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ABSTRACT

Precision measurements of the galaxy power spectrum P (k) require a data analysis pipeline that is both
fast enough to be computationally feasible and accurate enough to take full advantage of high-quality
data. We present a rigorous discussion of different methods of power spectrum estimation, with emphasis
on the traditional Fourier method, and linear (Karhunen-Loève; KL), and quadratic data compression
schemes, showing in what approximations they give the same result. To improve speed, we show how
many of the advantages of KL data compression and power spectrum estimation may be achieved with
a computationally faster quadratic method. To improve accuracy, we derive analytic expressions for
handling the integral constraint, since it is crucial that finite volume effects are accurately corrected
for on scales comparable to the depth of the survey. We also show that for the KL and quadratic
techniques, multiple constraints can be included via simple matrix operations, thereby rendering the
results less sensitive to galactic extinction and mis-estimates of the radial selection function. We present
a data analysis pipeline that we argue does justice to the increases in both quality and quantity of
data that upcoming redshift surveys will provide. It uses three analysis techniques in conjunction: a
traditional Fourier approach on small scales, a pixelized quadratic matrix method on large scales and a
pixelized KL eigenmode analysis to probe anisotropic effects such as redshift-space distortions.

1. INTRODUCTION

Observational data on galaxy clustering are rapidly in-
creasing in both quantity and quality, which brings new
challenges to data analysis. As for quantity, redshifts had
been published for a few thousand galaxies 15 years ago.
Today the number is ∼ 105 (Huchra, private communica-
tion), and ongoing projects such as the AAT 2dF Survey
and the Sloan Digital Sky Survey (hereafter SDSS; see
Gunn & Weinberg 1995) will raise it to 106 in a few years.
Comprehensive reviews of past redshift surveys are given
by Efstathiou (1994), Vogeley (1995), Strauss & Willick
(1995) and Strauss (1997), the last also including a de-
tailed description of 2dF and SDSS. As for quality, more
accurate and uniform photometric selection criteria (en-
abled by e.g. the well-calibrated 5-band photometry of the
SDSS) reduce potential systematic errors. This increased
data quality makes it desirable to avoid approximations
in the data analysis process and to use methods that can
constrain cosmological quantities as accurately as possible.

This is especially important since a wide variety of mod-
els currently appear to be at least marginally consistent
with the present data (Peacock 1997; White et al. 1996;
Vogeley 1997), so smaller error bars on the power spec-
trum will be needed to discriminate between them. How-
ever, the increased data quantity makes it a real challenge
to perform such an accurate analysis; as we will discuss
at some length, a straightforward application of any such
method is computationally unfeasible for data sets as large
as those from 2dF and SDSS.

This paper addresses both the accuracy and speed issues
for measuring the galaxy power spectrum P (k). For the
highest accuracy, we advocate the use of lossless pixelized
data compression methods, both linear (Karhunen-Loève)
and quadratic. To improve the speed, we present a fast
implementation of a pixelized quadratic power estimation
method, and show how it can reproduce Karhunen-Loève
results (Vogeley & Szalay 1996; Tegmark, Taylor & Heav-
ens 1997 — hereafter TTH) exactly, without the need to
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solve eigenvalue problems, although it does not have the
ability to measure redshift-space distortions.

The rest of the paper is organized as follows. Section 2 is
a “buyers guide”, where we list the various properties that
are important when deciding which data analysis method
to use. In Section 3, we review the existing methods for
power spectrum estimation in a common framework, make
various extensions of them and present the fast quadratic
data compression and power spectrum technique. Sec-
tion 4 describes how the various methods are interrelated,
and Section 5 discusses how they can be immunized from
various systematic effects, such as errors in the extinction
model; many of the technical details are given in Appen-
dices A and B. Section 6 discusses the pros and cons of the
different techniques. We conclude that to meet all criteria
on the wish list of Section 2, it is necessary to combine
three of the principal methods described. The data anal-
ysis pipeline that we propose is summarized in Figure 1,
and the reader may wish to glance at this before delving
into the details of Section 3, to obtain an overview of how
everything fits together. We ignore redshift-space distor-
tions for most of this paper, and assume that clustering is
isotropic. In Section 5 and Appendix C, we discuss this
issue further.

2. COMPARING METHODS: A WISH LIST

Since the ultimate goal of the analysis of clustering in
a galaxy redshift survey is to constrain cosmological mod-
els, we want a method that minimizes the statistical error
bars on cosmological parameters1 and is robust against po-
tential systematic errors. We will now discuss the former
issue in some detail, and return to the latter in Section 5
and Appendix B.

2.1. The problem to be solved

The data set from a galaxy redshift survey consists
of N three-dimensional vectors rα (α = 1, ..., N) giving
the measured positions of the galaxies. Following Pee-
bles (1973, 1980), we model these positions as generated
by a random Poissonian point process where the galaxy
density is modulated by both selection effects and fluctu-
ations in the underlying matter distribution. The former
are described by n̄(r), the selection function of the galaxy
survey under consideration, defined as the expected galaxy
density. Thus n̄(r)dV is the expected (not the observed)
number of galaxies in a volume dV about r in the absence
of clustering. This function typically falls off at large dis-
tances, and can exhibit small angular variations due to
extinction. It vanishes outside the survey volume. The
fluctuations in the underlying matter density are given by
the field δr(r), which is not to be confused with the Dirac
delta function δD. This means that the observed galaxy
distribution n(r) =

∑
α δ

D(r − rα) is modeled as a 3D
Poisson process with intensity λ(r) = n̄(r)[1 + δr(r)].

The density fluctuations δr are modeled as a homoge-
neous and isotropic (but not necessarily Gaussian) random

field. This implies that the Fourier transform δ̂r of the

density fluctuation field obeys the simple relation

〈δ̂r(k)∗δ̂r(k
′)〉 = (2π)3δD(k − k′)P (k) (1)

for some function P which depends only on the magni-
tude of k, not on its direction2 P is known as the power
spectrum. Because of equation (1), P contains all the infor-
mation needed to compute any statistical quantities that
depend quadratically on δr, for instance the variance or
the correlation function on different scales. Moreover, if
the random field δr is Gaussian (which means that the
joint probability distribution of δr at any number of points
is a multivariate Gaussian), then P characterizes δr com-
pletely and contains all the information needed to answer
any statistical question whatsoever about δr. Inflationary
theory (e.g., Peebles 1993) and observations of large-scale
structure (e.g., Strauss & Willick 1995) imply that δr is
Gaussian on large scales, making P an important quantity
in cosmology. The power spectrum estimation problem,
which is the topic of this paper, is to estimate P (k) given
the observed realization of n(r).

2.2. The traditional approach

Let us parameterize the power spectrum P (k) by some
set of parameters θi, i = 1, 2, ..., grouped into a vector
Θ. These may be either the band powers in a set of nar-
row bands, or physically motivated parameters such as the
normalization σ8, the shape parameter Γ, the primordial
spectral index n, etc. Let us package our data set into a
vector x; much of the distinction between different meth-
ods discussed in Section 3 lies in the way this packaging
is done. The standard approach to parameter estimation
is to write down the expression for the probability dis-
tribution f(x;Θ). Here we interpret f as a probability
distribution over x for a fixed Θ. In a Bayesian statistical
analysis with a uniform prior probability distribution for
Θ, one reinterprets f as a probability distribution over Θ
for a given data set x, and to clarify this distinction re-
names f the likelihood function. The final results are often
presented as contour plots of this likelihood function, as
at the bottom of Figure 1.

If we take x to be the raw data set, i.e., the measured
coordinates rα (α = 1, ..., N) of the N measured galaxies,
then the likelihood function f is unfortunately hopeless to
compute numerically, since it involves the N -point correla-
tion function. Even in the Gaussian approximation that f
is given by a product over two-point correlation functions
(e.g., White 1979; Fry 1984), this requires evaluating a
multivariate polynomial of degree N/2 in the correlations
of the N(N+1)/2 galaxy pairs, and the CPU time required
for this grows faster than exponentially with N (Dodelson,
Hui, & Jaffe 1997). The traditional approach has therefore
been to take x to be something else: band-power estimates
of the power spectrum. These are essentially computed
by multiplying the observed density field by some weight
function, Fourier transforming it, taking the squared mod-
ulus of the result and averaging over shells in k-space (Sec-
tion 3.3). In the (sometimes poor) approximation that the

1This is not a mere unimportant detail, since doubling the error bars (which an inferior method can easily do) is comparable to reducing
the survey volume and the number of galaxies probed by a factor of four.

2Note that equation (1) only holds if positions are measured in real space. Redshift-space distortions couple modes of different k; see
Appendix C for more details.
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probability distribution for x is a multivariate Gaussian,
its probability distribution is

f(x;Θ) ∝ |C|−1/2 e−
1
2
(x−m)†C−1(x−m), (2)

where |C| denotes the determinant of C, and the mean vec-
tor m ≡ 〈x〉 and the covariance matrix C ≡ 〈xx†〉−mm†

depend on P (k) and hence on the unknown parameters
Θ. Much of the model testing to date has been rather ap-
proximate, often little more than a “χ-by-eye” fit of the-
oretical power spectra to the data, which is tantamount
to ignoring the correlations between the power estimates
(the off-diagonal elements of C). This approach clearly
does not utilize all the information present in the data,
and can also bias the results.

If we had infinite computer resources, we would improve
the situation by simply performing an exact brute force
likelihood analysis on the raw data set. Is there a faster
way of obtaining the same result?

2.3. The notion of a lossless method

We will call a method for analyzing a data set unbeatable
or optimal if no other method can place tighter constraints
on cosmological models (as parameterized by Θ) using this
data. In this paper, we are focussed on the power spec-
trum measured in real space, and so we restrict ourselves
to measurements of the parameters which determine the
power spectrum itself.

2.3.1. The Fisher Information Matrix

This can be made precise using the formalism of the
Fisher information matrix (see TTH for a comprehensive
review of this application), which offers a simple and a
useful way of measuring how much information each step
in the pipeline of Figure 1 destroys. Given any set of cos-
mological parameters of interest denoted θi, i = 1, 2, ...,
their Fisher matrix F gives the smallest error bars with
which the parameters can possibly be measured from a
given data set. If the probability distribution for the data
set given the parameter values is f(x;Θ), then the Fisher
matrix is defined by (Fisher 1935)

Fij ≡ −
〈
∂2 ln f

∂θi∂θj

〉
. (3)

Crudely speaking, F−1 can be thought of as the best pos-
sible covariance matrix for the measurement errors on the
parameters. Indeed, the Cramér-Rao inequality (Ken-
ney & Keeping 1951; Kendall & Stuart 1969) states that
no unbiased method whatsoever can measure the ith pa-
rameter with error bars (standard deviation) less than
1/

√
Fii. If the other parameters are not known but are

estimated from the data as well, the minimum standard

deviation rises to (F−1)
1/2
ii . This formalism has recently

been used to assess the accuracy with which cosmological
parameters can be measured from future galaxy surveys
(Tegmark 1997b; Goldberg & Strauss 1998; Hu, Eisen-
stein, & Tegmark 1997) and cosmic microwave background
experiments (Jungman et al. 1996; Bond, Efstathiou, &
Tegmark 1997; Zaldarriaga, Seljak, & Spergel 1997).

2.3.2. Checking for leaks in the pipeline

By computing the Fisher matrix separately from each
of the intermediate data sets in Figure 1, we can track the
flow of information down the data pipeline and check for
leaks. For instance, if the Fisher matrix computed from
the raw positional data is identical to that computed from
the (much smaller) data set consisting of the band power
estimates, then the power spectrum estimation method is
lossless in the sense that no information about the param-
eters of interest has been lost in the process of compressing
the data set from, say, 106 numbers down to 50; cf., the
discussion in Section 2.4. We will use this criterion when
comparing different data analysis techniques below.

2.3.3. The power spectrum Fisher matrix

Whether a method is lossless or not generally depends
on which parameters we are interested in estimating. For-
tunately, as shown by Tegmark (1997a, hereafter T97),
certain methods can be shown to be lossless for any set
of parameters in a large class. An important special case
are quantities that parameterize the power spectrum P (k),
such as σ8 and Γ; all the information on these parameters is
retained if the power spectrum itself (parameterized by the
power in many narrow bands) can be measured with the
minimal error bars. This means that one can test whether
a method is lossless simply by computing the Fisher matrix
for the band powers. This also means that band powers
have a special status compared to other parameters: if we
simply measure P (k) as accurately as possible, this mea-
sured function will retain all the information about all cos-
mological parameters. All this is of course only true within
the framework of Gaussian and isotropic models, which are
uniquely characterized by their power spectrum. Specifi-
cally, these methods do lose information about parameters
that affect the data set not only via P (k). Important ex-
amples to which we will return are redshift-space distor-
tions and uncorrected galactic extinction, both of which
introduce differences between the angular and radial clus-
tering patterns. On small scales, nonlinear clustering cre-
ates non-Gaussian fluctuations where in addition to P (k),
higher order moments also contain cosmological informa-
tion.

