b̄ · ∇v̄c + νM∇2b̄. (7)

Subtracting (7) from (3) yields the equation for
the fluctuating B-field

dtb
′ = b′ · ∇v̄T − v̄ · ∇b′ + b̄ · ∇v′ − v′ · ∇b̄+

b′ · ∇v′ − v′ · ∇b′ −∇× 〈v′ × b′〉 + νM∇2b′.
(8)

Growth of b̄ or ω̄ requires the ∇× terms in
(7) and (5) to be non-vanishing. However, when
the turbulence is strictly homogeneous in v′ and
b′, these quantities vanish. For purely isotropic
turbulence, the term 〈v′×b′〉 in (7) vanishes since
it is the average of a vector, while ∇×〈v′×ω

′〉 ∝
∇×∇〈v′2〉 and ∇×〈b′ ·∇b′〉 ∝ ∇×∇〈b′2〉 vanish
from Reynolds rules and incompressibility. Thus,
anisotropy and inhomogeneity must be present
for nontrivial time evolution of mean fields.

We expand the turbulent quantities on the
right of Eqs. (5) and (7) to linear order in both

b̄ and v̄ using the equations for the fluctuating
fields thus generalizing the approach of (Field &
Blackman, 1996) where only the mean B-field
was used. To find the lowest order terms, we
assume weakly anisotropic inhomogeneous tur-
bulence: Terms linear in the time-varying mean
quantities contribute, but their averaged 0th or-
der coefficients, are taken to be isotropic and ho-
mogeneous (still allowing for reflection asymme-
try). Iterating the equations using the formal so-
lutions for the turbulent fields b′(t) = b′(t = 0)+
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∫

dt′b
′dt′ and ω

′(t) = ω
′(t = 0) +

∫

dt′ω
′dt′, and

using times appropriately chosen such that the
correlations 〈v′(t)× ω

′(0)〉 = 〈v′(t)×b′(0)〉 ≃ 0,
we obtain to first order in mean quantities

〈v′ × ω
′〉(1) = 〈v′(0)(t) ×

∫ t
0 dt′ω

′(1)dt′〉+

〈
∫ t
0 dt′v

′(1)dt′ × ω
′(0)(t)〉,

(9)

with similar expressions for 〈b′ · ∇b′〉(1) and
〈v′ × b′〉(1). The calculation of these averages
requires Eqs. (4), (6), and (8) for the time inte-
grands. Using (4) also requires an expression for
the pressure, which arises in (9) and in 〈v′ × b′〉
via the terms

〈ω′(0)(t)×

∫ t

0
∇p′(1)dt′〉 and 〈b′(0)(t)×

∫ t

0
∇p′(1)dt′〉.

(10)

Using isotropy, homogeneity, and Reynolds
rules, we now show that remarkably, terms of the
form (10) vanish in the derivation of the mean
field equations to the order considered. Con-
sider the pressure in the isoentropic energy equa-
tion (hereafter neglecting microphysical fluid and
magnetic viscosities) DtP ≡ dtP +(v′+v̄)·∇P =
−γP∇·v, where γ is the adiabatic index (Batch-
elor 1967, Boyd and Sanderson 1969). We have
assumed incompressibility (∇ · v ≃ 0 and con-
stant ρ) above, but here we must allow ∇ ·v 6= 0
for the last term in the energy equation: Even
though ∇ · v is small, the sound speed is large
(i.e. γ is large, see Batchelor 1967) such that the
magnitude of DP/Dt cannot be ignored. This is
why the energy equation is normally not useful
in incompressible approaches. But here it will be
symmetry properties of the energy equation that
account for the absence of a pressure contribu-
tion when used in (10) and the seemingly offend-
ing term will not contribute. Taking p′ ≡ P ′/ρ
we obtain

dtp
′ = 〈v′ · ∇p′〉 − v′ · ∇p̄ − v̄ · ∇p′ − v′ · ∇p′+
γ〈p′∇ · v′〉 − γp′∇ · v̄ − γp̄∇ · v′ − γp′∇ · v′,

(11)

where ∇ · v̄c ≃ 0, but ∇ · v̄,∇ ·v′ 6= 0. The aver-
aged terms in (11) make no contribution when in-
serted into (10) according to the Reynolds rules.
We only consider terms explicitly linear in time-
varying mean quantities, and iterate to first or-
der in the correlation time; higher order terms
would come from successive iterations in the
equations for the fluctuating variables. This first
order smoothing approximation (FOSA)(Krause
& Rädler 1980) is “justified” when the correla-
tion time of the turbulence is less than the eddy
turnover time (Ruzmaikin et al. 1988, Blackman
1995), as is possibly the case in galaxies (Ruz-
maikin et al. 1988), or if higher order correlations
are otherwise reduced. Integrating (11), and us-
ing the assumptions discussed above,

∇p′(1) = ∇p′(1)(0) −∇

∫

(v′(0) ·∇p̄ + v̄·∇p′(0) (12)

+γp′(0)∇ · v̄ + γp̄∇ · v′(0))dt′.