2.4. Data compression, simplicity and speed

A second and rather obvious criterion for comparing
data analysis methods is their numerical feasibility. For in-
stance, the brute-force likelihood analysis of the raw data
set (the galaxy positions) described above is lossless, but
too time-consuming to be numerically feasible when N ,
the number of galaxies, is large.

When the brute-force method is unfeasible, the general
approach is to perform some form of data compression,
whereby the data set is reduced to a smaller and simpler
one which is easier to analyze. If the data compression
step is lossless, a brute-force analysis on the compressed
data set clearly gives just as small error bars as one on the
raw data would have done.

To facilitate parameter estimation further down the
pipeline, it is useful if the statistical properties of the power
spectrum estimates are simple and easy to calculate. The
simplest case (which often occurs with the pixelized meth-
ods described below) is that where the data set is a mul-
tivariate Gaussian, described by the likelihood function

3
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of equation (2). Then the slowest step in the likelihood
calculation is computing the determinant of the N × N
covariance matrix C, for which the CPU time scales as
N3, so it is desirable to make the compressed data set as
small as is possible without losing information3. It is also
convenient if the statistical properties of the compressed
data set, in particular, its covariance matrix, can be com-
puted analytically. We will see that this is the case for the
Karhunen-Loève and quadratic data compression methods
describe below, but not for the the maximum-likelihood
method, where it requires numerical computation of the
entire likelihood surface. Finally, the simplest covariance
matrix one can desire is clearly one that is diagonal, i.e.,
where the errors on the elements of the compressed data
set are uncorrelated.

2.5. The wish list

In summary, the ideal data analysis/data compression
method would

1. be lossless, at least for the parameters of interest,

2. give easy-to-compute and uncorrelated errors,

3. be computationally feasible in practice,

4. allow one to account for redshift-space distortions
and systematic effects.

The first two items can be summarized by saying that we
want the method to retain the cosmological information
content of the original data set, distilled into a set of mu-
tually exclusive (2) and collectively exhaustive (1) chunks.
In other words, the information chunks should be inde-
pendent and together retain all the information from the
original data set

3. POWER SPECTRUM ESTIMATION METHODS — AN
OVERVIEW

In this section, we review the various methods for power
spectrum estimation that have been proposed in the lit-
erature and present various extensions. We start in Sec-
tion 3.1 by developing a formalism that is common to all
our approaches. In Section 3.2, we discuss how the data
might be discretized; that is, different ways of packaging
the data into a convenient form x. We then discuss various
methods of power spectrum estimation: traditional meth-
ods which take the square of the amplitude of the Fourier
modes (Section 3.3), the method of brute force likelihood
(Section 3.4), the linear Karhunen-Loève data compres-
sion method (Section 3.5), and a new quadratic data com-
pression method (Section 3.6). Our suggested approach to
power spectrum estimation involves a combination of these
methods in different regimes, as summarized in Figure 1,
and described in more detail in Section 7. Throughout
Section 3, we ignore redshift-space distortions and other
systematic effects, and assume that clustering is isotropic.
We return to this topic in Section 5.

3.1. Density field, shot noise and window functions

With the exception of the brute force maximum likeli-
hood technique, all of the methods described below com-
pute band power estimates qi that are quadratic functions
of the density field n, which means that they can be writ-
ten as

qi =

∫ ∫
Ei(r, r

′)
n(r)

n̄(r)

n(r′)

n̄(r′)
d3r d3r′ =

∑

α,β

Ei(rα, rβ)

n̄(rα)n̄(rβ)

(4)
for some real-valued symmetric pair weighting functions Ei

which are designed to isolate different ranges of wavenum-
ber k — the methods simply differ in their choices of Ei.
Taking the expectation value of n(r)n(r′)/n̄(r)n̄(r′) pro-
duces three terms: “1” from the mean density, δD(r −
r′)/n̄(r) from shot noise and δr(r)δr(r

′) from density fluc-
tuations. By a derivation analogous to FKP and T95, one
finds that these three terms give

〈qi〉 = Wi(0) + bi +

∫
Wi(k)P (k)

d3k

(2π)3
, (5)

where Wi, the three-dimensional window functions, are
given by

Wi(k) = Êi(k,k) (6)

and

Êi(k,k
′) ≡

∫
Ei(r, r

′)e−ik·reik′·r′d3r d3r′ (7)

is a Fourier transform of Ei. We will often find it
convenient to rewrite the last term of equation (5) as∫ ∞

0
Wi(k)P (k)dk, where the one-dimensional window

function is the angular average

Wi(k) = k2

∫
Wi(k)dΩk. (8)

The shot noise bias is given by

bi ≡
∫
Ei(r, r)

n̄(r)
d3r. (9)

Alternatively, bi can be made to vanish by omitting the
terms with α = β from the double sum in equation (4),
as described in Appendix A. The term Wi(0) simply
probes the mean density of the survey, and as described
in Section 5 and Appendix B, the functions Ei should al-
ways be chosen such that this term vanishes, i.e., so that∫
Ei(r, r

′)d3rd3r′ = 0, thereby immunizing the power esti-
mates to errors in normalization of n̄ (Section 5.1)4. The
desirability of choosing windows with this property was
first explicitly pointed out by Fisher et al. (1993), and
this prescription was used also by e.g. Hamilton (1992)
and Cole, Fisher & Weinberg (1994). We want to inter-
pret qi in equation (5) as probing a weighted average of
the power spectrum, with the window function giving the
weights, so Ei should be normalized so that Wi(k) inte-
grates to unity (throughout this paper, we will write the
volume element in Fourier space as d3k/(2π)3 rather than

3Another problem with large N is the memory requirements for an N × N covariance matrix; if N = 105, for example, this is currently
beyond the RAM capacity of all but the very largest computers.

4In fact, the stronger constraint
∫
Ei(r, r

′)d3r′ = 0 for all r should be enforced, as discussed in Appendix B.
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d3k, since this minimizes the number of 2π-factors else-
where). Using equation (6) and Parseval’s theorem, this
gives

1 =

∫ ∞

0

Wi(k)
dk

(2π)3
=

∫
Wi(k)

d3k

(2π)3
=

∫
Ei(r, r)d

3r,

(10)
so if we think of Ei(r, r

′) as a matrix with indices r and
r′, this normalization condition is simply tr [Ei] = 1.

As described in Hamilton (1997a), the window function
has a simple geometrical interpretation. Let us rewrite
equation (8) as

Wi(k) = 4πk2

∫ ∞

0

wi(r)j0(kr)dr, (11)

where the separation weighting is defined by

wi(d) ≡
∫ ∫

Ei(r, r
′)δD(|r − r′| − d)d3r d3r′. (12)

The separation weighting is the average of Ei over all pairs
of points separated by a fixed distance d, weighted by the
number of such pairs. Equation (11) shows that the only
aspect of Ei that affects the window function is the sepa-
ration weighting, since two different Ei that give the same
wi will produce identical window functions.

An important special case, to which we return in the
next subsection, is that where Ei is of rank one, i.e., of
the separable form

Ei(r, r
′) = ψi(r)ψi(r

′)∗ (13)

for some ψi. In this case, equation (4) can be written as
qi = |xi|2, where xi =

∫
ψi(r)n(r)/n̄(r) (see equation (15)

below), and the window function becomes simply

Wi(k) = |ψ̂i(k)|2. (14)

(Here and throughout, hats denote Fourier transforms;

ψ̂(k) ≡
∫
e−ik·rψ(r)d3r — see Appendix D.) We will see

that both the traditional methods (Section 3.3) and the
KL method (Section 3.5) are of this separable form, while
the quadratic data compression method that we present
in Section 3.6 is not. We will occasionally refer to the
former methods as linear data compression, since they be-
gin by taking linear combinations of the data with weight
functions ψi(r); cf., equation (15). The latter method, on
the other hand, is intrinsically quadratic since qi is not
merely the square of some quantity that is linear in the
data. This is because its pair weighting E is optimized
to provide a minimum variance power estimator, which
makes E a quadratic form of rank greater than one.

To avoid confusion, the reader should bear in mind that
when we distinguish between linear and quadratic meth-
ods below, we are referring to linear versus quadratic data
compression. The power estimator qi is of course quadratic
in both cases.

3.2. Pixelization

Hamilton (1997a) has recently derived the functions Ei

that provide the minimum-variance power spectrum esti-
mates for an arbitrary selection function and survey ge-
ometry. Unfortunately, this optimal weighting scheme is

in general impractical to implement numerically, as it in-
volves a computationally cumbersome infinite series ex-
pansion — only in the small-scale limit does it become
simple, as will be described in Section 4.3. To proceed
numerically, it is therefore convenient to discretize the
problem. This reduces it to one similar to that of cosmic
microwave background (CMB) experiments: estimating a
power spectrum given noisy fluctuation measurements in a
number of discrete “pixels”. Once the pixelization is done,
the remaining steps are quite analogous to the CMB case
(T97), and involve mere matrix operations such as inver-
sion and diagonalization. These operations can often be
further simplified by a more suitable choice of pixelization.

Let us define the overdensity in N “pixels” x1, ..., xN by

xi ≡
∫ [

n(r)

n̄(r)
− 1

]
ψi(r)d

3r (15)

for some set of functions ψi. We discuss specific choices
of ψi in some detail below. One generally strives either
to make these functions fairly localized in real space (in
which case the pixelization is a generalized form of counts
in cells) or fairly localized in Fourier space (in which case
we will refer to the functions ψi as “modes” and to xi as
expansion coefficients). The reader should be warned that
the latter case is far from what would normally be thought
of as “pixels”, and that we will be using this terminology
nonetheless to stress that all discretization schemes can be
treated in a mathematically equivalent way.

The “−1” term in equation (15) simply subtracts off the
mean density. As we discuss in Section 5 and Appendix
B, one can and should choose the weight functions ψi to
have zero mean, making this term irrelevant (note indeed
our use of this fact immediately preceding equation (14)).
This corresponds to requiring that

∫
ψi(r)d

3r = 0. (16)

Let us group the pixels xi into an N -dimensional vector
x. From equations (15) and (16) and a generalization of
the derivation of equation (5), T95 shows that

〈x〉 = 0, (17)

〈xx†〉 = C ≡ N + S, (18)

where the shot noise covariance matrix is given by

Nij =

∫
ψi(r)ψj(r)

∗

n̄(r)
d3r (19)

and the signal covariance matrix is

Sij =

∫
ψ̂i(k)ψ̂j(k)∗P (k)

d3k

(2π)3
. (20)

How should we choose our ψi’s to pixelize space? For a
pixelization to be useful, we clearly want the data set x to
retain as large a fraction as possible of the cosmological in-
formation from the original data set (the galaxy positions),
while simultaneously simplifying subsequent calculations.
We here list several natural options, most of which have
appeared in the literature.
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3.2.1. Counts in cells

Here one partitions the survey volume into N mutually
exclusive and collectively exhaustive volumes Vi, and de-
fines ψi(r) = n̄(r) if r ∈ Vi, ψi(r) = 0 elsewhere. Thus xi

is simply the number of galaxies observed in Vi, minus the
expected average. A set of useful approximations for com-
puting N and S for this case is derived in VS96. To keep
the number of cells from becoming intractably large, one
might choose the cells to be larger in distant and poorly
sampled regions of space than nearby.

With these sharp-edged cells, any linear combinations of
pixels will correspond to a weight function that is discon-
tinuous at cell boundaries. To avoid power leakage prob-
lems that this can in principle cause, one might use cells
with “fuzzy” boundaries instead, for instance Gaussians
as described in T95.

One can greatly simplify the computation of the covari-
ance matrix by choosing all cells to have the same shape
and to be spherically symmetric (e.g., spheres or Gaus-
sians), since the resulting Sij will depend only on the sep-
aration of the pixel centers and this correlation function
can be pre-computed and splined once and for all. For
the volume-limited case (n̄ constant), performing the ap-
propriate integrals for identical spherical cells of radius R,
separated by uR, gives

Nij =

{
(2−u)2(4+u)

16 n̄V if u < 2,
0 if u ≥ 2,

(21)

where V = 4πR3/3.

3.2.2. Fourier modes

All of the above-mentioned pixels were fairly well-
localized in real space. To make pixels reasonably localized
in Fourier space, one can choose modes ψi that are plane
waves, tapered by some weight function φ to make them
square integrable:

ψi(r) = φ(r)eiki·r (22)

for some grid points ki in Fourier space. Choosing all
modes that are periodic in a box containing the survey
volume will ensure that this is a complete set, although
some high-frequency cutoff is of course necessary to keep
the number of pixels finite. Four different choices of the
volume weighting function φ have appeared in the litera-
ture:

φ(r) ∝
{

1 inside survey volume

0 outside survey volume
(23)

φ(r) ∝ n̄(r) (24)

φ(r) ∝ n̄(r)

1 + n̄(r)P
(25)

φ(r) ∝ eigenfunction of

[
∇2 − γ

n̄(r)

]
(26)

All are to be normalized so that the corresponding win-
dow functions integrate to unity –

∫
φ(r)d3r = 1 as shown

below. Note that without careful choice of the ki’s, equa-
tion (16) will not be satisfied in general for these pixeliza-
tions. The first choice, which weights all volume elements
in the survey equally, was employed by e.g. Vogeley et al.

(1992), Fisher et al. (1993), and Park et al. (1994). The
second choice is used when determining the angular power
spectrum of a sample without redshifts, e.g., the APM sur-
vey (Baugh & Efstathiou 1994). Then all galaxies by de-
fault receive equal weight (moreover, modes can of course
only be computed in the directions perpendicular to the
line of sight). The third choice, advocated by Feldman,
Kaiser & Peacock (1994, hereafter FKP), minimizes the
variance in the limit when k−1 ≪ the depth of the survey
and is discussed in detail in Section 4.3.1. Here P denotes
an a priori guess of the power in the band under consider-
ation. The fourth choice (Tegmark 1995, hereafter T95),
gives the narrowest window function for a given variance,
where the constant γ determines the tradeoff.

3.2.3. Spherical harmonic modes

The spherical wave choice

ψi(r) = Yℓm(r̂)jℓ(knr), (27)

where Yℓm is a spherical harmonic and jℓ a spherical Bessel
function, is well-suited for full-sky redshift surveys, and
has the advantage (Fisher, Scharf, & Lahav 1994; Heav-
ens & Taylor 1995) of greatly simplifying inclusion of the
effect of redshift-space distortions in the analysis.

3.2.4. Guessed eigenmodes

In Section 3.5.1, we describe a set of smooth functions
known as continuum signal-to-noise eigenmodes. These
modes have a number of useful properties. In particu-
lar, there is an integer N such that the first N eigen-
modes retain virtually all the cosmological information
in the survey. If one has a reasonable guess as to the
shape of these functions a priori, before computing them
exactly (they depend on the survey geometry), the first N
of these guessed modes are obviously a good choice for the
pixelization functions ψi, since the amount of information
destroyed by the pixelization process will then be small.

3.3. Traditional methods

The traditional approach has been to estimate the power
by simply squaring the pixels (qi = |xi|2), choosing the
pixels to be Fourier modes as described above. This corre-
sponds to the pair weighting of equation (13), where ψi is
given by equation (22) and φ is specified by equation (23),
(24), (25) or (26). Equation (5) shows that

〈qi〉 = φ̂(0)2+

∫
φ(r)2

n̄(r)
d3r+

1

(2π)3

∫
|φ̂(k−ki)|2P (k)

d3k

(2π)3
,

(28)
the last term of which is simply the true power spec-

trum convolved with the function |φ̂(k)|2. The 3D win-

dow function is thus Wi(k) = |φ̂(k − ki)|2. Using this
and Parseval’s theorem (or equation (10) directly), one
finds that the window function normalization constraint∫
Wi(k)d3k/(2π)3 = 1 corresponds to simply

∫
φ(r)2d3r = 1. (29)

These simple expressions have frequently been used in the
literature, but an annoying complication has often been
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neglected. As described in Section 5, the fact that the
normalization of n̄ is not known a priori, but is deter-
mined from the observed galaxies (the so-called integral
constraint problem) can be eliminated by choosing weight
functions ψi that are orthogonal to the monopole, i.e.,

such that ψ̂i(0) = 0. Although this is easy to arrange with
the pixelized methods described below, the choice of equa-
tion (22) does generally not have this important property.
To obtain a correct answer with the traditional methods,
this must be corrected for. As shown in Appendix B, the
power estimator

P̃i ≡
[ |xi|2 − bi

Ai

]
(30)

is unbiased and incorporates the integral constraint cor-
rection (when n̄ is normalized so that xi = 0 for ki = 0) if
the normalization factor Ai and the shot noise correction
bi are given by

Ai =



1 +

∣∣∣∣∣
φ̂(ki)

φ̂(0)

∣∣∣∣∣

2


 a(0) − 2 Re

{
φ̂(ki)

φ̂(0)
a(ki)

}
,(31)

bi =



1 +

∣∣∣∣∣
φ̂(ki)

φ̂(0)

∣∣∣∣∣

2


 b(0) − 2 Re

{
φ̂(ki)

φ̂(0)
b(ki)

}
, (32)

where the functions a and b are defined by

a(k) ≡
∫
φ(r)2eik·rd3r, (33)

b(k) ≡
∫
φ(r)2

n̄(r)
eik·rd3r. (34)

If the survey is volume limited, then n̄ is independent of
r, b(k) = a(k)/n̄, and bi = Ai/n̄.

After computing power estimates qi at a large grid of
points ki, one finally takes some weighted averages of the
qi to obtain power estimates in some bands of (scalar) k
(= |k|). The problem of finding the weights that min-
imize the variance of the band power estimators is un-
fortunately quite a difficult one, and in general involves
solving a numerically unpleasant quadratic programming
problem (T95). For this reason, the customary approach
has been to simply give all qi equal weights in some spher-
ical shells in k-space although, as described in VS96, this
is in general far from optimal.

3.4. Brute force likelihood method

Let us parameterize the power spectrum P (k) by some
parameter vector Θ as in Section 2.2. In the approxima-
tion that the probability distribution for the pixel vector
x is a multivariate Gaussian, it is given by equation (2)
with mean m = 0. The maximum likelihood estimator of
Θ, denoted Θml, is simply that Θ-vector that maximizes
the likelihood f(x;Θ). This maximization problem can
unfortunately not be solved analytically when the number
of pixels exceeds one, so Θml is a complicated non-linear
function of x that must be computed by solving the max-
imization problem numerically. Since one generally wants
error bars on the estimate as well, one typically evaluates

the likelihood function at a dense grid of points in pa-
rameter space and rescales it to integrate to unity. These
final results are often illustrated in contour plots, as at the
bottom of Figure 1.

3.5. Linear (Karhunen-Loève) method

As will be discussed in Section 6, the traditional meth-
ods generally destroy information, while the brute force
method is lossless but computationally impractical. The
Karhunen-Loève (KL) method (Karhunen 1947) maintains
the advantage of the brute-force method (indeed, it can
produce an essentially identical answer faster), and has
additional useful features as well, as we detail below. It
was first introduced into large-scale structure analysis by
Vogeley & Szalay (see VS96), and it has also been suc-
cessfully applied to Cosmic Microwave Background data
(e.g. Bunn 1995; Bond 1995; TTH; Bunn & White 1997;
Jaffe, Knox, & Bond 1997). Like any method designed to
minimize error bars, the KL-technique requires an a priori
assumption for the power spectrum. This is referred to as
the fiducial P (k). As will be described in sections 3.5.4,
4.2 and 6.3.5, this is not a problem in practice, since a
bad fiducial model does not bias the result. Moreover, the
measurement itself can be used as the fiducial model in an
iterative procedure if desired.

We start by defining signal-to-noise eigenmodes in
Section 3.5.1, before generalizing the technique in Sec-
tion 3.5.2.

3.5.1. Signal-to-noise eigenmodes

The signal-to-noise eigenmode method consists of defin-
ing a new data vector

y ≡ Bx, (35)

where b, the rows of the matrix B, are the N eigenvectors
of the generalized eigenvalue problem

Sb = λNb, (36)

sorted from highest to lowest eigenvalue λ and normalized
so that b†Nb = I. This implies that

〈yiyj〉 = δij(1 + λi), (37)

which means that the transformed data values y have the
desirable property of being statistically orthogonal, i.e.,
uncorrelated. In the approximation that the distribution
function of x is a multivariate Gaussian, this also implies
that they are statistically independent — then y is merely
a vector of independent Gaussian random variables. More-
over, since the eigenmodes diagonalize both S and N si-
multaneously, equation (36) shows that the eigenvalues λi

can be interpreted as a signal-to-noise ratio S/N. Since
equation (37) shows that the quantity y2

i − 1 on average
equals this signal-to-noise ratio, it is a useful band power
estimator when normalized so that its window function in-
tegrates to unity. The window function is given by equa-
tion (14) with ψi replaced by the continuous KL mode
defined by

ψ′
i(r) ≡

N∑

j=1

Bijψj(r), (38)
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since yi =
∫

[n(r)/n̄(r) − 1]ψ′
i(r)d

3r. For the volume-
limited case, the noise power is simply 1/n̄, so the correctly
normalized and bias-corrected KL band power estimators
are simply “signal = noise × signal-to-noise”, i.e.,

qi ≡
y2

i − 1

n̄
; (39)

compare this with equation (30). Since the matrix B is
invertible, the final data set y clearly retains all the in-
formation that was present in x. In summary, the KL
transformation partitions the information content of the
original data set x into N chunks that are

1. mutually exclusive (independent),

2. collectively exhaustive (jointly retaining all the in-
formation), and

3. sorted from best to worst in terms of their informa-
tion content.

Typically, most of the KL coefficients yi have a signal-to-
noise ratio λ≪ 1, so that the bulk of the cosmological in-
formation is retained in the first N ′ coefficients, N ′ ≪ N ,
which is why the KL method is often referred to and used
as data compression. One can thus throw away all but the
first N ′ numbers yi without any appreciable information
loss, and this compressed data set will still satisfy proper-
ties 1 and 3 exactly, and 2 to a good approximation.

Bunn (1995) and VS96 have pointed out that the S/N-
coefficients y are useful for power spectrum estimation
since as long as the galaxy survey probes only scales
smaller than the peak in the power spectrum (cf., the dis-
cussion in Section 6.3.3), the first N ′ window functions Wi

have the following two properties:

1. They are narrow in k-space,

2. As i increases from 1 to N ′, they probe all the scales
accurately measured by the survey, from largest to
smallest.

Since they are also uncorrelated, these power spectrum
estimators therefore have all desirable properties that one
may wish for: they distill the cosmological information
content of the data set into a set of mutually exclusive
and collectively exhaustive chunks, which correspond to
the band powers in a set of narrow bands. In the approxi-
mation that y has a Gaussian distribution, the probability
distributions of the power estimates qi are simple: they are
independent χ2 distributions with one degree of freedom.5

3.5.2. General KL modes

Let us write C = θiS + N, where the power spectrum
normalization parameter θi = 1 in the fiducial model.
Since S = C,i ≡ ∂C/∂θi, equation (36) can be rewritten
as (TTH)

C,i b = λ′Cb, (40)

where λ′ = λ/(1 + λ) or, equivalently, λ = λ′/(1 − λ′).
From now on, we will normalize the eigenvectors so that

b†Cb = 1 instead of b†Nb = 1, since this is more con-
venient throughout the rest of the paper. The matrix ele-
ments Bij are thus a factor (1+λi)

1/2 smaller than in the
previous subsection. As shown in TTH, solving the eigen-
value equation (40) is useful for any parameter θi on which
C depends, even those which do not affect only the power
spectrum (e.g., redshift-space distortions, cf., Appendix
C), and the signal-to-noise eigenmode method discussed
above is just the special case where θi is the power nor-
malization. The three properties listed above continue to
hold in the general case, and the “information content”
in item 3 above now refers to the information about the
parameter θi.

The KL method is a very general data analysis tool.
Note that the eigenmodes continue to be mutually exclu-
sive and collectively exhaustive if we replace C,i by any
symmetric matrix M in equation (40). To ensure that
the KL modes give narrow window functions ranging from
small to large k, one can therefore choose M to be the
signal covariance matrix S that would arise from some
monotonically decreasing fiducial power spectrum, for in-
stance P (k) ∝ k−3. In that case, the modes become sorted
by the ratio of “signal” in the fiducial power spectrum to
noise; as the former is monotonic, the modes are sorted by
scale. We discuss this point further in Section 6.3.3.