The pressure dependent contribution to 〈v′(0) ×
ω
′(0)〉 can then be written

〈ω′(0) ×

∫ t

0
d′t∇p′dt′〉k = ǫijkǫims×

∫ t

0
dt′

∫ t′

0
dt′′〈(∂j v̄l∂lp

′(0) + v̄l∂j∂lp
′(0)+

∂jv
′(0)
l ∂lp̄ + v

′(0)
l ∂j∂lp̄ + γp′(0)∂j∂lv̄l+

γ∂jp
′(0)∂lv̄l + γp̄∂j∂lv

′(0)
l + γ∂j p̄∂lv

′(0)
l )

×(∂mv
′(0)
s − ∂sv

′(0)
m )〉

=
1

6

∫ t

0
dt′

∫ t′

0
dt′′〈ω′(0)(t′) · ω

′(0)(t′′)〉∂k p̄(t),

(13)

where we assume mean fields vary on time scales
longer than the fluctuating fields, and ∇p′(1)(t =
0) is uncorrelated with b′(t) or ω

′(t). The only
surviving term arises from the third term on the
right hand side of (13) and the vanishing of the
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remaining terms follows from careful application
of isotropy (i.e. rank 2 and rank 3 averaged ten-
sors of fluctuating 0th order quantities are pro-
portional to δij and ǫijk respectively) and homo-
geneity (i.e. ∂i〈XjXk〉

(0) = 0) of the 0th order
turbulence, without invoking ∇ · v′ = 0. The
surviving term in (13) vanishes when put inside
the curl in (5). A similar analysis holds for the
second term in (10) when put into (7); thus, the
pressure does not contribute to (5) or (7).

Approximating time integrals by factors of the
correlation time τc (Ruzmaikin et al. 1988), and
freely employing Reynolds rules and incompress-
ibility we obtain

(3/τc)∇× 〈v′ × ω
′〉(1) = 〈v

′(0)
i ω

′(0)
i 〉(∇× ω̄)+

〈v
′(0)
i v

′(0)
i 〉∇2

ω̄ + 2〈ω
′(0)
i b

′(0)
i 〉∇2b̄+

〈ǫijkω
′(0)
k ∂ib

′(0)
j 〉(∇× b̄) − 〈v

′(0)
i b

′(0)
i 〉∇2(∇× b̄)

(14)

with similar expressions for ∇×〈b′ · ∇b′〉(1) and
∇ × 〈v′ × b′〉(1). Upon substituting these into
(5) and (7), the curls can be pulled onto the ω̄

and b̄ from homogeneity of 0th order averages.
Note that ω̄c and v̄c contribute to the 0th order
quantities, and thus do not show up explicitly in
(13). After some simplification, we obtain

dtω̄ = α0(∇× ω̄) + α1(∇× b̄) + β0∇
2
ω̄ + β1∇

2b̄

−α2∇
2(∇× b̄) + ω̄c · ∇v̄ + ω̄ · ∇v̄c + ω̄c · ∇v̄c,

(15)

and

dtb̄ = α2(∇× ω̄) + α3(∇× b̄) + β2∇
2b̄+ b̄ · ∇v̄c

(16)

where the coefficients are:

α0 = (τc/3)〈ω
′(0) · v′(0)〉

α1 = (τc/3)〈ω
′(0) · ∇ × b′(0)〉

α2 = (2τc/3)〈b
′(0) · v′(0)〉

α3 = (2τc/3)〈b
′(0) · ∇ × b′(0)〉 − α0

β0 = (τc/3)〈v
′(0) · v′(0) + b′(0) · b′(0)〉

β1 = (2τc/3)〈ω
′(0) · b′(0)〉

β2 = (τc/3)〈v
′(0) · v′(0) + 2b′(0) · b′(0)〉,

(17)

3. Solutions and Discussion

The coefficients α3 and β2 in (16) are modi-
fied helicity and diffusion coefficients of the stan-
dard magnetic dynamo theory. A similar, but
not identical, set of helicity and diffusion coef-
ficients enter (15) for the mean vorticity. The
cross-correlations α1, α2, β1, taken to vanish in
Vainshtein & Kitchatinov 1983, need not vanish,
as they preserve all MHD symmetries in (15) and
(16). We will now see how the finite helicity is
required for both B-field (Moffatt 1978) and vor-
ticity growth (Kitchatinov et al. 1994a).