3.5.3. KL modes are asymptotically
pixelization-independent

The pixelizations listed in Section 3.2 were all in some
sense arbitrary, and generally somewhat redundant. The
KL modes can eliminate this arbitrariness, as mentioned
in Section 3.2.4. If the pixelization functions ψi formed a
complete set, spanning the space of all square-integrable
functions over the survey volume, the continuum KL
modes defined by equation (38) would be some smooth
functions ψ′

i(r) that were independent of the pixelization
used to compute them and depended only on P (k), n̄(r)
and the geometry of the survey. In practice, the functions
ψi do not of course form a complete set, since one is lim-
ited to a finite number of pixels, but the continuum KL
modes ψ′

i(r) can nonetheless be computed numerically. By
choosing a pixelization that can resolve all features down
to some scale R, equation (38) will accurately approximate
all continuum modes whose window functions Wi(k) probe
only scales k−1 ≫ R. If the number of pixels are increased
further to probe smaller scales, the first N ′ modes remain
stable against this perturbation: the first N ′ eigenvalues
and eigenvectors would only change by a small amount
(Szalay & Vogeley 1997). The new modes, on the other
hand, would represent the small scale noise probed by the
new pixel scale. By using the functions ψ′

i(r) to pixelize
the data, i = 1, ..., N , one can thus make sure that all of
the cosmological signal down to the scale probed by ψ′

N is
retained.

3.5.4. Using KL modes for trouble spotting

If the assumed power spectrum model is correct, the KL
coefficients yi defined by equation (35) will be independent
Gaussian random variables with zero mean and unit vari-
ance. This offers an efficient way of testing whether the
data are inconsistent with this model. The detection of,

5To prevent power spectrum plots from becoming too cluttered with points with large error bars, it is convenient to combine neighboring
band power estimates with a weighted average — these broader band powers will of course still be uncorrelated since all the qi are.
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say, a 6−σ outlier (|yi| > 6) would provide strong evidence
that there is either more variance on the scale probed by
the ith mode than the fiducial power spectrum assumed, or
that the probability distribution is strongly non-Gaussian
on that scale. Even if it goes undetected, an incorrect
assumed model does not bias the estimate of the power
spectrum, as discussed below in Section 6.3.5.

3.5.5. Using KL modes for linear filtering

The KL eigenmodes have an additional use. The process
of throwing away the eigenmodes with low signal-to-noise
ratios splits the space of all possible density fields given the
data into two — one subspace that mostly contains noise,
and one that is dominated by our generalized signal. The
two are statistically orthogonal to one another. The ex-
pansion of a given dataset over the signal subspace will
substantially reduce the noise, thus representing a useful
linear filtering of the data (cf., Seljak 1997). Since it max-
imizes the signal for a given number of included modes,
the KL transform is sometimes referred to as “optimal
subspace filtering”. More generally, let us define a filtered
data set

x′i ≡
N∑

j=1

(CB†)ijwjyj (41)

for some weights wj . The generalized eigenvector orthog-
onality relation gives BCB† = I (cf., VS96, TTH), which
implies that C−1 = B†B and CB†B = I. Hence equa-
tion (35) gives CB†y = x, which implies that we recover
the original data set (x′ = x) in equation (41) if we choose
the weights wj = 1. Another simple example is the optimal
subspace filtering mentioned above, which corresponds to
the choice wj = 1 for j ≤ N ′, wj = 0 otherwise. Finally,
it is easy to show that the choice wj = λ′j gives Wiener

filtering, which is defined by x′ = SC−1x. In other words,
Wiener filtering becomes diagonal in the KL basis, since
it diagonalizes S and C simultaneously. Indeed, Wiener
filtering is but one of many linear filters that are straight-
forward to implement in the KL basis.

3.6. Quadratic method

In both traditional methods and the pixelized KL tech-
nique, the power spectrum estimates qi are some quadratic
functions of the observed density field n(r), i.e., of the
form given by equation (4). Hamilton (1997a) adopted
a more ambitious approach, and computed the unbiased
quadratic power estimators that have minimal variance,
using a series expansion. T97 subsequently showed that
these estimators are unbeatable; their Fisher informa-
tion matrix is identical to that of the raw data, so no
non-quadratic unbiased estimators can give smaller vari-
ance. Moreover, they can be computed without recourse
to the numerically cumbersome series expansion of Hamil-
ton (1997a) (c.f. T97 and Knox, Bond, & Jaffe 1997 for
applications to CMB observations). Here we show how
this method can be applied to galaxy surveys, and its re-
lation to the KL method. Just as for the KL technique, a
fiducial power spectrum is assumed.

We will parameterize the power spectrum as a piecewise
constant function with N ′ “steps” of height pi, which we
term the band powers. Thus P (k) = pi for ki ≤ k <

ki+1, where

0 = k1 < k2 < ... < kN ′+1 = ∞, (42)

and group them into an N ′-dimensional vector p. For the
method to be strictly lossless, these bands should be cho-
sen to be quite narrow compared to the scales on which the
power spectrum varies. One first computes a compressed
data vector q whose N ′ elements are quadratic functions
of the data set x. These are defined by

qi ≡
1

2
z†C,iz, (43)

where the vector z is given by

z ≡ C−1x, (44)

and the matrix C,i is defined by

(C,i)ab ≡
∫

ki<|k|<ki+1

ψ̂a(k)ψ̂b(k)∗
d3k

(2π)3
. (45)

That is, C,i is the derivative of the covariance matrix C
(equation (18)) with respect to the normalization of the
ith band, in the limit of narrow bands. Rewriting this as

qi ≡
1

2
x†Eix, (46)

where
Ei ≡ C−1C,i C

−1, (47)

we see that the matrix Ei is simply a discrete version of
the pair weighting function Ei(r, r

′) in equation (4). Note
that it is not separable, i.e., it has rank greater than one.

For the Gaussian case, the Fisher information matrix
for p defined by equation (3) reduces to (VS96, TTH)

Fij =
1

2
tr

[
C−1C,iC

−1C,j

]
, (48)

and T97 shows that both the mean and the covariance of
q are given in terms of F:

〈q〉 = Fp, (49)

〈qqt〉 − 〈q〉〈q〉t = F. (50)

This means that F−1q is an optimal estimator of p, since
its covariance matrix is precisely the inverse of the Fisher
matrix. Moreover, as shown in T97, compressing the data
set x into the coefficients q for some sufficiently narrow
bands is a strictly lossless procedure, retaining all the in-
formation about those cosmological parameters that af-
fect galaxy clustering through the power spectrum alone.
Equation (49) shows that, in terms of the band powers,
the window functions W of equation (8) for the coefficients
qi are simply proportional to the rows of the ubiquitous
Fisher matrix.

The coefficients F−1q tend to be both correlated and
noisy, and therefore it is better to work with the trans-
formed coefficients defined by

p̃ ≡ F−1/2q, (51)
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renormalized so that their window functions integrate to
unity. Here F1/2 denotes the symmetric matrix whose
square is F – it is readily computed by diagonalization. As
shown by Tegmark & Hamilton (1997), these coefficients
are all uncorrelated (multiply equation (50) on both the
right and the left by F−1/2 to see this), and moreover
tend to be very well-behaved numerically, with narrow
non-negative window functions (the rows of F1/2) span-
ning the entire range of scales probed by the survey.

4. RELATIONS BETWEEN THE METHODS

4.1. Relation between KL and quadratic method

As we will now show, the linear and quadratic pixelized
methods are closely related — the latter is simply a faster
way of computing the same band power estimates.

Let us optimize our KL modes to estimate not the over-
all power normalization, but the band power in band i. As
we showed in Section 3.5.5,

C−1 = B†B. (52)

Introducing the diagonal matrix Λ ≡ diag{λ′j}, equa-
tion (40) implies that

BC,iB
† = Λ. (53)

We are partially suppressing the index i here for simplic-
ity, although the eigenvectors in B and the eigenvalues
in Λ of course depend on which power band i we opti-
mize for. Equations (35), (52) and (53) allow us to rewrite
equation (43) as

2qi = x†C−1C,iC
−1x = x†B†BC,iB

†Bx

= y†Λy =
∑

j

λ′jy
2
j , (54)

i.e., as a weighted average of the squared KL coefficients
yj , with weights given by the KL eigenvalues λ′j . Thus the
coefficients are weighted by their inverse variance, which
means that this is the minimum-variance band power esti-
mator based on the squared KL coefficients, so after sub-
tracting off shot noise and normalizing correctly, the linear
(KL) and quadratic methods give exactly the same esti-
mator for the band power. As described in Section 6.4,
the quadratic estimator is is simply faster to compute. A
more intuitive way of understanding why the two methods
give the same result is to note that the quadratic method
was derived explicitly to be the minimum variance estima-
tor (T97; cf., equation (49)), and that VS96 showed that
the KL approach is guaranteed to minimize the variance
as well.

4.2. Relation between quadratic and ML methods:
iteration

If the quadratic method is repeated using the output
(measured) power spectrum as the input (fiducial) power
spectrum, then this iteration will eventually converge to
the power spectrum that would be obtained with the brute
force maximum-likelihood method (Bond, Jaffe, & Knox

1997). This is because the quadratic method can be de-
rived by expanding the logarithmic likelihood ln f to sec-
ond order around the fiducial point and maximizing it.
The iteration thus seeks the maximum of ln f by repeat-
edly approximating it with a parabola. This is essentially
the maximum-gradient method for maximization, which
is known to have excellent convergence properties. In the
one-dimensional case, this is equivalent to finding the zero
of (ln f)′ by repeated linear approximations. This is sim-
ply the Newton-Raphson root-finding method, known to
converge exponentially fast and asymptotically double the
number of correct decimals in each iteration.

Although the ML-result can be computed by iterating
the quadratic method, it should be stressed that this is
not necessarily a good thing to do. If the measured power
spectrum is noisy, so that the band power uncertainties do
not satisfy ∆P ≪ P , then iteration can produce mislead-
ingly small error bars, as the following example illustrates.
Suppose sample variance or a shot noise fluctuation makes
a band power measurement ten times smaller than the true
value and this is used as the new fiducial band power P
(prior). Then equation (62) shows that the nominal ∆P
from sample variance will be ten times too small as well.
If iteration is nonetheless desired, it is crucial not to let
the prior over-fit the data. A better approach than simple
iteration is therefore to use as prior a fit to the measured
P (k) with a smooth parameterized fitting function, and
keep adding fitting parameters until the the value of χ2

per degree of freedom drops below unity (Tegmark 1997a;
Seljak 1997).

4.3. Relation between quadratic and FKP methods: the
small scale limit

For a traditional method with a volume weighting func-
tion φ(r), we define a quantity L implicitly by

∫

kL<1

|φ̂(k)|2 d3k

(2π)3
=

1

2
, (55)

i.e., L−1 is the radius of a sphere in Fourier space contain-
ing half of the k = 0 window function. For simple volumes
such as a pencil beams, slices or spheres, L is of the order
of the width of the survey in its narrowest direction. We
will now show that in the small-scale limit where k−1 ≪ L,
the quadratic method reduces to the FKP method, which
implies that the latter is lossless and hence unbeatable for
measuring the power spectrum on the smallest scales, as
was pointed out by Hamilton (1997a).

4.3.1. Derivation of the FKP method

The FKP method (Feldman, Kaiser & Peacock 1994) is
the traditional method described in Section 3.3, using the
volume weighting of equation (25). The rank one power es-
timates |x2

a| are averaged with equal weights6 for all modes
in a spherical shell |k| = ka, so integrating equation (13)
over this shell using equation (22) for the pixels, we see
that this corresponds to the pair weighting

Ei(r, r
′) = φ(r)φ(r′)j0(ki|r − r′|), (56)

6An intuitive way to understand why all directions in k-space should receive equal weight when ∆k ≫ L−1 is to note that in this limit, the
number of coherence volumes that fit into a given solid angle in the shell is independent of its shape (and hence independent of direction in
k-space), being merely the ratio of the shell subvolume to the coherence volume.
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where j0(x) ≡ sin(x)/x. This holds for any choice of vol-
ume weighting function φ. The specific FKP choice given
by equation (25) is derived by minimizing the variance of
the corresponding power estimators qi. This involves a
number of approximations. We summarize the derivation
here, to clarify why the FKP weighting is optimal only on
small scales.

Substituting equations (15) and (22) into equations (19)
and (20), we obtain the pixel covariance matrix

Cab =

∫
φ̂(k − ka)φ̂(k − kb)

∗P (k)
d3k

(2π)3

+

∫
ei(ka−kb)·r

φ(r)2

n̄(r)
d3r. (57)

The function φ̂(k) roughly falls off on a scale L−1. As
long as L−1 ≪ k and the power spectrum P (k) is a smooth
function, P (k) will therefore be almost constant where the
first integrand is non-negligible (i.e., where |k−ka| ∼< L−1

and |k − kb| ∼< L−1) and can be approximately factored
out of the k-integral. Using the convolution theorem, this
yields

Cab ≈
∫
ei(ka−kb)·rφ(r)2

[
P +

1

n̄(r)

]
d3r, (58)

where P ≡ P ([ka+kb]/2). This shows that Cab ≈ 0 if |ka−
kb| ≫ L−1, so power estimates separated by much more
than ∆k = L−1 are essentially uncorrelated. Conversely,
power estimates from nearby shells with |ka − kb| ≪ L−1

are almost perfectly correlated and therefore redundant.
The FKP method therefore averages the power estimates
|xa|2 in thicker shells |ka| ∈ [ki, ki+1] as in equation (42),
whose widths satisfy L−1 ≪ |ki+1 − ki| ≪ k, giving ap-
proximately uncorrelated power estimates qi. This approx-
imation clearly only holds for small scales, k−1 ≪ L. We
denote the volume of the ith shell

Vs ≡ 4

3
π

(
k3

i+1 − k3
i

)
/(2π)3. (59)

Assuming that the pixelized data x is Gaussian dis-
tributed, the variance of the power estimator qi is simply
given by averaging 2|Cab|2 over the shell, i.e.,

(∆qi)
2 =

2

V 2
s

∫ ∫
|Cab|2

d3ka

(2π)3
d3kb

(2π)3
, (60)

where both integrals are to be taken over the ith shell.
Substituting equation (58), and using the fact that L−1 ≪
|ka − kb| ≪ k, one of these integrals simply produces a
factor Vs. Applying Parseval’s theorem to the result and
using equation (29) to normalize7 finally leaves us with the
approximation

(
∆qi
〈qi〉

)2

≈ 2

∫
φ(r)4

[
1 + 1

n̄(r)P

]2

d3r

Vs

[∫
φ(r)2d3r

]2 . (61)

This holds for any weighting function φ. The FKP choice
of φ is derived by minimizing this approximate expression
for the variance. Since it is left unchanged if we multiply
φ by a constant, we can for simplicity impose the normal-
ization constraint

∫
φ2d3r = 1. Minimizing the numera-

tor of equation (61) with a Lagrange multiplier for this
constraint now gives the FKP weighting of equation (25).
Substituting this back into equation (61) and omitting the
power band index i for simplicity finally yields

(
∆P

P

)2

≡
(

∆q

〈q〉

)2

≈ 2

VsV eff
, (62)

where

V eff (k) ≡
∫ [

n̄(r)P (k)

1 + n̄(r)P (k)

]2

d3r (63)

can be interpreted as the effective volume probed, since the
integrand is of order unity where one is signal dominated
(P ≫ 1/n̄) and ∼ 0 where one is noise dominated. For
a volume-limited survey with spatial volume V and con-
stant n̄, the FKP prescription weights all galaxies equally,
and we simply have V eff = [1 + 1/n̄P ]−2V . An intuitive
way to understand equation (62) is to note that the nearby
Fourier amplitudes xi are correlated over a coherence vol-
ume Vc ∼ 1/V . Thus as long as shot noise is not dominant,

∆P/P ∼
√

2/N , where N is the number of approximately
uncorrelated volumes Vc that fit into the shell volume Vs.
In conclusion, we have shown that for traditional methods,
the FKP volume weighting of equation (25) is optimal if
and only if we limit ourselves to small scales, k−1 ≪ L.

4.3.2. The small-scale limit of the quadratic method

It is often convenient to work in the continuum limit
where a discrete index i is replaced by a continuous vari-
able such as r or k. Vectors ai and matrices Aij then
correspond to functions of one and two variables, such as
a(r) and A(r, r′). Since all sums get replaced by integrals
in this limit, units frequently differ from the discrete case
8.

Let us take the pixelization functions to be Dirac delta
functions ψi(r) ≡ δD(r−ri), corresponding to a continuum
of pixels

x(r) =
n(r)

n̄(r)
− 1, (64)

and choose our parameters to be the values of the 3D power
spectrum:

θi = P (ki). (65)

The matrices C and C,i then reduce to

C(r, r′) =

∫
e−ik·(r−r

′)P (k)
d3k

(2π)3
+
δD(r − r′)

n̄(r)
, (66)

C,i (r, r′) =
∂C(r, r′)

∂P (ki)
=

1

(2π)3
e−iki·(r−r

′), (67)

7Since kL≫ 1, equation (29) does not need the integral constraint correction.
8Since b = Ax means bi =

∑
j
Aijxj in the discrete case and b(r) =

∫
A(r, r′)x(r′)d3r′ in the continuous case, we see that matrix multi-

plication introduces units of the volume element, in this example d3r. Thus the continuous analog of the identity matrix, I(r, r′) ≡ δD(r− r
′),

is its own inverse, since (I2)(r, r′) ≡
∫

I(r, r′′)I(r′′, r′)d3r′′ = I(r, r′), even though it is not dimensionless — the delta function δD has units of

inverse volume.
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since P (k) =
∫
P (ki)δ

D(k − ki)d
3ki implies that

∂P (k)/∂P (ki) = (2π)3δD(k − ki). As we saw in Sec-
tion 4.3.1, the small-scale limit corresponds to neglect-
ing the k-dependence of P , which gives C(r, r′) ≈ [P +
1/n̄(r)]δD(r − r′) and

C−1(r, r′) =

[
P +

1

n̄(r)

]−1

δD(r − r′) = φ(r)δD(r − r′),

(68)
where φ is the FKP weighting function of equation (25)
normalized so that φ = n̄/(1 + n̄P ).

We will now rederive the FKP results with much less
effort than in the previous section, by simply using the
quadratic method formulas. Substituting equations (67)
and (68) into equation (43) shows that the quadratic esti-
mators q are given by

qi ≡
1

2
|ẑ(ki)|2, (69)

where the function z(r) ≡ φ(r)x(r), which apart from the
factor of 1/2 are exactly the FKP estimators of P (k). Cal-
culating the Fisher matrix by substituting equations (67)
and (68) into equation (48) gives

Fij =
1

2
tr

[
C−1C,i C

−1C,j
]

≈ 1

2

∫
φ(r)e−iki·(r−r

′)φ(r′)e−ikj ·(r
′−r)d3r d3r′

=
1

2
|φ̂(ki − kj)|2. (70)

Equation (49) now gives

〈qi〉 =

∫
FijP (kj)

d3kj

(2π)3
, (71)

which shows that the Fisher matrix is simply the 3D win-
dow function. To make the window function of the power
estimate qi integrate to unity, we need to divide it by the
quantity ∫

Fij
d3kj

(2π)3
=
V eff

2P 2
, (72)

where we have used equation (70), Parseval’s theorem,
equation (25) and equation (63) in the last step. Using
equation (50), this shows that

∆qi
〈qi〉

≈
√

2

∫
φ(r)d3r∫
φ(r)2d3r

=
√

2

[
1 +

1

n̄P

]
, (73)

where the last equal sign only holds for the volume lim-
ited case where n̄ is constant. Alternatively, averaging the
power estimates qi over a shell in k-space as in the previous
section, equation (50) reproduces the FKP error formula
of equation (62). In summary, we have shown that the
FKP method becomes lossless for measuring the power on
small scales, since it equals the optimal quadratic method
in this limit.

5. SYSTEMATIC PROBLEMS — THE SELECTION
FUNCTION AND EXTINCTION

We have discussed the importance of the integral con-
straint in Section 3.3. Here we discuss this issue in the

context of pixelized methods, and generalize it to a whole
host of systematic problems, including errors in our as-
sumed selection function n̄(r) and our assumed extinction
map.

5.1. What is the integral constraint?

If we knew the selection function n̄(r) a priori, before
counting the galaxies in our survey, we would be able to
measure the power on the scale of the survey. Our power
spectrum estimate would essentially be the square of the
ratio of the observed and expected number of galaxies in
our sample. Of course, we do not know n̄ a priori, so we
use the galaxies themselves to normalize the selection func-
tion. Thus the measured density fluctuation automatically
vanishes on the scale of the survey, and naive application
of any of the power spectrum estimation methods we have
described will falsely indicate that P (k) → 0 as k → 0,
regardless of the behavior of the true power spectrum on
large scales (Peacock & Nicholson 1991). See also Tadros
& Efstathiou (1996). Equation (5) tells us that apart from
the noise bias bi, there is an additional term Wi(0) that
must be subtracted off to make qi an unbiased power spec-
trum estimator. Let us assume that we know the shape of
the selection function but not its normalization. To reflect
this, we write the true selection function as

n̄(r) = an̄0(r), (74)

where n̄0 is our guessed selection function, and a is an
unknown normalization constant, and find that our noise
bias corrected power estimator will have a residual bias
(a − 1)2Wi(0). Since we do not know the exact value of
a, our only way to eliminate this bias is to require that
Wi(0) = 0, i.e., by requiring the window function to van-
ish at k = 0. This was first explicitly pointed out by
Fisher et al. (1993).

5.2. Its relation to extinction and other systematic
problems

Since requiring Wi(0) = 0 eliminates the integral con-
straint problem, the trouble is confined to the k = 0 mode.
If Wi(0) = 0, then the power estimate qi is clearly com-
pletely independent of P (0), the fluctuations in this un-
trustworthy mode. The essence of our approach is there-
fore the following:

• We have a systematic problem with a certain mode,
and can immunize our results from this problem
by making them independent of this untrustworthy
mode.

When phrased in this way, it is clear that this approach
can be applied to a variety of other systematic problems
as well. For instance, incorrectly modeled extinction adds
excess power in the form of purely angular modes (den-
sity fluctuations that have no radial component, i.e., be-
ing perpendicular to the line of sight). It might therefore
be desirable to make the results independent of all purely
angular modes on the relevant scales or, in a less ambi-
tious approach, at least independent of those modes whose
shape coincide with known dust templates. Similarly, mis-
estimating the shape of the radial selection function (of
n̄0 in equation (74)) pollutes certain purely radial modes
which one may wish to discard.
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5.3. How to eliminate untrustworthy modes with
pixelized methods

In this section, we show how the power spectrum esti-
mate from a pixelized method can be made insensitive to
the type of systematic errors described above.

Let us parameterize the true selection function n̄ as

n̄(r) =

M∑

j=1

aj n̄j(r), (75)

where n̄j are known functions and the parameters aj ,
which we group into an M -dimensional vector a, are a
priori unknown. Imagine for example a simple case where
M = 3, n̄1 is our best guess for a purely radial selection
function based on a Schechter luminosity function, n̄2 is a
(purely angular) dust template, and n̄3 gives the effect of
an infinitesimal error in the estimate of the characteristic
luminosity L∗: n̄3(r) = ∂n̄1(r)/∂L∗. Let n̄0 denote some
a priori estimate of n̄. Defining the “uncorrected” pixels
as

x′i ≡
∫

n(r)

n̄0(r)
ψi(r)d

3r, (76)

we find that
〈x′〉 = Ua, (77)

where the N × M matrix U of untrustworthy modes is
defined by

Uij ≡
∫
n̄j(r)

n̄0(r)
ψi(r)d

3r. (78)

This means that in general, the data set 〈x′〉 6= 0, so the
uncorrected data set does not satisfy equation (17).

We show how to solve this problem in Appendix B. In
short, one replaces x by a cleaned data set Πx, where Π
is a matrix that satisfies ΠU = 0 and thus projects out
the untrustworthy modes. We find that the best choice is
Π = I−U(U†C−1U)−1U†C−1. Although the covariance
matrix of the cleaned data set is not invertible, we find
that with this choice of Π, the quadratic method remains
strictly optimal if we simply use C from the uncleaned data
in equation (44). We also show that the integral constraint
correction given by equations (31) and (32) corresponds to
this optimal method in the small scale limit.

6. PROS AND CONS OF THE METHODS

Above we have presented all methods for galaxy power
spectrum estimation that have proposed in the literature,
as well as the new pixelized quadratic technique and var-
ious extensions, and showed how they are related to one
another. We will now discuss their relative merits at some
length. It will become clear that they are highly com-
plementary, and we summarize the pros and cons of each
method in Table 1. We will return to this in the discus-
sion section, where we describe how the traditional, KL
and quadratic methods can be used in concert to produce
a data analysis pipeline having all the properties on our
wish list from Section 2.

TRAD LIN QUAD
Optimal on largest scales − + +
Optimal on smallest scales + − −
Simple & uncorrelated errors −/+ +/− +
Measures z-space distortions − + −
Accomodates systematic effects − + +

Table 1: Pros and cons of the traditional, linear (KL)
and quadratic power spectrum estimation methods.

6.1. Pros and cons of the direct Fourier method

Unlike the pixelized methods, the traditional Fourier
method uses the exact galaxy positions and thus retains
all the small-scale information about P (k).