To show the growth, we assume constant dy-
namo coefficients and consider the simple case
when the last 3 terms in (15) and the last term
in (16) are negligible. This assumption is valid in
systems for which ω̄c is perpendicular to the gra-
dient of the time varying mean quantities, and for
which the former is relatively uniform or perpen-
dicular to the dominant B-field component. (The
influence of ω̄c is always present however, in pro-
viding reflection asymmetry to the 0th order tur-
bulent quantities.) The simplified equations yield
a generalized vorticity-magnetic α2 dynamo.

The mean-field equations are then solved by
assuming solutions of the form exp(σt − i~k · ~r)
to obtain the linear algebraic equations σ ~X =
M ~X , ~X = (ω̄x, ω̄y, ω̄z, b̄x, b̄y, b̄z). The eigenval-

ues σ of the dynamical matrix M(~k) determine
the time evolution of the fields at wavevector
~k. Different behavior can be inferred from the
general solution ~X(~r, t) =

∑

j=1,6 cj
~ξj exp(σjt −

i~k · ~r). Here, cj are depend on the initial val-

ues Xj(t = 0), and ~ξi are eigenvectors which are
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linear combinations of ω̄ and b̄. When cross-
correlations between the turbulent velocities and
B-fields are non-vanishing, the mean vorticity
and B-fields are naturally coupled. The general
6 × 6 matrix equation can be solved numerically
for Xj and contains all decaying and growing
modes. Because the cj are combinations of the
initial Xj(0), for growing modes, all components
of b̄ and ω̄ will in general grow unless very spe-
cific initial conditions X(t = 0) and values of k
and σ(k) make certain cj vanish.

First we consider thin disk systems which have
only in-plane mean field components (while al-
lowing the turbulence to be 3-D), i.e., v̄ =
(v̄x, v̄y, 0), b̄ = (b̄x, b̄y, 0). The three possible
poles are σ0 = −β0k

2 and 2σ± = −(β0 + β2)k
2 ±

|k|
√

4α1α2 + (β0 − β2)2k2 + 4α2
2k

2. which have

growing modes (σ > 0) when k2 < α1α2/(β0β2 −
α2

2) (if and only if α1α2/(β0β2 −α2
2) > 0). Thus,

the growth of ω̄z and (b̄x, b̄y) depends on the signs
and magnitudes of α1, α2, β0, and β2. because we
allow the small scale

The fully 3-D case requires numerical calcu-
lation of σi, but we can obtain approximate be-
havior by truncating (15) and (16) to lowest or-
der in mean field gradients. By taking the curl
of (16) and using j̄ we see that terms with one
higher derivative in the mean quantities are re-
duced by a factor ℓ/L. If α2 ∝ 〈v′(0) · b′(0)〉
is negligible initially, it will remain so (Chan-
dran 1997, Kraichnan 1959). Neglecting only
the α2 term in (15) and (16), the six roots are
σ = −β0k

2,−β2k
2,−β0k

2 ±α0|k|,−β2k
2 ±α3|k|,

which displays two growing modes for small k de-
pending on the signs of α0 and α3 (β0, β3 > 0).

Note that if cross-correlations between turbu-
lent velocities and magnetic fields vanish, the
equations for ω̄ and b̄ decouple into separate
MFMD and MFVD equations of the form ∂tm̄ =
α∇× m̄ + β∇2m̄ where m̄ = ω̄ or b̄, with their
respective helicity and diffusion coefficients. The
time evolution of the decoupled dynamos is de-
termined by the eigenvalues σ = −βk2, ±α|k| −

βk2. Thus, there is a growing solution (σ =
|α||k| − βk2 > 0) for small wavevectors |k| <
|α|/β. The most unstable mode is k∗ = |α|/(2β)
which grows at a rate σ(k∗) = |α2|/(4β), like the
usual α2 dynamo (Moffatt 1978).

To conclude: We have generalized the mean-
field dynamo to include mean vorticity and have
considered solutions of an α2 vorticity-magnetic
dynamo. An important implication of (15) and
(16) is that the mean B-field can grow even when
its initial value is zero because a seed mean B-
field can be generated by a coupling between the
small scale B-field to the small scale velocity, and
the latter to the mean vorticity. This feature
should be preserved in more general treatments
as it simply results from the coupling between
(15) and (16) and only requires non-vanishing
cross correlations. Growth requires helical tur-
bulence which can be supplied by an underly-
ing global rotation. Astrophysical applications of
more extensive treatments may include accretion
disks, where vortices and B-fields can combine
to concentrate emerging radiation into strong
beams (Acosta-Pulido et al. 1990, Abramowicz
1992). Also, Yoshizawa & Yokoi (1993) showed
that an equation similar to (16) can lead to
generation of toroidal fields whose upward pres-
sure drives a jet that subsequently may develop
poloidal fields. The CMFD may provide the sus-
taining feedback.
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Kitchatinov, L. L., Rüdiger, G., & Kuker, M.
1994b, A.& A., 292, 125

Kraichnan, R. H. 1959, Phys. Rev., 113, 1181
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