As discussed in Section 4.3, this method becomes loss-
less in the limit kL→ ∞ when the FKP choice of φ, equa-
tion (25), is used. In addition, choosing the shell widths
∆k ≫ L−1 guarantees that the errors in the band power
estimates P̃i will be approximately uncorrelated. This
means that on small scales, say kL ≪ 10%, this method
satisfies the first three criteria on our wish list in Section 2.

However, these advantages no longer hold when measur-
ing power on scales comparable to the size of the survey.
VS96 review problems with the direct Fourier approach
that occur unless kL ≪ 1. They fall into the two cate-
gories described below.

6.1.1. The direct Fourier method destroys information

Hamilton (1997b) has shown that a strictly optimal di-
rect summation method can be derived in principle, in
terms of a series expansion, but this is unfortunately ex-
tremely burdensome numerically except for scales much
smaller than the survey size, away from the boundaries,
where it approximates equations (25) and (26). The opti-
mal galaxy pair weighting is not separable (in the sense of
equation (13)) and thus cannot be expressed in terms of a
volume weighting function φ as above. Consequently, no
direct Fourier methods are lossless except on small scales.

6.1.2. The method is complicated and computationally
slow for large scales

It is important to note that the Fourier transformation
calculation takes only a negligible amount of time in a
power spectrum analysis — the lion’s share of the work
involves computing the mean corrections Wi(0), the shot
noise correction bi, the normalization factor Ai and the co-
variance matrix of the power estimates. This becomes nu-
merically cumbersome on the largest scales, when kL ∼ 1.
This is because both smearing from the window function
and the effect of the integral constraint become important
and must be accurately computed in this regime. Even
though the relevant integrals can be greatly accelerated
with FFT’s, the calculations are not only much more com-
plicated and obscure than the simple linear algebra of the
pixelized methods, but generally substantially slower as
well. The most time-consuming step is the computation
of the error bars ∆P and the covariance between power
estimates using an integral constraint corrected and ap-
propriately generalized version of equation (60), since the
integral in equation (57) must be done separately for each
pair of grid points (ki,kj) in Fourier space (cf., Gold-
berg & Strauss 1998). The property of uncorrelated errors
is clearly lost, making it quite difficult to compute the
optimal weights for averaging the power estimates in k-
space into power bands in k-space (T95, VS96). In short,
when comparing the direct Fourier method to the KL and
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quadratic methods on the largest scales, it is more com-
plicated, uses more CPU time and produces an inferior
result.

6.2. Pros and cons of the brute force method

The pixelized brute force method has been applied
to galaxy survey analysis using expansions in spherical
harmonics (Fisher et al. 1994; Heavens & Taylor 1995;
Ballinger, Heavens & Taylor 1996).

It is arguably the simplest of all methods, both concep-
tually and in implementation. Moreover, it can be shown
to be lossless in the limit of large data sets, thus giving
minimal error bars. An important disadvantage is that
it is slow. The slowest step in evaluating the likelihood
function f is to compute detC, for which the CPU time
required scales as N3, and f is evaluated at a large number
of grid points in the multi-dimensional parameter space.
This is why it is so useful if N , the number of pixels, can be
reduced by a lossless data compression scheme before per-
forming the likelihood analysis, throwing away noise and
keeping the signal. As we described above, this is exactly
what the Karhunen-Loève and quadratic methods do. In
the KL scheme, the compressed data set y was a linear
function of x (of the form y = Bx for some matrix B),
and in the quadratic scheme q was a quadratic function of
x, of the form qi = x†Eix/2 for some matrices Ei.

A second disadvantage is that the maximum likelihood
parameter estimate Θml (defined in Section 3.4) is such
a complicated function of x that we cannot calculate its
statistical properties analytically. As we saw above, both
the linear and quadratic schemes allow us to write down
power spectrum estimators in closed form (equations (39)
and (43), respectively) This allows one to compute their
probability distributions exactly, (the yi are Gaussian and
the qi are are generalized χ2 distributions, often close to
Gaussian), which makes these power estimates easy to
use for parameter fitting further down the data analysis
pipeline.

6.3. Pros and cons of the KL method

6.3.1. It retains the phase information

An important advantage of the KL method over the oth-
ers in the table is that the KL coefficients retain the spatial
information about the data (not only the Fourier ampli-
tudes, but the corresponding phases as well). This means
that information on processes which affect the radial and
angular clustering patterns differently can be optimally
probed with the KL method. Such effects include

1. Redshift space distortions (cf., Appendix C),

2. Galactic extinction (which affects only angular
modes),

3. Evolution and mis-estimates of n̄(r) (which affect
only radial modes).

We have not discussed in any detail how one might in-
clude these effects in a KL analysis. Suffice it to say that
for any physical effect that affects the covariance matrix
of the pixels, one can determine KL modes which are op-
timized for parameters which describe this effect; cf., Sec-
tion 3.5.2. The way to do this for redshift-space distortions

(see Appendix C) is described in more detail in TTH. We
argue below in Section 6.3.4 that the simple signal-to-noise
eigenmodes are appropriate general purpose modes for a
KL analysis of any parameter which affects the covari-
ance matrix only via the power spectrum. On the other
hand, the KL modes should be custom tailored (using
equation (40)) for parameters not in this category, such
as ones causing anisotropic clustering.

Another approach is that discussed in Section 5 and Ap-
pendix B: rather than measuring these systematic effects,
one can project out those modes that are sensitive to them,
making the resulting dataset immune from them. This can
be done for any pixelized method, but is especially simple
for the quadratic method.

6.3.2. Pixelization is not lossless

The “−” on row 2 of Table 1 refers to the fact that com-
putational constraints place an upper limit on the num-
ber of pixels N used for the eigenvalue problem, since the
storage required scales as N2 and the CPU time as N3.
N = 104 is readily handled on a high-end 1997 worksta-
tion (TTH), and new methods under development (Szalay
& Vogeley 1997) may well be able to increase this by an
order of magnitude or more, but since the dynamic range
is ∼ N1/3 ∝(CPU time)1/9, some information will always
be lost on the very smallest scales. Fortunately, this is not
a problem in practice, since the complementary traditional
methods work best precisely on the smallest scales.

6.3.3. The KL power peak problem

For very deep surveys such as SDSS and 2dF, which
probe scales substantially beyond the expected peak in the
power spectrum at ∼ 200h−1Mpc, the KL window func-
tions will generally not be narrow but double-peaked, since
fluctuations longward of the peak have the same signal-to-
noise ratio as certain fluctuations shortward of the peak
and will get mixed in the corresponding KL modes. One
readily circumvents this degeneracy problem by perform-
ing a likelihood analysis on the KL modes, with the band
powers being the parameters to be estimated. However,
the statistical errors on the resulting band power estimates
will no longer be uncorrelated, and since this is a nonlinear
operation, they will also not have the simple χ2 distribu-
tion in general. This is why Table 1 indicates “+/−” in
row 4: the “+” applies when we use the direct approach
on a volume smaller than ∼ 200h−1 Mpc in size, and the
“−” applies when we use the indirect approach on a deep
data set such as SDSS or 2dF. As was described in Sec-
tion 3.5.2, one can circumvent this power peak problem by
using choosing a monotonically decreasing fiducial power
spectrum such as P (k) ∝ k−3. This can hardly be said
to make the KL-modes less “optimal”, since they will still
partition the information into mutually exclusive and col-
lectively exhaustive chunks. They simply become sorted
according to a different criterion: not by their informa-
tion content regarding the power normalization, but by
the physical scale they probe.

6.3.4. The KL multi-parameter complication

The derivation of the signal-to-noise eigenmode method
in e.g. VS96 or TTH does not prove that the compressed
data set retains the bulk of the information about all pa-
rameters of cosmological interest, but merely that it is
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lossless with respect to the overall power spectrum normal-
ization. In fact, this is not a problem in practice. TTH
describe a method where one carries out a series of KL
transforms, optimizing for each parameter of interest in
turn, then pools all the resulting eigenmodes and uses sin-
gular value decomposition to eliminate redundancy from
the pool of modes. In addition, there is good reason to be-
lieve that the information about all cosmological parame-
ters is nonetheless preserved even with the signal-to-noise
eigenmodes alone. We now give a hand-waving argument
to this effect, and describe some detailed numerical ex-
periments that support it. TTH computed three separate
sets of KL modes for the CMB data set of the COBE
satellite (N = 4016), optimized for measuring three dif-
ferent parameters: the power spectrum normalization Q,
the slope n and the reionization parameter τ . The 3 × 3
Fisher matrix was then computed from the three com-
pressed data sets separately for N ′ = 500 modes retained.
Each set of modes retained virtually all the information
about their corresponding parameter, but the error bars
on Q with the n or τ modes were substantially larger than
their Cramér-Rao minimum. That is, the n-modes and the
τ -modes lost information aboutQ. On the other hand, the
Q-modes were found to retain virtually all the information
about n and τ . Examination of their window functions re-
vealed why. To obtain a large lever arm for determining
the slope, the n-modes were probing mainly the largest
and the smallest available scales, ignoring those in the
middle near the “pivot point”. The τ -modes were ignor-
ing the very largest scales, since these are unaffected by
reionization and therefore carry no information about τ .
The Q-modes, on the other hand, were faithfully probing
the power on all available scales, and therefore automat-
ically retained all of the information about n and τ as
well, as a side effect. Thus as long as the galaxy power
spectrum has no sharp features (which the signal-to-noise
eigenmodes might potentially ignore) we expect the stan-
dard KL modes optimized for the normalization to be close
to lossless with respect to all cosmological parameters af-
fecting only the power spectrum.

6.3.5. Does KL bias the results towards our theoretical
prejudice?

It has been argued that the KL method biases the re-
sults by guessing an a priori fiducial power spectrum when
computing the pixel covariance matrix. This claim has
been extensively tested numerically (Bunn 1995, TTH),
and found to be completely unfounded. In general, the
effect of guessing an incorrect prior model is to leave the
estimates unbiased, but with slightly larger error bars than
what is optimal. If desired, any dependence on the initial
data can clearly be eliminated by iterating the KL proce-
dure as described in Section 4.2, while at the same time
reducing the error bars close to the minimum allowed by
the Fisher matrix.

6.4. Pros and cons of the quadratic method

One advantage of this method is that its simple and un-
correlated quadratic estimators have narrow window func-
tions at all k, even beyond the peak in the power spectrum.
Thus it is a useful complement to the KL method on the
very largest scales, as indicated by row 4 in Table 1.

A second advantage is evident from equation (43): Since
the CPU time for multiplication of a vector by a matrix
scales as N2, the time for computing z scales as N2 as well
if equation (44) is solved by an iterative technique such as
the conjugate gradient method (Press et al. 1992). This
is much faster than the KL method, which scales as N3.
This speed increase may allow the quadratic method to be
used over a somewhat larger dynamical range than the KL
method, extending down to smaller scales. The quadratic
method can also be used as a faster way to obtain the same
results as the brute force ML method, using the iteration
scheme described in Section 4.2.

Furthermore, we saw in Section 5 and Appendix B that
the quadratic method can be made immune to various
sorts of systematic errors which might plague the data.

An important disadvantage is that, unlike the KL
method, it does not retain any phase information. This
is a drawback when estimating the underlying real-space
power spectrum, since although it can measure this di-
rectly by computing the appropriate C once the distor-
tion parameter β ≡ Ω0.6/b is known, the KL method or
another linear approach must be used first, to measure β.
Once cannot simply immunize the data from mis-estimates
of β using the formalism of Appendix B, since β affects vir-
tually all the modes. It does, however, appear possible to
generalize the quadratic method to overcome this limita-
tion (Hamilton 1997, private communication).

7. DISCUSSION & CONCLUSIONS

In this section, we summarize our discussion of the pros
and cons of the various methods, and conclude by describ-
ing an approach combining the strengths of all of them,
illustrated in Figure 1.

We found that although the direct Fourier approach is
both simple to implement and virtually lossless on scales
much smaller than the smallest dimension of the sample
in question, it has several drawbacks on larger scales:

1. It loses information, giving unnecessarily noisy mea-
surements.

2. It is quite tedious to implement numerically if one
uses the exact expressions we have derived for the
integral constraint correction, especially for comput-
ing the covariance.

In contrast, the two pixelized methods are lossless on large
scales, but lose small-scale information because numerical
constraints on the number of pixels limit the dynamical
range. Since they are simpler to implement as well, they
allow a more ambitious approach incorporating complica-
tions such as redshift-space distortions, residual extinction
and radial selection function errors (Section 5, Appendices
B and C). The quadratic method can compute exactly the
same band powers as the KL method, and do so faster (the
number of operations scaling as the square rather than the
cube of the number of pixels), allowing more pixels and a
larger dynamical range. The KL method, on the other
hand, is the only one which retains the phase information
in which clustering anisotropies (differences between the
angular and radial clustering patterns) is encoded. Since
redshift distortions and various systematic problems man-
ifest themselves in this way, the KL method is therefore a
powerful complement to the quadratic method, since the
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former can quantify and subtract these systematic effects
and pass the appropriate redshift-distortion parameter β
along to the latter, which can then measure the power
spectrum directly in real space as described in Appendix
C. Alternatively, the quadratic method can be immunized
from such systematic effects, as described in Appendix B.
The KL method is also useful for cosmographic purposes,
where spatial information is everything. Finally, the KL
method also has the advantage of greatly simplifying trou-
ble spotting such as search for outliers and non-Gaussian
behavior.

In conclusion, we have found that although none of the
methods can be made both feasible and lossless on its own,
we can obtain a feasible and virtually lossless data analysis
pipeline satisfying our entire wish list by combining three
of them, as outlined in Figure 1.

1. The power spectrum on scales k−1 ∼< L/10 is esti-
mated directly from the raw redshift data with the
traditional direct Fourier approach.

2. The raw data is binned into spatial pixels substan-
tially smaller than L/10, so that this pixelization
process retains all the information except that which
was already captured by the traditional method.

3. The linear (KL) method is used to measure
anisotropy parameters such as Ω0.6/b (from redshift-
space distortions), a residual extinction template
and corrections to the radial selection function, as
well as large-scale band powers.

4. Uncorrelated estimates of the power spectrum on
scales k−1 ∼> L/10 are computed with the quadratic
method, extending down to even smaller scales if

N ∼ 104 − 105 pixels are feasible. This can be done
both by incorporating the systematic effects found in
Step 3 with the KL method, and by using quadratic
estimators which are insensitive to these systematic
effects. The comparison of the results for the band
powers allows us to quantify how successful we are
in eliminating these effects.

5. The entire process may be iterated, using the
(smoothed) measured power spectrum as the fidu-
cial one.

6. Remaining cosmological parameters are estimated
with a likelihood or χ2 analysis from the power spec-
trum.

This approach should allow future redshift surveys to real-
ize their full potential to constrain cosmological models. In
the meantime, it appears worthwhile to reanalyze various
existing surveys with the same pipeline, to eliminate any
method-induced artifacts and allow more accurate cross-
comparisons of results.
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APPENDIX A: SHOT NOISE REMOVAL

There are two basic approaches in the literature to re-
moving shot noise. In this Appendix, we show that the
two give essentially identical results.

Using the Gaussian approximation

Let us define write our shot noise corrected band power
estimator as (qi − b̃i), where b̃i denotes our bias correc-
tion. Equation (5) shows that this estimator will only be

unbiased if 〈b̃i〉 = bi, where bi is given by equation (9).
A convenient way of removing the noise bias in pixelized
methods is to choose simply b̃ = bi, since it can be done
after pixelizing, without ever going back to the individ-
ual galaxy positions; for a general quadratic combination
of pixels qi as in equation (46), using equation (18) shows
that the shot noise bias can be written in terms of pixelized
quantities alone, as

bi = tr [EiN], (A1)

where N is given by equation (19).

The strict minimum variance method

In the approximation that the shot noise fluctuations
in the pixels has a Gaussian probability distribution, the
above-mentioned method of choosing b̃i = bi is readily
shown to give the unbiased power estimator with the small-
est variance. This is an excellent approximation when
the number of galaxies is large, as we now show. The
strict minimum-variance method is (Peebles 1980) to sim-
ply omit self-pairs in equation (4):

qi − b̃i =
∑

α6=β

Ei(rα, rβ)

n̄(rα)n̄(rβ)
. (A2)

This corresponds to the shot noise correction

b̃i =

∫
Ei(r, r)

n(r)

n̄(r)2
d3r =

∑

α

Ei(rα, rα)

n̄(rα)2
, (A3)

which is to be compared with equation (9). This is an

unbiased method since 〈b̃i〉 = bi. How much smaller is
the variance with this approach? We illustrate this with
the toy problem of estimating the power at k = 0 in a
volume-limited survey with N galaxies, which is simply
proportional to

q ≡ (N − N̄)2 − b̃, (A4)

where N is a Poisson-distributed random variable with
mean N̄ . Since 〈(N − N̄)2〉 = N̄ , the shot noise correction

b̃i = bi corresponds to the choice b̃ = N̄ . The strict min-
imum variance method of equation (A3) corresponds to

b̃ = N . Both methods are unbiased, giving 〈q〉 = 0. The
higher order moments differ, however. The variances 〈q2〉
are 2N̄2 and 2N̄2+N̄ , respectively, so whereas the strictly
optimal method gives the same variance that Gaussian
noise would, the variance of the other method is a factor
(1 + 1/2N̄) larger. 9

9 The differences between the two methods get larger for higher
moments, but always remain of the order 1/N̄ . Compared with

Which method is preferable?

This means that the optimal method only reduces the
standard deviation by a negligible 0.01% for N = 104

galaxies. Moreover, it is incorrect to claim that the strictly
optimal method in some sense removes the “exact” shot
noise: since the higher order moments depart from the
Gaussian values even for this method, there is clearly Pois-
sonian noise left in q. The difference in variance between
the two methods remain equally negligible for more real-
istic examples, generally being of order the inverse of the
number of galaxies in the survey. The choice of which
method to use should therefore be dictated by practi-
cal convenience. Whereas the strict minimum variance
method is of course trivial to implement in techniques in-
volving an explicit sum over galaxy pairs (such as the FKP
method), the other method is generally simpler to use for
pixelized techniques, since it can be implemented using the
pixelized data alone.10

APPENDIX B: DERIVATION OF INTEGRAL

CONSTRAINT AND RELATED EXPRESSIONS

In this appendix, we derive some of the results described
in the text: the integral constraint correction for the tradi-
tional Fourier method (Section 3.3), and the optimal way
to immunize the data from the untrustworthy modes of
Section 5.

The Integral Constraint in the Direct Fourier Method

How should one deal with the integral constraint when
using a traditional method as in Section 3.3? From the
discussion in Section 5, it is clear that we should mod-
ify the weighting functions of equation (22) so that they
become orthogonal to the mean density, i.e., so that∫
ψi(r)d

3r = 0. There are infinitely many ways of doing
this, and some are clearly better than others if we want
the power estimators qi = |xi|2 to retain as much cosmo-
logical information as possible. We here derive one such
correction method which is both simple and intuitive, fol-
lowing Tegmark (1997c). We will adopt a more ambitious
approach in the following subsection, deriving the optimal
correction method for the pixelized case. At the end of
this Appendix, we show that in the small-scale limit, the
two methods are in fact identical.

If we use our guess n̄0 (equation 74) in place of the un-
known true selection function n̄ in equation (15), we will

have 〈xi〉 = (a − 1)ψ̂i(0) 6= 0. When using a traditional
power estimator qi = |xi|2, this causes a systematic pos-

itive power bias (a − 1)2|ψ̂i(0)|2 that we cannot subtract
off, as a is unknown. We must therefore modify ψi so that

ψ̂i(0) vanishes. Let â denote our estimate of a. We will
choose â so that this bias vanishes, i.e., so that the integral

the Gaussian approximation 〈q3〉 = 8N̄3, the skewness of the two
methods is up by factors of (1 + 2/N̄) and (1 + 11/4N̄ + 1/8N̄2),
and compared with the Gaussian approximation 〈q4〉 = 60N̄4, the
kurtosis is up by factors of (1+12/5N̄ +2/15N̄2) and (1+ 33/5N̄ +
23/12N̄2 + 1/60N̄3).

10There is one useful exception: one can use the strict minimum
variance method based on pixelized data alone in the special case
where the pixels are counts in (sharp-edged) cells, in which case the
terms x2

i
get replaced by xi(xi − 1).
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constraint
∫ [

n(r)

ân̄0(r)
− 1

]
φ(r)d3r = 0 (B1)

holds, or explicitly,

â ≡ 1

φ̂(0)

∫
n(r)

n̄0(r)
φ(r)d3r. (B2)

This is an unbiased estimator of the density normalization,
since 〈â〉 = a, the true value. Substituting n̄(r) = ân̄0(r)
and equations (22) and (B2) into equation (15), we obtain

xi =
1

â

[∫
n(r)

n̄0(r)
eiki·rφ(r)d3r − φ̂(ki)â

]

=
1

â

[∫
n(r)

n̄0(r)
eiki·rφ(r)d3r − φ̂(ki)

φ̂(0)

∫
n(r)

n̄0(r)
φ(r)d3r

]

=
a

â

∫
n(r)

n̄(r)
ψi(r)d

3r ≈
∫
n(r)

n̄(r)
ψi(r)d

3r, (B3)

where the function ψi is defined by

ψi(r) ≡
[
eiki·r − φ̂(ki)

φ̂(0)

]
φ(r). (B4)

Hence its Fourier transform is

ψ̂i(k) = φ̂(k − ki) −
φ̂(ki)

φ̂(0)
φ̂(k). (B5)

The relative error in â is of order the inverse square root of
the number of galaxies in the survey, so we can to a good
approximation treat a as a known constant from here on
and take a/â = 1 on the last line of equation (B3). We
see that the volume weighting ψi given by equation (B4)
is better than the traditional choice of equation (22) since

it is orthogonal to the mean, i.e., it satisfies ψ̂i(0) = 0,
which guarantees that 〈xi〉 = 0.

In practice, we need never use equation (B4) to com-
pute xi with equation (15), since this is implicitly done
if we first correct n̄ by estimating its normalization with
equation (B2) and then apply the simple weight function
of equation (22). (This is mathematically equivalent to
applying the weight function equation (B4) directly to the
data, using an arbitrary n̄-normalization.) However, we do
need equation (B4) to derive the expressions for the shot
noise correction and normalization given in Equations (32)
and (31). Substituting equation (B4) into equation (9)
gives the shot noise correction

bi =

∫ |ψi(r)|2
n̄(r)

d3r

=

∫ ∣∣∣∣∣e
iki·r − φ̂(ki)

φ̂(0)

∣∣∣∣∣

2
φ(r)2

n̄(r)
d3r, (B6)

and expanding the square completes our derivation of
equation (32). The normalization coefficient Ai of equa-
tion (30) is determined by the requirement that the win-

dow function integrate to unity, i.e., Ai =
∫
|ψ̂i(k)|2d3k/(2π)3.

Using Parseval’s theorem, we obtain

Ai =

∫
|ψi(r)|2d3r

=

∫ ∣∣∣∣∣e
iki·r − φ̂(ki)

φ̂(0)

∣∣∣∣∣

2

φ(r)2d3r, (B7)

and expanding the square as above completes our deriva-
tion of equation (31).

How important is this correction?

Let us evaluate the integral constraint correction factor
Ai for a couple of simple examples. We first note that for
the special case of equation (23), we have φ(r)2 ∝ φ(r).

Hence a(k) ∝ φ̂(k), and equation (31) reduces to

Ai =



1 −
∣∣∣∣∣
φ̂(ki)

φ̂(0)

∣∣∣∣∣

2


 a(0), (B8)

which we recognize as the result of Park et al. (1994). For
volume-limited surveys, the prescriptions given by equa-
tions (23), (24) and (25) all coincide, so this expression is
exact for the volume-limited case with these galaxy weight-
ing schemes. For flux-limited surveys, on the other hand,
these schemes all give a decreasing weight function ψ, since
n̄ decreases with distance. For the simple Gaussian case
φ(r) = exp[−(r/R)2/2]/π1/4R1/2, equation (31) gives

Ai = 1 + e−(Rki)
2 − 2e−

3
4
(Rki)

2

, (B9)

whereas the approximation (B8) gives

Ai = 1 − e−(Rki)
2

. (B10)

A Taylor expansion shows that for kR ≪ 1, the latter
overestimates Ai by a factor of two as illustrated in Figure
2.

FIG. 2 — The exact expression for the integral constraint cor-

rection Ai is plotted together with the approximation of Park et

al (1994) for a Gaussian weight function ψ(r) ∝ exp[−(r/R)2/2],

R = 100h−1Mpc.
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Eliminating contaminated modes with pixelized methods:
A Simple Solution

In this and the next subsection, we continue the dis-
cussion of Section 5, and present a method to project out
modes of the density field that we believe might be con-
taminated by, e.g., errors in the selection function or in
the assumed extinction map. Our starting point is equa-
tion (78), the N ×M matrix U of untrustworthy modes.

To remedy the problem, we construct a new “cleaned”
data set that is independent of a, the coefficients of these
modes. Let us define

x ≡ Πx′, (B11)

where Π is an N ×N matrix satisfying

ΠU = 0, (B12)

i.e., having the columns of U in its null space. This im-
plies that Π has at most rank N −M . We will choose it
to have exactly this rank, since otherwise Π will destroy
more information than necessary (for instance, null ma-
trix choice Π = 0 satisfies equation (B12), but destroys
all our information). It is easy to construct such matrices,
a simple choice being

Π = I− U(U†U)−1U†. (B13)

This is the Hermitean (Π† = Π) projection matrix (Π2 =
Π) projecting onto the subspace orthogonal to the columns
of U. Our corrected data set x satisfies equation (17), since
〈x〉 = ΠUa = 0. Letting C′ denote the covariance matrix
of the uncorrected data set, the corrected data will have
the covariance matrix

C ≡ 〈xx†〉 = ΠC′Π†. (B14)

Once x and C have been computed, the rest of the pix-
elized analysis proceeds just as described in Sections 3.4,
3.5 or 3.6. The only complication is that C is now sin-
gular, having rank N − M instead of N . As shown in
the Appendix of T97, the correct way to deal with this in
the quadratic method is to replace all occurrences of C−1

(which is of course undefined) by the “pseudo-inverse” of
C, defined as

Π
[
C + γUU†

]−1
Π (B15)

for some constant γ 6= 0. T97 shows that the result is
independent of γ, and that a good choice for numerical
stability is γ ∼ c/N , where c is the order of magnitude
of a typical matrix element of C. The same trick can be
used for the KL method, in the step where equation (40)
is reduced to an ordinary eigenvalue problem by Cholesky
decomposing C as described in TTH.

The optimal solution

Equation (B13) does not give the only rank N − M
projection matrix satisfying ΠU = 0 — there are in
fact infinitely many such matrices of the form Π = I −
U(U†MU)−1U†M, where M is an arbitrary non-singular
matrix, and equation (B13) simply corresponds to the case
M ∝ I. Since they all have the same null space U, it is
clear that they all destroy the same information (all the in-
formation about the untrustworthy modes, no more and no

less). The power spectrum Fisher matrix for the cleaned
data set is therefore independent of M, so our choice is
purely one of numerical convenience. For the quadratic
method in particular, there turns out to be a much more
appropriate choice than that of equation (B13), which alto-
gether eliminates the above-mentioned problem of C being
singular by allowing the quadratic pair weighting E to be
computed analytically. We will derive this choice of Π by
generalizing the derivation of the quadratic method (T97)
to include our constraint that the results be independent
of the corrupted modes.

The most general quadratic estimator can clearly be
written as in equation (46) for some symmetric matrix
Ei. As shown in T97, this implies that the variance of qi
is given by

V (qi) ≡ 〈q2i 〉 − 〈qi〉2 =
1

2
tr [CEiCEi] (B16)

and that the signal, the expected contribution to qi from
the power band of interest, is tr [C,i Ei]/2, where C,i is
defined by equation (45). To maximize the signal-to-noise
ratio, we want to minimize the variance given a fixed sig-
nal, i.e., subject to the constraint that tr [C,i Ei] is held
constant. If we write

qi =
1

2
(x + Ua)†Ei(x + Ua), (B17)

it is clear that we can phrase our constraint on Ei as
EiU = 0. This is in fact N × M separate constraint
equations, so using the fact that Ei is symmetric, our con-
strained minimization problem involves minimizing

L ≡ tr

{
1

2
CEiCEi − λC,i Ei + λ[UA† + AU†]Ei

}
,

(B18)
where A is some arbitrary N × M matrix of Lagrange
multipliers. Requiring the derivatives with respect to the
components of Ei to vanish, we obtain

Ei ∝ C−1
[
C,i −UA† − AU†

]
C−1, (B19)

where A is determined by the constraint EiU = 0. Defin-
ing Ũ ≡ C−1U, the solution is

A =

[
I− 1

2
U(Ũ†U)−1Ũ†

]
C,i Ũ(Ũ†U)−1, (B20)

which can be verified by direct substitution. Substituting
this back into equation (B19) finally yields

Ei ∝ Π†C−1C,i C
−1Π, (B21)

where

Π = I − U(U†Ũ)−1Ũ† = I − U(U†C−1U)−1U†C−1

(B22)

is a projection matrix satisfying ΠU = 0, Π†Ũ = 0 and
C−1Π = Π†C−1. Inserting equation (B21) into equa-
tion (46), we see that our quadratic estimator retains the
simple form of equation (43) if we generalize equation (44)
to

z ≡ C−1Πx, (B23)
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so after cleaning the data set (replacing x by Πx), the
quadratic method proceeds exactly as before. This gen-
eralization of the quadratic method clearly reduces to the
prescription in Section 3.6 (z = C−1x) if there are no
untrustworthy modes, in which case M = 0 and Π = I.
Note that this technique is quite useful for estimating the
power spectrum from cosmic microwave background ex-
periments as well, in which case obvious candidates for
corrupted modes are the monopole and the three dipole
components.

Relation between the pixelized and continuous cleaning
schemes

In this section, we will show that the integral correction
procedure for traditional methods that we derived above
is lossless for the FKP volume weighting in the small-scale
limit, corresponding to the quadratic method.

When we have merely one untrustworthy mode (M =
1) corresponding to the normalization of n̄, the matrix
defined by equation (78) consists of a single column vector;
U = u. Using the continuum pixels x(r) of equation (64),
this vector is simply the k = 0 (constant) mode, i.e.,

u(r) = 1. (B24)

Let us now evaluate the optimal power estimate qi that we
derived above, given by Equations (43) and (B23). Since
U = u, we have

Πx = x −
(

u†C−1x

u†C−1u

)
u, (B25)

where Equations (68) and (B24) show that u†C−1x =∫
φ(r)x(r)d3r and u†C−1u =

∫
φ(r)d3r = φ̂(0). We can

thus write

z(r) = (C−1Πx)(r) =

∫ [
δD(r − r′) − φ(r)

φ̂(0)

]
φ(r′)x(r′)d3r′.

(B26)
Fourier transforming this with respect to r′, Equation (69)
now shows that qi = |xi|2/2, where

xi = ẑ(ki) =

∫
ψi(r)x(r)d

3r, (B27)

and the volume weighting function ψi is exactly the one
that we derived in Section B.1, given by equation (B4). In
other words, we have shown that the FKP choice of the
function φ together with the volume weighting of equa-
tion (B4) is identical to the lossless quadratic method in
the small-scale limit.

APPENDIX C: REDSHIFT DISTORTIONS AND

CLUSTERING EVOLUTION

In Section 5 and Appendix B, we showed that the pix-
elized methods allow a more ambitious approach than is
feasible with the direct Fourier methods, incorporating
multiple integral constraints, since all the complications
simply became buried in the appropriate matrices. In this
Appendix, we show how two additional complications can
be incorporated with pixelized methods in the same vein:
redshift distortions and clustering evolution.

Redshift distortions

A ubiquitous problem with power spectrum estimation
is that of “redshift distortions”. When estimating the dis-
tance to a galaxy by its redshift, galaxies receding faster
than the Hubble flow due to local gravitational interac-
tions appear to be further away than they really are, and
vice versa. This was first discussed by Kaiser (1987) in the
context of P (k), and a recent review is given by Hamilton
(1997c). Denoting the apparent density field in redshift
space δs(r), Hamilton & Culhane (1996) use Kaiser’s for-
malism to show in linear perturbation theory that

δs =

[
1 + β

(
∂2

∂r2
+
α(r)

r

∂

∂r

)
∇−2

]
δr, (C1)

where β ≡ Ω0.6/b, the constant b is the so-called linear
bias factor, and

α(r) ≡ 2 +
∂ ln n̄(r)

∂ ln r
(C2)

is two plus the logarithmic slope of the radial selection
function. Fourier transforming this gives (Hamilton &
Culhane 1996; Hamilton 1997c)

δ̂s(k) = δ̂r(k) + β

∫
f(k,k′)δ̂r(k

′)
d3k′

(2π)3
, (C3)

where the function f is defined by

f(k,k′) ≡
∫
ei(k′−k)·r

[
(k̂′ · r̂)2 − α(r)i

k′r
(k̂′ · r̂)

]
d3r.

(C4)
Thus we obtain

〈δ̂s(k)∗δ̂s(k
′)〉 = (2π)3

∫
g(k,k′,k′′)P (k′′)d3k′′, (C5)

where

g(k,k′,k′′) ≡ δD(k − k′′)δD(k′ − k′′) +

+ β[δD(k − k′′)f(k′,k) + δD(k′ − k′′)f(k,k′)∗] +

+ β2f(k,k′′)∗f(k′,k′′). (C6)

The above expressions are derived and discussed in detail
by Zaroubi & Hoffman (1996), and also in Tegmark &
Bromley (1995) and T95 for the volume limited case; see
Szalay, Matsubara, & Landy (1997) for further discussion.

The key point here is that although 〈δ̂s(k)∗δ̂s(k
′)〉 is no

longer diagonal, and rather messy, it is still linear in the
power spectrum. Thus the pixel covariance matrix C will
still be some shot noise term plus a term linear in P (k).
In other words, by letting C,i refer to the derivative of C
with respect to the band powers in real space instead of
redshift space, the quadratic method will measure the real
space power spectrum directly (given a priori knowledge
of β), and the corresponding window functions (the rows
of F, say) will show the contributions to the measurements
qi from the various real space power bands.

Clustering evolution

The density fluctuation field δr maintains its shape in
linear perturbation theory, simply increasing in amplitude
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by a position-independent growth factor D. Since we are
seeing distant galaxies at an earlier time, we see the ap-
parent density fluctuations

δa(r) ≡ D(r)δr(r), (C7)

where D(r) = 1/(1 + z) for Ω = 1. This effect is straight-
forward to include in a pixelized analysis. Equation (19)
remains unchanged and equation (20) simply gets replaced
by

Sij =

∫
ψ̂′

i(k)ψ̂′
j(k)∗P (k)

d3k

(2π)3
, (C8)

where we have defined the functions ψ′
i(r) ≡ D(r)ψi(r).

This correction is quite small for shallow galaxy surveys,
where n̄ typically varies dramatically between z = 0 and
z = 0.2, a range over which D changes by at most about
20%, less for small Ω. If this effect is incorporated into the
analysis, Ω can be made a free parameter to be fit for in
the pipeline.

This clustering evolution should not be confused with
galaxy evolution, which we do not discuss here, and which
affects only n̄, not δr.

APPENDIX D: NORMALIZATION CONVENTIONS

Unfortunately, the power spectrum P (k) is defined in
many different ways in the literature, differing by normal-
ization factors such as (2π)3 and a fiducial box volume V .
In this paper, we normalize Fourier transforms as

f̂(k) ≡
∫
f(r)e−ik·rd3r, (D1)

and normalize P (k) so that

〈δ̂r(k)∗ δ̂r(k
′)〉 = (2π)3δD(k − k′)P (k). (D2)

The units of P (k) are volume. With this normalization,
the dimensionless power ∆2 of Peacock & Dodds (1994) is
given by

∆2(k) =
4π

(2π)3
k3P (k), (D3)

the r.m.s. fluctuations σ8 in a sphere of radius R = 8h−1

Mpc are

σ2
8 = 4π

∫ ∞

0

[
sinx− x cosx

x3/3

]2

P (k)
k2dk

(2π)3
, (D4)

where x ≡ kR, and the Sachs-Wolfe quadrupole Q in the
cosmic microwave background is given by

Q2 ≡ 5

4π
C2 =

10

π2

∫ ∞

0

j2(x)
2

x4
P (k)k2dk, (D5)

where x ≈ 2kc/H0 ≈ k × 6000h−1 Mpc and

j2(x) =
3 sinx− 3x cosx− x2 sinx

x3
. (D6)

T95 uses a convention where the (2π)3 factor in equa-
tion (D2) is replaced by (2π)6.
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Fig. D1.— We propose analyzing large future galaxy redshift surveys such as the SDSS, using three techniques in conjunction: a traditional
Fourier approach on small scales, a pixelized quadratic matrix method on large scales and a pixelized Karhunen-Loève eigenmode analysis to
probe anisotropic effects such as redshift-space distortions and residual extinction. The horizontal bars in the power spectrum box indicate
that the quadratic method has a larger dynamic range than the KL method. The bottom of the figure indicates that numbers such as the
redshift distortion parameter Ω0.6/b which reflect anisotropic clustering can only be optimally constrained using the KL modes, which retain
not merely the overall power, but the phase information as well.
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